Chapter 6 : Streptococci as Effector Organisms for Probiotic and Replacement Therapy

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Streptococci as Effector Organisms for Probiotic and Replacement Therapy, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815462/9781555814038_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555815462/9781555814038_Chap06-2.gif


This chapter examines the involvement of members of the genus as probiotics or as candidates for replacement therapy. Some researchers have turned to the development of replacement therapy strategies using relatively harmless indigenous streptococci as oral and nasopharyngeal probiotics, since (it is reasoned) these should have greater colonization potential than lactobacilli and bifidobacteria for these target tissues. The emphasis of the chapter is largely on current knowledge of the contribution of dedicated interbacterial inhibitors, the bacteriocins and bacteriocin-like inhibitory substances (BLIS), to the efficacy of streptococci as potential probiotics. It lists some of the practical factors such as safety, stability, formulation, colonization efficacy, and health benefits that may need to be taken into consideration when evaluating oral streptococcal probiotics. Acid resistance and adhesion to intestinal mucosa are desirable characteristics for traditional probiotics. For streptococcal probiotics targeting the oral cavity, acid tolerance is not a critical factor. Chronic multispecies bacterial infections of the oral cavity (e.g., dental caries, periodontal disease, and halitosis) are endemic, expensive to treat, and recalcitrant to conventional preventative protocols. These infections appear typically to be caused by the collective actions of more than one organism—the microbial community producing damage that individual microorganisms are probably incapable of inflicting. Intestinal probiotics are widely accepted for microbial population replacement and recolonization of the gastrointestinal tract, and a variety of beneficial strains are now inexpensively provided for the consumer.

Citation: Tagg J, Burton J, Wescombe P, Chilcott C. 2008. Streptococci as Effector Organisms for Probiotic and Replacement Therapy, p 61-81. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch6

Key Concept Ranking

Bacterial Diseases
Streptococcus mitis
Streptococcus pneumoniae
Streptococcus pyogenes
Streptococcus pneumoniae
Streptococcus pyogenes
Streptococcus pneumoniae
Streptococcus pyogenes
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Illustration of the four classes of bacteriocins produced by gram-positive bacteria with examples currently known to be produced by streptococci. Footnotes: 1, ; 2, ; 3, ; 4, ; 5, ; 6, ; 7, ; 8, ; 9, ; 10, ; 11, ; 12, ; 13, ; 14, ; 15, ; 16, ; 17, ; 18, ; 19, ; 20, ; 21, ; 22, ; 23, ; 24, ; 25, R. E. Wirawan, N. C. K. Heng, R. W. Jack, and J. R. Tagg, abstr. B14, 7th ASM Conference on Streptococcal Genetics, St. Malo, France, 2006; 26, ; 27, ; 28, ; 29, ; 30, Wescombe et al., unpublished (GenBank accession no. DQ889747); 31, .

Citation: Tagg J, Burton J, Wescombe P, Chilcott C. 2008. Streptococci as Effector Organisms for Probiotic and Replacement Therapy, p 61-81. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Overview of the proposed role of in regulating population dynamics in the oral cavity. 1, megaplasmid transfer to other ; 2, complete loss of megaplasmid and related function(s); 3, mutation(s) in specific loci resulting in loss of certain function(s); 4, acquisition and/or transfer of ecologically relevant loci between K12 and other streptococci; 5, potential superinfecting microbes. Filled arrows indicate expression of ecologically relevant loci; complete arrows (filled and unfilled) indicate observed phenotypic changes; dashed, unfilled arrows (containing question marks) indicate hypothetical processes. (Courtesy of R.W. Jack.)

Citation: Tagg J, Burton J, Wescombe P, Chilcott C. 2008. Streptococci as Effector Organisms for Probiotic and Replacement Therapy, p 61-81. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Anderson,, M. H., and, W. Shi. 2006. A probiotic approach to caries management. Pediatr. Dent. 28:151153., 192198.
2. Baba, T., and, O. Schneewind. 1998. Instruments of microbial warfare: bacteriocin synthesis, toxicity and immunity. Trends Microbiol. 6:6671.
3. Balakrishnan, M.,, R. S. Simmonds, and, J. R. Tagg. 2001. Diverse activity spectra of bacteriocin-like inhibitory substances having activity against mutans streptococci. Caries Res. 35:7580.
4. Bentley,, R. W.,, J. A. Leigh, and, M. D. Collins. 1991. Intrageneric structure of Streptococcus based on comparative analysis of small-subunit rRNA sequences. Int. J. Syst. Bacteriol. 41:487494.
5. Bernstein,, J. M.,, H. F. Faden,, D. M. Dryja, and, J. Wactawski-Wende. 1993. Micro-ecology of the nasopharyngeal bacterial flora in otitis-prone and non-otitis-prone children. Acta Otolaryngol. 113:8892.
6. Beukes, M.,, G. Bierbaum,, H. G. Sahl, and, J. W. Hastings. 2000. Purification and partial characterization of a murein hydrolase, millericin B, produced by Streptococcus milleri NMSCC 061. Appl. Environ. Microbiol. 66:2328.
7. Brook, I. 1999. Bacterial interference. Crit. Rev. Microbiol. 25:155172.
8. Brook, I. 2005. The role of bacterial interference in otitis, sinusitis and tonsillitis. Otolaryngol. Head Neck Surg. 133:139146.
9. Burton,, J. P.,, C. N. Chilcott,, C. J. Moore,, G. Speiser, and, J. R. Tagg. 2006a. A preliminary study of the effect of probiotic Streptococcus salivarius K12 on oral malodour parameters. J. Appl. Microbiol. 100:754764.
10. Burton,, J. P.,, P. A. Wescombe,, C. J. Moore,, C. N. Chilcott, and, J. R. Tagg. 2006b. Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Appl. Environ. Microbiol. 72:30503053.
11. Caglar, E.,, S. K. Cildir,, S. Ergeneli,, N. Sandalli, and, S. Twetman. 2006. Salivary mutans streptococci and lactobacilli levels after ingestion of the probiotic bacterium Lactobacillus reuteri ATCC 55730 by straws or tablets. Acta Odontol. Scand. 64:314318.
12. Caglar,, E.,, N. Sandalli,, S. Twetman,, S. Kavaloglu,, S. Ergeneli, and, S. Selvi. 2005. Effect of yogurt with Bifidobacterium DN-173 010 on salivary mutans streptococci and lactobacilli in young adults. Acta Odontol. Scand. 63:317320.
13. Carapetis,, J. R. 2004. Group A streptococcal vaccine development: current status and issues of relevance to less developed countries. WHO/FCH/CAH/05.09. World Health Organization, Switzerland. Geneva, http://www.who.int/child-adolescent-health/New_Publications/CHILD_HEALTH/DP/WHO_FCH_CAH_05.09.pdf.
14. Carapetis,, J. R.,, A. C. Steer,, E. K. Mulholland, and, M. Weber. 2005. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 5:685694.
15. Carley,, N. H. 1992. Streptococcus salivarius bacteremia and meningitis following upper gastrointestinal endoscopy and cauterization for gastric bleeding. Clin. Infect. Dis. 14:947948.
16. Caufield,, P. W.,, G. R. Cutter, and, A. P. Dasanayake. 1993. Initial acquisition of mutans streptococci by infants: evidence for a discrete window of infectivity. J. Dent. Res. 72:3745.
17. Chapman,, T. M.,, G. L. Plosker, and, D. P. Figgitt. 2007. Spotlight on VSL#3 probiotic mixture in chronic inflammatory bowel diseases. BioDrugs 21:6163.
18. Chikindas,, M. L.,, J. Novak,, A. J. Driessen,, W. N. Konings,, K. M. Schilling, and, P. W. Caufield. 1995. Mutacin II, a bactericidal antibiotic from Streptococcus mutans. Antimicrob. Agents Chemother. 39:26562660.
19. Comelli,, E. M.,, B. Guggenheim,, F. Stingele, and, J. R. Neeser. 2002. Selection of dairy bacterial strains as probiotics for oral health. Eur. J. Oral Sci. 110:218224.
20. Corthesy, B.,, H. R. Gaskins, and, A. Mercenier. 2007. Crosstalk between probiotic bacteria and the host immune system. J. Nutr. 137:781S–790S.
21. Cosseau,, C.,, D. Devine,, E. Dullaghan,, R. Falsafi,, I. Yu,, J. Tagg, and, R. Hancock. 2007. Mechanisms underlying the commensal and probiotic properties of Streptococcus salivarius, abstr. 0146. I ADR/AADR/CADR 85th General Session and Exhibition, New Orleans, LA.
22. Cotter,, P. D.,, C. Hill, and, R. P. Ross. 2005. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3:777788.
23. Crowe,, C. C.,, W. E. Sanders, Jr., and, S. Longley. 1973. Bacterial interference. II. Role of the normal throat flora in prevention of colonization by group A streptococcus. J. Infect. Dis. 128:527532.
24. Cvitkovitch,, D. G.,, Y. H. Li, and, R. P. Ellen. 2003. Quorum sensing and biofilm formation in streptococcal infections. J. Clin. Investig. 112:16261632.
25. Czaran,, T. L.,, R. F. Hoekstra, and, L. Pagie. 2002. Chemical warfare between microbes promotes biodiversity. Proc. Natl. Acad. Sci. USA 99:786790.
26. Dawes, C. 1972. Circadian rhythms in human salivary flow rate and composition. J. Physiol. 220:529545.
27. Delorme, C.,, C. Poyart,, S. D. Ehrlich, and, P. Renault. 2007. Extent of horizontal gene transfer in evolution of streptococci of the salivarius group. J. Bacteriol. 189:13301341.
28. Dempster,, R. P., and, J. R. Tagg. 1982. The production of bacteriocin-like substances by the oral bacterium Streptococcus salivarius. Arch. Oral Biol. 27:151157.
29. Dierksen,, K. P.,, M. Inglis, and, J. R. Tagg. 2000. High pharyngeal carriage rates of Streptococcus pyogenes in Dunedin school children with a low incidence of rheumatic fever. N. Z. Med. J. 113:496499.
30. Dierksen,, K. P.,, C. J. Moore,, M. Inglis,, P. A. Wescombe, and, J. R. Tagg. 2007. The effect of ingestion of milk supplemented with salivaricin A-producing Streptococcus salivarius on the bacteriocin-like inhibitory activity of streptococcal populations on the tongue. FEMS Microbiol. Ecol. 59:584591.
31. Dierksen,, K. P., and, J. Tagg. 2000. Distribution of bacteriocin-producing Streptococcus salivarius within primary school populations in Dunedin, New Zealand and their influence on acquisition or carriage of Streptococcus pyogenes, p. 81–85. In D. R. Martin and, J. Tagg (ed.), Streptococci and Streptococcal Diseases Entering the New Millennium. Securacopy, Auckland, New Zealand.
32. Donohue, D. C. 2006. Safety of probiotics. Asia Pac. J. Clin. Nutr. 15:563569.
33. Faden,, H.,, L. Duffy,, R. Wasielewski,, J. Wolf,, D. Krystofik, and, Y. Tung. 1997. Relationship between nasopharyngeal colonization and the development of otitis media in children. J. Infect. Dis. 175:14401445.
34. Farrow,, J. A., and, M. D. Collins. 1984. DNA base composition, DNA-DNA homology and long-chain fatty acid studies on Streptococcus thermophilus and Streptococcus salivarius. J. Gen. Microbiol. 130:357362.
35. Fimland, G.,, L. Johnsen,, B. Dalhus, and, J. Nissen-Meyer. 2005. Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J. Pept. Sci. 11:688696.
36. Florey,, H. W. 1946. The use of microorganisms for therapeutic purposes. Yale J. Biol. Med. 19:101117.
37. Frandsen,, E. V.,, V. Pedrazzoli, and, M. Kilian. 1991. Ecology of viridans streptococci in the oral cavity and pharynx. Oral Microbiol. Immunol. 6:129133.
38. Fujimori,, I.,, R. Goto,, K. Kikushima,, K. Hisamatsu,, Y. Murakami, and, T. Yamada. 1995. Investigation of oral alpha-streptococcus showing inhibitory activity against pathogens in children with tonsillitis. Int. J. Pediatr. Otorhinolaryngol. 33:249255.
39. Fujimori,, I.,, K. Hisamatsu,, K. Kikushima,, R. Goto,, Y. Murakami, and, T. Yamada. 1996. The nasopharyngeal bacterial flora in children with otitis media with effusion. Eur. Arch. Otorhinolaryngol. 253:260263.
40. Fujimori,, I.,, K. Kikushima,, K. Hisamatsu,, I. Nozawa,, R. Goto, and, Y. Murakami. 1997. Interaction between oral alpha-streptococci and group A streptococci in patients with tonsillitis. Ann. Otol. Rhinol. Laryngol. 106:571574.
41. Georgalaki,, M. D.,, E. Van Den Berghe,, D. Kritikos,, B. Devreese,, J. Van Beeumen,, G. Kalantzopoulos,, L. De Vuyst, and, E. Tsakalidou. 2002. Macedocin, a food-grade lantibiotic produced by Streptococcus macedonicus ACA-DC 198. Appl. Environ. Microbiol. 68:58915903.
42. Gluck, U., and, J. O. Gebbers. 2003. Ingested probiotics reduce nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae, and beta-hemolytic streptococci). Am. J. Clin. Nutr. 77:517520.
43. Grahn, E., and, S. E. Holm. 1983. Bacterial interference in the throat flora during a streptococcal tonsillitis outbreak in an apartment house area. Zentbl. Bakteriol. Mikrobiol. Hyg. A 256:7279.
44. Hale,, J. D.,, B. Balakrishnan, and, J. R. Tagg. 2004. Genetic basis for mutacin N and of its relationship to mutacin I. Indian J. Med. Res. 119(Suppl.):247251.
45. Hale,, J. D.,, N. C. Heng,, R. W. Jack, and, J. R. Tagg. 2005a. Identification of nlmTE, the locus encoding the ABC transport system required for export of nonlantibiotic mutacins in Streptococcus mutans. J. Bacteriol. 187:50365039.
46. Hale,, J. D.,, Y. T. Ting,, R. W. Jack,, J. R. Tagg, and, N. C. Heng. 2005b. Bacteriocin (mutacin) production by Streptococcus mutans genome sequence reference strain UA159: elucidation of the antimicrobial repertoire by genetic dissection. Appl. Env iron. Microbiol. 71:76137617.
47. Hatakka,, K.,, A. J. Ahola,, H. Yli-Knuuttila,, M. Richardson,, T. Poussa,, J. H. Meurman, and, R. Korpela. 2007. Probiotics reduce the prevalence of oral candida in the elderly—a randomized controlled trial. J. Dent. Res. 86:125130.
48. Heng,, N. C.,, G. A. Burtenshaw,, R. W. Jack, and, J. R. Tagg. 2004. Sequence analysis of pDN571, a plasmid encoding novel bacteriocin production in M-type 57 Streptococcus pyogenes. Plasmid 52:225229.
49. Heng,, N. C.,, N. L. Ragland,, P. M. Swe,, H. J. Baird,, M. A. Inglis,, J. R. Tagg, and, R. W. Jack. 2006a. Dysgalacticin: a novel, plasmid-encoded antimicrobial protein (bacteriocin) produced by Streptococcus dysgalactiae subsp. equisimilis. Microbiology 152:19912001.
50. Heng,, N. C. K.,, P. M. Swe,, Y.-T. Ting,, M. Dufour,, H. J. Baird,, N. L. Ragland,, G. A. Burtenshaw,, R. W. Jack, and, J. R. Tagg. 2006b. The large antimicrobial proteins (bacteriocins) of streptococci, p. 351–354. In K. S. Sriprakash et al. (ed.), International Congress Series #1289: Conference Proceedings of the 16th Lancefield International Symposium on Streptococci and Streptococcal Diseases. Elsevier, Amsterdam, The Netherlands.
51. Heng,, N. C.,, J. R. Tagg, and, G. R. Tompkins. 2007a. Competence-dependent bacteriocin production by Streptococcus gordonii DL1 (Challis). J. Bacteriol. 189:14681472.
52. Heng,, N. C. K.,, P. A. Wescombe,, J. P. Burton,, R. W. Jack, and, J. R. Tagg. 2007b. The diversity of bacteriocins in gram-positive bacteria, p. 45–92. In M. A. Riley and, M. A. Chavan (ed.), Bacteriocins: Ecology and Evolution. Springer-Verlag, Berlin, Germany.
53. Hillman,, J. D. 2002. Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie Leeuwenhoek 82:361366.
54. Hillman,, J. D.,, T. A. Brooks,, S. M. Michalek,, C. C. Harmon,, J. L. Snoep, and, C. C. van Der Weijden. 2000. Construction and characterization of an effector strain of Streptococcus mutans for replacement therapy of dental caries. Infect. Immun. 68:543549.
55. Hillman,, J. D.,, J. Mo,, E. McDonell,, D. Cvitkovitch, and, C. H. Hillman. 2007. Modification of an effector strain for replacement therapy of dental caries to enable clinical safety trials. J. Appl. Microbiol. 102:12091219.
56. Hillman,, J. D.,, J. Novak,, E. Sagura,, J. A. Gutierrez,, T. A. Brooks,, P. J. Crowley,, M. Hess,, A. Azizi,, K. Leung,, D. Cvitkovitch, and, A. S. Bleiweis. 1998. Genetic and biochemical analysis of mutacin 1140, a lantibiotic from Streptococcus mutans. Infect. Immun. 66:27432749.
57. Hillman,, J. D., and, S. S. Socransky. 1987. Replacement therapy of the prevention of dental disease. Adv. Dent. Res. 1:119125.
58. Hillman,, J. D.,, S. S. Socransky, and, M. Shivers. 1985a. The relationships between streptococcal species and periodontopathic bacteria in human dental plaque. Arch. Oral Biol. 30:791795.
59. Hillman,, J. D.,, B. I. Yaphe, and, K. P. Johnson. 1985b. Colonization of the human oral cavity by a strain of Streptococcus mutans. J. Dent. Res. 64:12721274.
60. Hols,, P.,, F. Hancy,, L. Fontaine,, B. Grossiord,, D. Prozzi,, N. Leblond-Bourget,, B. Decaris,, A. Bolotin,, C. Delorme,, S. Dusko Ehrlich,, E. Guedon,, V. Monnet,, P. Renault, and, M. Kleerebezem. 2005. New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol. Rev. 29:435463.
61. Huovinen, P. 2001. Bacteriotherapy: the time has come. BMJ 323:353354.
62. Hyink, O.,, M. Balakrishnan, and, J. R. Tagg. 2005. Streptococcus rattus strain BHT produces both a class I two-component lantibiotic and a class II bacteriocin. FEMS Microbiol. Lett. 252:235241.
63. Hyink,, O.,, P. A. Wescombe,, M. Upton,, N. Ragland,, J. P. Burton, and, J. R. Tagg. 2007. Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on a 190-kilobase transmissible megaplasmid in the oral pro-biotic strain Streptococcus salivarius K12. Appl. Environ. Microbiol. 73:11071113.
64. Innings, A.,, M. Krabbe,, M. Ullberg, and, B. Herrmann. 2005. Identification of 43 Streptococcus species by pyrosequencing analysis of the rnpB gene. J. Clin. Microbiol. 43:59835991.
65. Jack, R.,, R. Benz,, J. Tagg, and, H. G. Sahl. 1994a. The mode of action of SA-FF22, a lantibiotic isolated from Streptococcus pyogenes strain FF22. Eur. J. Biochem. 219:699705.
66. Jack,, R. W.,, A. Carne,, J. Metzger,, S. Stefanovic,, H. G. Sahl,, G. Jung, and, J. Tagg. 1994b. Elucidation of the structure of SA-FF22, a lanthionine-containing antibacterial peptide produced by Streptococcus pyogenes strain FF22. Eur. J. Biochem. 220:455462.
67. Jack,, R. W.,, J. R. Tagg, and, B. Ray. 1995. Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59:171200.
68. James,, S. M., and, J. R. Tagg. 1991. The prevention of dental caries by BLIS-mediated inhibition of mutans streptococci. N. Z. Dent. J. 87:8083.
69. Jenkinson,, H. F., and, R. J. Lamont. 2005. Oral microbial communities in sickness and in health. Trends Microbiol. 13:589595.
70. Jett,, B. D., and, M. S. Gilmore. 1990. The growth-inhibitory effect of the Enterococcus faecalis bacteriocin encoded by pAD1 extends to the oral streptococci. J. Dent. Res. 69:16401645.
71. Johnson,, D. W.,, J. R. Tagg, and, L. W. Wannamaker. 1979. Production of a bacteriocine-like substance by group-A streptococci of M-type 4 and T-pattern 4. J. Med. Microbiol. 12:413427.
72. Kazor,, C. E.,, P. M. Mitchell,, A. M. Lee,, L. N. Stokes,, W. J. Loesche,, F. E. Dewhirst, and, B. J. Paster. 2003. Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J. Clin. Microbiol. 41:558563.
73. Keller, L., and, M. G. Surette. 2006. Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol. 4:249258.
74. Kononen, E.,, H. Jousimies-Somer,, A. Bryk,, T. Kilp, and, M. Kilian. 2002. Establishment of streptococci in the upper respiratory tract: longitudinal changes in the mouth and nasopharynx up to 2 years of age. J. Med. Microbiol. 51:723730.
75. Kreth, J.,, J. Merritt,, W. Shi, and, F. Qi. 2005. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J. Bacteriol. 187:71937203.
76. Kuramitsu,, H. K., and, B. Y. Wang. 2006. Virulence properties of cariogenic bacteria. BMC Oral Health 6(Suppl. 1):S11.
77. Kurasz,, A. B.,, J. M. Tanzer,, L. Bazer, and, E. Savoldi. 1986. In vitro studies of growth and competition between S. salivarius TOVE-R and mutans streptococci. J. Dent. Res. 65:11491153.
78. Lawman, P., and, A. S. Bleiweis. 1991. Molecular cloning of the extracellular endodextranase of Streptococcus salivarius. J. Bacteriol. 173:74237428.
79. Li,, Y. H.,, M. N. Hanna,, G. Svensater,, R. P. Ellen, and, D. G. Cvitkovitch. 2001a. Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J. Bacteriol. 183:68756884.
80. Li,, Y. H.,, P. C. Lau,, J. H. Lee,, R. P. Ellen, and, D. G. Cvitkovitch. 2001b. Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol. 183:897908.
81. Liljemark,, W. F., and, R. J. Gibbons. 1973. Suppression of Candida albicans by human oral streptococci in gnotobiotic mice. Infect. Immun. 8:846849.
82. Loesche,, W. J. 1979. Clinical and microbiological aspects of chemotherapeutic agents used according to the specific plaque hypothesis. J. Dent. Res. 58:24042412.
83. MacFarlane,, T. W. 1984. The oral ecology of patients with severe Sjogren’s syndrome. Microbios 41:99106.
84. Mantovani,, H. C.,, H. Hu,, R. W. Worobo, and, J. B. Russell. 2002. Bovicin HC5, a bacteriocin from Streptococcus bovis HC5. Microbiology 148:33473352.
85. Marciset, O.,, M. C. Jeronimus-Stratingh,, B. Mollet, and, B. Poolman. 1997. Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor. J. Biol. Chem. 272:1427714284.
86. Marcotte, H.,, L. Rodrigue,, C. Coulombe,, N. Goyette, and, M. C. Lavoie. 1995. Colonization of the oral cavity of mice by an unidentified streptococcus. Oral Microbiol. Immunol. 10:168174.
87. Marsh,, P. D. 2006. Dental plaque as a biofilm and a microbial community—implications for health and disease. BMC Oral Health 6(Suppl. 1):S14.
88. Meurman,, J. H. 2005. Probiotics: do they have a role in oral medicine and dentistry? Eur. J. Oral Sci. 113:188196.
89. Mora, D.,, G. Ricci,, S. Guglielmetti,, D. Daffonchio, and, M. G. Fortina. 2003. 16S-23S rRNA intergenic spacer region sequence variation in Streptococcus thermophilus and related dairy streptococci and development of a multiplex ITS-SSCP analysis for their identification. Microbiology 149:807813.
90. Mota-Meira, M.,, C. Lacroix,, G. LaPointe, and, M. C. Lavoie. 1997. Purification and structure of mutacin B-Ny266: a new lantibiotic produced by Streptococcus mutans. FEBS Lett. 410:275279.
91. Munson,, M. A.,, A. Banerjee,, T. F. Watson, and, W. G. Wade. 2004. Molecular analysis of the microflora associated with dental caries. J. Clin. Microbiol. 42:30233029.
92. Nair,, R. G.,, S. Anil, and, L. P. Samaranayake. 2001. The effect of oral bacteria on Candida albicans germ-tube formation. APMIS 109:147154.
93. Nair,, R. G., and, L. P. Samaranayake. 1996. The effect of oral commensal bacteria on candidal adhesion to human buccal epithelial cells in vitro. J. Med. Microbiol. 45:179185.
94. Nes,, I. F.,, D. B. Diep, and, H. Holo. 2007. Bacteriocin diversity in Streptococcus and Enterococcus. J. Bacteriol. 189:11891198.
95. Ohnishi,, Y.,, S. Kubo,, Y. Ono,, M. Nozaki,, Y. Gonda,, H. Okano,, T. Matsuya,, A. Matsushiro, and, T. Morita. 1995. Cloning and sequencing of the gene coding for dextranase from Streptococcus salivarius. Gene 156:9396.
96. Park,, H. K.,, S. S. Shim,, S. Y. Kim,, J. H. Park,, S. E. Park,, H. J. Kim,, B. C. Kang, and, C. M. Kim. 2005. Molecular analysis of colonized bacteria in a human newborn infant gut. J. Microbiol. 43:345353.
97. Pasteur, L., and, J. F. Joubert. 1877. Charbon et septicémie. C. R. Soc. Biol. (Paris) 85:101115.
98. Pearce,, C.,, G. H. Bowden,, M. Evans,, S. P. Fitzsimmons,, J. Johnson,, M. J. Sheridan,, R. Wientzen, and, M. F. Cole. 1995. Identification of pioneer viridans streptococci in the oral cavity of human neonates. J. Med. Microbiol. 42:6772.
99. Pennisi, E. 2005. A mouthful of microbes. Science 307:18991901.
100. Phelps,, H. A., and, M. N. Neely. 2007. SalY of the Streptococcus pyogenes lantibiotic locus is required for full virulence and intracellular survival in macrophages. Infect. Immun. 75:45414551.
101. Poyart, C.,, G. Quesne,, S. Coulon,, P. Berche, and, P. Trieu-Cuot. 1998. Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J. Clin. Microbiol. 36:4147.
102. Qi, F.,, P. Chen, and, P. W. Caufield. 2001. The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl. Environ. Microbiol. 67:1521.
103. Qi, F.,, P. Chen, and, P. W. Caufield. 2000. Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans, CH43, and genetic analysis of mutacin I biosynthesis genes. Appl. Environ. Microbiol. 66:32213229.
104. Qi, F.,, P. Chen, and, P. W. Caufield. 1999. Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl. Environ. Microbiol. 65:38803887.
105. Quadri,, L. E. 2002. Regulation of antimicrobial peptide production by autoinducer-mediated quorum sensing in lactic acid bacteria. Antonie Leeuwenhoek 82:133145.
106. Ragland, N., and, J. Tagg. 1990. Applications of bacteriocin-like inhibitory substance (BLIS) typing in a longitudinal study of the oral carriage of beta-haemolytic streptococci by a group of Dunedin schoolchildren. Zentbl. Bakteriol. 274:100108.
107. Rasmussen,, T. T.,, L. P. Kirkeby,, K. Poulsen,, J. Reinholdt, and, M. Kilian. 2000. Resident aerobic microbiota of the adult human nasal cavity. APMIS 108:663675.
108. Regev-Yochay,, G.,, K. Trzcinski,, C. M. Thompson,, R. Malley, and, M. Lipsitch. 2006. Interference between Streptococcus pneumoniae and Staphylococcus aureus: in vitro hydrogen peroxide-mediated killing by Streptococcus pneumoniae. J. Bacteriol. 188:49965001.
109. Riley,, M. A., and, D. M. Gordon. 1999. The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 7:129133.
110. Riley,, M. A., and, J. E. Wertz. 2002a. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84:357364.
111. Riley,, M. A., and, J. E. Wertz. 2002b. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56:117137.
112. Rizkalla,, S. W.,, J. Luo,, M. Kabir,, A. Chevalier,, N. Pacher, and, G. Slama. 2000. Chronic consumption of fresh but not heated yogurt improves breath-hydrogen status and short-chain fatty acid profiles: a controlled study in healthy men with or without lactose maldigestion. Am. J. Clin. Nutr. 72:14741479.
113. Robson,, C. L.,, P. A. Wescombe,, N. A. Klesse, and, J. R. Tagg. 2007. Isolation and partial characterization of the Streptococcus mutans type AII lantibiotic mutacin K8. Microbiology 153:16311641.
114. Roos, K.,, E. G. Hakansson, and, S. Holm. 2001. Effect of recolonisation with “interfering” alpha streptococci on recurrences of acute and secretory otitis media in children: randomized placebo controlled trial. BMJ 322:210212.
115. Roos, K.,, S. E. Holm,, E. Grahn-Hakansson, and, L. Lagergren. 1996. Recolonization with selected alpha-streptococci for prophylaxis of recurrent streptococcal pharyngotonsillitis— a randomized placebo-controlled multicentre study. Scand. J. Infect. Dis. 28:459462.
116. Ross,, K. F.,, C. W. Ronson, and, J. R. Tagg. 1993. Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Appl. Environ. Microbiol. 59:20142021.
117. Russell,, M. W.,, N. K. Childers,, S. M. Michalek,, D. J. Smith, and, M. A. Taubman. 2004. A caries vaccine? The state of the science of immunization against dental caries. Caries Res. 38:230235.
118. Sanders,, C. C.,, G. E. Nelson, and, W. E. Sanders, Jr. 1977. Bacterial interference. IV. Epidemiological determinants of the antagonistic activity of the normal throat flora against group A streptococci. Infect. Immun. 16:599603.
119. Sanders,, C. C., and, W. E. Sanders, Jr. 1982. Enocin: an antibiotic produced by Streptococcus salivarius that may contribute to protection against infections due to group A streptococci. J. Infect. Dis. 146:683690.
120. Sanders, E. 1969. Bacterial interference. I. Its occurrence among the respiratory tract flora and characterization of inhibition of group A streptococci by viridans streptococci. J. Infect. Dis. 120:698707.
121. Sanders,, M. E. 2000. Considerations for use of probiotic bacteria to modulate human health. J. Nutr. 130:384S–390S.
122. Schaumann,, J. B., and, J. R. Tagg. 1991. Development and application of a simple filter paper imprinting technique for the detection and enumeration of colonies of ureolytic microorganisms. Lett. Appl. Microbiol. 12:117120.
123. Simmonds,, R. S.,, J. Naidoo,, C. L. Jones, and, J. R. Tagg. 1995. The streptococcal bacteriocin-like inhibitory substance, zoocin A, reduces the proportion of Streptococcus mutans in an artificial plaque. Microb. Ecol. Health Dis. 8:281292.
124. Simmonds,, R. S.,, L. Pearson,, R. C. Kennedy, and, J. R. Tagg. 1996. Mode of action of a lysostaphin-like bacteriolytic agent produced by Streptococcus zooepidemicus 4881. Appl. Environ. Microbiol. 62:45364541.
125. Simmonds,, R. S.,, W. J. Simpson, and, J. R. Tagg. 1997. Cloning and sequence analysis of zooA, a Streptococcus zooepidemicus gene encoding a bacteriocin-like inhibitory substance having a domain structure similar to that of lysostaphin. Gene 189:255261.
126. Simpson,, W. J.,, N. L. Ragland,, C. W. Ronson, and, J. R. Tagg. 1995. A lantibiotic gene family widely distributed in Streptococcus salivarius and Streptococcus pyogenes, p. 639–643. In J. J. E., A. Ferretti (ed.), Genetics of Streptococci, Enterococci and Lactococci, vol. 85. Karger, Basel, Switzerland.
127. Sklavounou, A., and, G. R. Germaine. 1980. Adherence of oral streptococci to keratinized and nonkeratinized human oral epithelial cells. Infect. Immun. 27:686689.
128. Smith,, L.,, C. Zachariah,, R. Thirumoorthy,, J. Rocca,, J. Novak,, J. D. Hillman, and, A. S. Edison. 2003. Structure and dynamics of the lantibiotic mutacin 1140. Biochemistry 42:1037210384.
129. Sprunt, K.,, G. A. Leidy, and, W. Redman. 1971. Prevention of bacterial overgrowth. J. Infect. Dis. 123:110.
130. Svanberg,, M. L., and, W. J. Loesche. 1978. Implantation of Streptococcus mutans on tooth surfaces in man. Arch. Oral Biol. 23:551556.
131. Tagg,, J. R. 2004. Prevention of streptococcal pharyngitis by anti- Streptococcus pyogenes bacteriocin-like inhibitory substances (BLIS) produced by Streptococcus salivarius. Indian J. Med. Res. 119(Suppl.):1316.
132. Tagg,, J. R.,, A. S. Dajani, and, L. W. Wannamaker. 1976. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40:722756.
133. Tagg,, J. R., and, K. P. Dierksen. 2003. Bacterial replacement therapy: adapting “germ warfare” to infection prevention. Trends Biotechnol. 21:217223.
134. Tagg,, J. R.,, V. Pybus,, L. V. Phillips, and, T. M. Fiddes. 1983. Application of inhibitor typing in a study of the transmission and retention in the human mouth of the bacterium Streptococcus salivarius. Arch. Oral Biol. 28:911915.
135. Tagg,, J. R.,, N. L. Ragland, and, N. P. Dickson. 1990. A longitudinal study of Lancefield group A streptococcus acquisitions by a group of young Dunedin schoolchildren. N. Z. Med. J. 103:429431.
136. Tano, K.,, E. Grahn Hakansson,, S. E. Holm, and, S. Hellstrom. 2002a. A nasal spray with alpha-haemolytic streptococci as long term prophylaxis against recurrent otitis media. Int. J. Pediatr. Otorhinolaryngol. 62:1723.
137. Tano,, K.,, E. Grahn Hakansson,, P. Wallbrandt,, D. Ronnqvist,, S. E. Holm, and, S. Hellstrom. 2003. Is hydrogen peroxide responsible for the inhibitory activity of alpha-haemolytic streptococci sampled from the nasopharynx? Acta Otolaryngol. 123:724729.
138. Tano, K.,, E. G. Hakansson,, S. E. Holm, and, S. Hellstrom. 2002b. Bacterial interference between pathogens in otitis media and alpha-haemolytic streptococci analyzed in an in vitro model. Acta Otolaryngol. 122:7885.
139. Tano, K.,, C. Olofsson,, E. Grahn-Hakansson, and, S. E. Holm. 1999. In vitro inhibition of S. pneumoniae, nontypable H. influenzae and M. catharralis by alpha-hemolytic streptococci from healthy children. Int. J. Pediatr. Otorhinolaryngol. 47:4956.
140. Tanzer,, J. M.,, A. B. Kurasz, and, J. Clive. 1985. Competitive displacement of mutans streptococci and inhibition of tooth decay by Streptococcus salivarius TOVE-R. Infect. Immun. 48:4450.
141. Tompkins,, G. R., and, J. R. Tagg. 1989. The ecology of bacteriocin-producing strains of Streptococcus salivarius. Microb. Ecol. Health Dis. 2:1928.
142. Tong,, H.,, B. Zhu,, W. Chen,, F. Qi,, W. Shi, and, X. Dong. 2006. Establishing a genetic system for ecological studies of Streptococcus oligofermentans. FEMS Microbiol. Lett. 264:213219.
143. Tzannetis,, S. E.,, A. Bigis,, N. Konidaris,, H. Ioannidis,, V. Genimatas, and, J. Papavassiliou. 1991. In-vitro bacteriocin-mediated antagonism by oral streptococci against human carrier strains of staphylococci. J. Appl. Bacteriol. 70:294301.
144. Uehara,, Y.,, K. Kikuchi,, T. Nakamura,, H. Nakama,, K. Agematsu,, Y. Kawakami,, N. Maruchi, and, K. Totsuka. 2001. H2O2 produced by viridans group streptococci may contribute to inhibition of methicillin-resistant Staphylococcus aureus colonization of oral cavities in newborns. Clin. Infect. Dis. 32:14081413.
145. Upton, M.,, J. R. Tagg,, P. Wescombe, and, H. F. Jenkinson. 2001. Intra- and interspecies signaling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. J. Bacteriol. 183:39313938.
146. Vallor,, A. C.,, M. A. Antonio,, S. E. Hawes, and, S. L. Hillier. 2001. Factors associated with acquisition of, or persistent colonization by, vaginal lactobacilli: role of hydrogen peroxide production. J. Infect. Dis. 184:14311436.
147. van der Hoeven,, J. S., and, M. J. Schaeken. 1995. Streptococci and actinomyces inhibit regrowth of Streptococcus mutans on gnotobiotic rat molar teeth after chlorhexidine varnish treatment. Caries Res. 29:159162.
148. von Wright, A. 2005. Regulating the safety of probiotics—the European approach. Curr. Pharm. Des. 11:1723.
149. Walls, T.,, D. Power, and, J. Tagg. 2003. Bacteriocin-like inhibitory substance (BLIS) production by the normal flora of the nasopharynx: potential to protect against otitis media? J. Med. Microbiol. 52:829833.
150. Wang,, B. Y., and, H. K. Kuramitsu. 2005. Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Appl. Environ. Microbiol. 71:354362.
151. Wannamaker,, L. W. 1980. Bacterial interference and competition. Scand. J. Infect. Dis. Suppl. 24:8285.
152. Ward,, D. J., and, G. A. Somkuti. 1995. Characterization of a bacteriocin produced by Streptococcus thermophilus ST134. Appl. Microbiol. Biotechnol. 43:330335.
153. Wescombe,, P. A.,, J. P. Burton,, P. A. Cadieux,, N. A. Klesse,, O. Hyink,, N. C. Heng,, C. N. Chilcott,, G. Reid, and, J. R. Tagg. 2006a. Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius. Antonie Leeuwenhoek 90:269280.
154. Wescombe,, P. A.,, N. C. K. Heng,, R. W. Jack, and, J. R. Tagg. 2005. Bacteriocins associated with cytotoxicity for eukaryotic cells, p. 399–448. In T. Proft (ed.), Microbial Toxins: Molecular and Cellular Biology. Horizon Bioscience, Wymondham, United Kingdom.
155. Wescombe, P. A., and, J. R. Tagg. 2003. Purification and characterization of streptin, a type A1 lantibiotic produced by Streptococcus pyogenes. Appl. Environ. Microbiol. 69:27372747.
156. Wescombe,, P. A.,, M. Upton,, K. P. Dierksen,, N. L. Ragland,, S. Sivabalan,, R. E. Wirawan,, M. A. Inglis,, C. J. Moore,, G. V. Walker,, C. N. Chilcott,, H. F. Jenkinson, and, J. R. Tagg. 2006b. Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl. Environ. Microbiol. 72:14591466.
157. Whitford,, M. F.,, M. A. McPherson,, R. J. Forster, and, R. M. Teather. 2001. Identification of bacteriocin-like inhibitors from rumen Streptococcus spp. and isolation and characterization of bovicin 255. Appl. Environ. Microbiol. 67:569574.
158. Wirawan,, R. E.,, N. A. Klesse,, R. W. Jack, and, J. R. Tagg. 2006. Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Appl. Environ. Microbiol. 72:11481156.
159. Wirawan,, R. E.,, K. M. Swanson,, T. Kleffmann,, R. W. Jack, and, J. R. Tagg. 2007. Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology 153:16191630.
160. Xiao,, H.,, X. Chen,, M. Chen,, S. Tang,, X. Zhao, and, L. Huan. 2004. Bovicin HJ50, a novel lantibiotic produced by Streptococcus bovis HJ50. Microbiology 150:103108.
161. Yonezawa, H., and, H. K. Kuramitsu. 2005. Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. Antimicrob. Agents Chemother. 49:541548.


Generic image for table
Table 1

Characteristics of streptococci having potential relevance to their use as oral probiotics

Citation: Tagg J, Burton J, Wescombe P, Chilcott C. 2008. Streptococci as Effector Organisms for Probiotic and Replacement Therapy, p 61-81. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch6
Generic image for table
Table 2

Major considerations when developing a new probiotic

Citation: Tagg J, Burton J, Wescombe P, Chilcott C. 2008. Streptococci as Effector Organisms for Probiotic and Replacement Therapy, p 61-81. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error