1887

Chapter 10 : Human Milk Oligosaccharides as Prebiotics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Human Milk Oligosaccharides as Prebiotics, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815462/9781555814038_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555815462/9781555814038_Chap10-2.gif

Abstract:

The characteristic composition of the intestinal microbiota of breast-fed neonates is due to the presence of particular substances in human milk. This chapter aims to identify the components that are able to promote the prebiotic effect in human milk, and is oriented towards modifying the composition of infant formulas in order to obtain an intestinal microbiota similar to that of breast-fed babies. It discusses history, synthesis, structure, metabolism of human milk oligosaccharides (HMO). No natural substances have the same biochemical composition as that of HMO, nor can they be synthesized in large quantities at acceptable prices. To overcome these problems, the industry has focused on the production of several carbohydrates, so-called nondigestible oligosaccharides (NDO), which, although having compositions different from those of HMO, are able to selectively stimulate the growth of bifidobacteria and lactobacilli in the colon, reproducing the prebiotic effects of HMO. In conclusion, data related to the use of NDO in infant formulas clearly show the efficacy of galactooligosaccharides (GOS)/inulin mixtures, the capacity of GOS to induce a bifidogenic effect, even if in only a small number of studies, and the positive effects of FOS at a concentration of 4.0 g/liter on the intestinal microbiota. It has been demonstrated that, due to the presence of resistant bonds in their molecules, NDO are able to exert a prebiotic effect. This further confirms that, because of their peculiar structure, HMO have a very significant role in modulating the intestinal microbiota of neonates.

Citation: Coppa G, Gabrielli O. 2008. Human Milk Oligosaccharides as Prebiotics, p 131-146. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch10

Key Concept Ranking

Escherichia coli
0.49339977
Streptococcus pneumoniae
0.49339977
Campylobacter jejuni
0.49339977
Escherichia coli
0.49339977
Streptococcus pneumoniae
0.49339977
Campylobacter jejuni
0.49339977
Escherichia coli
0.49339977
Streptococcus pneumoniae
0.49339977
0.49339977
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Structure of some human milk oligosaccharides.

Citation: Coppa G, Gabrielli O. 2008. Human Milk Oligosaccharides as Prebiotics, p 131-146. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Thin-layer chromatography of milk oligosaccharides from women of four different groups.

Citation: Coppa G, Gabrielli O. 2008. Human Milk Oligosaccharides as Prebiotics, p 131-146. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Thin-layer chromatography of carbohydrates from mother’s milk and from the urine and feces of a newborn.

Citation: Coppa G, Gabrielli O. 2008. Human Milk Oligosaccharides as Prebiotics, p 131-146. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

High-performance anion-exchange chromatography of mother’s milk (a) and serum of a breast-fed infant (b). Peaks: 1, lacto--difucohexaose II; 2, trifucosyllacto--hexaose; 3, difucosyllacto--hexaose b; 4, difucosyllacto--hexaose; 5, difucosyllacto--hexaose I; 6, 3-fucosyllactose; 7, lacto--fucopentaose II; 8, 2′-fucosyllactose; 9, lacto--fucopentaose I; 10, monofucosyllacto--hexaose II; 11, lacto--neotetraose; 12, lacto--neohexaose; 13, lacto--tetraose; 14, lacto--hexaose; 15, monofucosylmonosialyllacto--neohexaose; 16, sialyllacto--tetraose c; 17, 6′-sialyllactose; 18, sialyllacto--tetraose a; 19, disialyllacto--tetraose.

Citation: Coppa G, Gabrielli O. 2008. Human Milk Oligosaccharides as Prebiotics, p 131-146. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

High-performance anion-exchange chromatography of infant formula (a) and serum of a bottle-fed infant (b).

Citation: Coppa G, Gabrielli O. 2008. Human Milk Oligosaccharides as Prebiotics, p 131-146. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Adherence of uropathogenic to HeLa cells in the absence of (a) and in the presence of (b) HMO.

Citation: Coppa G, Gabrielli O. 2008. Human Milk Oligosaccharides as Prebiotics, p 131-146. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Metabolic fate and biological functions of HMO.

Citation: Coppa G, Gabrielli O. 2008. Human Milk Oligosaccharides as Prebiotics, p 131-146. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815462.ch10
1. Agostoni,, C.,, I. Axelsson,, O. Goulet,, B. Koletzko,, K. F. Michaelsen,, J. W., L. Puntis,, J. Rigo,, R. Shamir,, H. Szajewska, and, D. Turck. 2004. Prebiotic oligosaccharides in dietetic products for infants: a commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 39:465473.
2. Andersson,, B.,, O. Porras,, L. A. Hanson,, T. Lagergard, and, C. Svanborg-Eden. 1986. Inhibition of attachment of Streptococcus pneumoniae and Haemophilus influenzae by human milk and receptor oligosaccharides. J. Infect. Dis. 153:232237.
3. Bakker-Zierikzee,, A. M.,, E. A. Tol,, H. Kroes,, M. S. Alles,, F. J. Kok, and, J. G. Bindels. 2006. Faecal SIgA secretion in infant fed on pre- or probiotic infant formula. Pediatr. Allergy Immunol. 17:134140.
4. Balmer,, S. E.,, P. H. Scott, and, B. A. Wharton. 1989a. Diet and the faecal flora in the newborn: casein and whey proteins. Arch. Dis. Child. 64:16781684.
5. Balmer,, S. E.,, P. H. Scott, and, B. A. Wharton. 1989b. Diet and faecal flora in the newborn: lactoferrin. Arch. Dis. Child. 64:16851690.
6. Balmer,, S. E.,, L. S. Harvey, and, B. A. Wharton. 1994. Diet and faecal flora in the newborn: nucleotides. Arch. Dis. Child. 70:F137–F140.
7. Ben,, X. M.,, X. Y. Zhou,, W. H. Zhao,, W. L. Yu,, W. Pan,, W. L. Zhang,, S. M. Wu,, C. M. Van Beusekom, and, A. Schaafsma. 2004. Supplementation of milk formula with galactooligosaccharides improves intestinal micro-flora and fermentation in term infants. Chin. Med. J. 117:927931.
8. Bode, L. 2006. Recent advances on structure, metabolism, and function of human milk oligosaccharides. J. Nutr. 136:21272130.
9. Bode, L.,, S. Rudloff,, C. Kunz,, S. Strobel, and, N. Klein. 2004a. Human milk oligosaccharides reduce plateletneutrophil complex formation leading to a decrease in neutrophyl beta 2 integrin expression. J. Leukoc. Biol. 76:820826.
10. Bode,, L.,, C. Kunz,, M. Muhly-Reinholds,, K. Mayer,, W. Seeger, and, S. Rudloff. 2004b. Inhibition of monocyte, lymphocyte, and neutrophil adhesion to endothelial cells by human milk oligosaccharides. Thromb. Haemost. 92:14021410.
11. Boehm,, G.,, M. Lidestri,, P. Casetta,, J. Jelinek,, F. Negretti,, B. Stahl, and, A. Marini. 2002. Supplementation of a bovine milk formula with an oligosaccharide mixture increases counts of faecal bifidobacteria in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 86:F178–F181.
12. Brook,, I.,, C. T. Barett,, C. R. Brinkman,, W. J. Martin, and, S. M. Finegold. 1979. Aerobic and anaerobic bacterial flora of the maternal cervix and newborn gastric fluid and conjunctiva: a prospective study. Pediatrics 63:451455.
13. Bruck,, W. M.,, M. Redgrave,, K. M. Tuohy,, B. Lonnerdal,, G. Graverholt,, O. Hernell, and, G. R. Gibson. 2006. Effects of bovine alpha-lactalbumin and casein glycomacropeptide-enriched infant formulae on faecal microbiota in healthy term infants. J. Pediatr. Gastroenterol. Nutr. 43:673679.
14. Bruzzese, E.,, M. Volpicelli,, M. Squaglia,, A. Tartaglione, and, A. Guarino. 2006. Impact of prebiotics on human health. Dig. Liver Dis. 38(Suppl. 2):S283S287.
15. Carlson,, S. E., and, S. G. House. 1986. Oral and intraperito-neal administration of N-acetylneuraminic acid: effect on rat cerebral and cerebellar N-acetylneuraminic acid. J. Nutr. 116:881886.
16. Chaturvedi,, P.,, C. D. Warren,, G. M. Ruiz-Palacios,, L. K. Pickering, and, D. S. Newburg. 1997. Milk oligosaccharide profiles by reverse-phase HPLC of their perbenzoylated derivatives. Anal. Biochem. 251:8997.
17. Chaturvedi,, P.,, C. D. Warren,, C. R. Buescher,, L. K. Pickering, and, D. S. Newburg. 2001. Survival of human milk oligosaccharides in the intestine of infants. Adv. Exp. Med. Biol. 501:315323.
18. Chierici, R.,, G. Sawatzki,, S. Thurl,, K. Tovar, and, V. Vigi. 1997. Experimental milk formula with reduced protein content and desialylated milk proteins: influence on the faecal flora and the growth of term born infants. Acta Paediatr. 87:557563.
19. Coppa,, G. V.,, O. Gabrielli,, P. L. Giorgi,, C. Catassi,, M. P. Montanari,, P. E. Varaldo, and, B. L. Nichols. 1990. Preliminary study of breastfeeding and bacterial adhesion to uroepithelial cells. Lancet 335:569571.
20. Coppa,, G. V.,, O. Gabrielli,, P. Pierani,, C. Catassi,, A. Carlucci, and, P. L. Giorgi. 1993. Changes in carbohydrate composition in human milk over 4 months of lactation. Pediatrics 91:637641.
21. Coppa,, G. V.,, P. Pierani,, L. Zampini,, I. Carloni,, A. Carlucci, and, O. Gabrielli. 1999. Oligosaccharides in human milk during different phases of lactation. Acta Paediatr. 430S:8994.
22. Coppa,, G. V.,, P. Pierani,, L. Zampini,, S. Bruni,, I. Carloni, and, O. Gabrielli. 2001. Characterization of oligosaccharides in milk and feces of breast-fed infants by high-performance anion-exchange chromatography. Adv. Exp. Med. Biol. 501:307314.
23. Coppa,, G. V.,, S. Bruni,, L. Zampini,, T. Galeazzi,, R. Facinelli,, R. Capretti,, A. Carlucci, and, O. Gabrielli. 2003. Oligosaccharides of human milk inhibit the adhesion of Listeria monocytogenes to Caco 2 cell. Ital. J. Pediatr. 29:6168.
24. Coppa,, G. V.,, S. Bruni,, L. Morelli,, S. Soldi, and, O. Gabrielli. 2004. The first prebiotics in humans: human milk oligosaccharides. J. Clin. Gastroenterol. 38:S80–S83.
25. Coppa,, G. V.,, L. Zampini,, T. Galeazzi, and, O. Gabrielli. 2006a. Prebiotics in human milk: a review. Dig. Liver Dis. 38(Suppl. 2):S291S294.
26. Coppa,, G. V.,, L. Zampini,, T. Galeazzi,, B. Facinelli,, L. Ferrante,, R. Capretti, and, O. Gabrielli. 2006b. Human milk oligosaccharides inhibit the adhesion to Caco 2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr. Res. 59:377382.
27. Cravioto,, A.,, A. Tello,, H. Villafan,, J. Ruiz,, S. del Vedovo, and, J. R. Neeser. 1991. Inhibition of localized adhesion of enteropathogenic Escherichia coli to HEp-2 cells by immunoglobulin and oligosaccharides fractions of human colostrum and breast milk. J. Infect. Dis. 163:12471255.
28. Denigés, G. 1892. Contribution à l’étude des lactoses. Thesis. Ecole Supérieure de Pharmacie, Paris, France.
29. Engfer,, M. B.,, B. Stahl,, B. Finke,, G. Sawatzki, and, H. Daniel. 2000. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am. J. Clin. Nutr. 71:15891596.
30. Euler,, A. R.,, D. K. Mitchell,, R. Kline, and, L. K. Pickering. 2005. Prebiotic effect of fructo-oligosaccharide supplemented term infant formula and two concentrations compared with unsupplemented formula and human milk. J. Pediatr. Gastroenterol. Nutr. 40:157164.
31. Fanaro, S.,, R. Chierici,, P. Guerrini, and, V. Vigi. 2003. Intestinal microflora in early infancy: composition and development. Acta Pediatr. 91S:4855.
32. Favier,, C. F.,, W. M. de Vos, and, A. D. L. Akkermans. 2003. Development of bacterial and bifidobacterial communities in feces of newborn babies. Anaerobe 9:219229.
33. Gil, A.,, E. Coval,, A. Martinez, and, J. A. Molina. 1986. Effect of dietary nucleotides on the microbial pattern of faeces of at term newborn infants. J. Clin. Nutr. Gastroenterol. 1:3838.
34. Gnoth,, M. J.,, C. Kunz,, E. Kinne-Saffran, and, S. Rudloff. 2000. Human milk oligosaccharides are minimally digested in vitro. J. Nutr. 130:30143020.
35. Gronlund,, M. M.,, O. P. Lehtonen,, E. Eerola, and, P. Kero. 1999. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J. Pediatr. Gastroenterol. Nutr. 28:1925.
36. Guesry, P.,, H. Bodanski,, E. Tomsit, and, J. Aeschlimann. 2000. Effect of 3 doses of fructo-oligosaccharides in infants. J. Pediatr. Gastroenterol. Nutr. 31(Suppl. 2):S252.
37. Gyorgy, P.,, R. F. Norris, and, C. S. Rose. 1954. Bifidus factor I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch. Biochem. Biophys. 48:202208.
38. Hamosh, M. 1995. Enzymes in human milk, p. 388–427. In R. G. Jensen (ed.), Handbook of Milk Composition. Academic Press, San Diego, CA.
39. Harmsen,, H. J.,, A. C. Wildeboer-Veloo,, G. C. Raanx,, C. Jerwin,, A. Wagendorp,, N. Klijn,, J. G. Bindels, and, G. W. Welling. 2000. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30:6170.
40. Kapiki,, A.,, C. Costalos,, C. Oikonomidou,, A. Triantafyllidou,, E. Loukatou, and, V. Pertrohilou. 2007. The effect of a fructo-oligosaccharide supplemented formula on gut flora of preterm infants. Early Hum. Dev. 83:335339.
41. Katayama,, T.,, A. Sakuma,, T. Kimura,, Y. Makimura,, J. Hira-take,, K. Sakata,, T. Yamanoi,, H. Kumagai, and, K. Yamamoto. 2004. Molecular cloning and characterization of Bifidobacterium bifidum 1,2-alfa-L-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J. Bacteriol. 186:48854893.
42. Kitaoka, M.,, J. Tian, and, M. Nishimoto. 2005. Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum. Appl. Environ. Microbiol. 71:31583162.
43. Klijn, A.,, A. Mercenier, and, F. Arigoni. 2005. Lessons from the genomes of bifidobacteria. FEMS Microbiol. Rev. 29:491509.
44. Knoll,, J.,, P. Scholtens,, C. Kafka,, J. Steenbakkers,, S. Gross,, K. Helm,, M. Klarczyk,, H. Schopfer,, H.-M. Bockler, and, J. Wells. 2005. Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: more like breast-fed infants. J. Pediatr. Gastroenterol. Nutr. 40:3642.
45. Kracun,, I.,, H. Rosner,, V. Drnovsek,, Z. Vukelic,, C. Cosovic,, M. Trbojevic-Cepe, and, M. Kubat. 1992. Gangliosides in the human brain development and aging. Neurochem. Int. 20:421431.
46. Kuhn, R. 1958. Les oligosaccharides du lait. Bull. Soc. Chim. Biol. 40:297314.
47. Kullen,, M. J., and, J. Bettler. 2005. The delivery of probiotics and prebiotics to infants. Curr. Pharm. Des. 11:5574.
48. Kunz, C.,, S. Rudloff,, W. Schad, and, D. Braun. 1999. Lactose-derived oligosaccharides in the milk of elephants: comparison with human milk. Br. J. Nutr. 82:391399.
49. Kunz, C.,, S. Rudloff,, W. Baier,, N. Klein, and, S. Strobel. 2000. Oligosaccharides in human milk: structural, functional and metabolic aspects. Annu. Rev. Nutr. 20:699722.
50. Macfarlane, S.,, G. T. Macfarlane, and, J. H. Cummings. 2006. Review article: prebiotics in the gastrointestinal tract. Aliment. Pharmacol. Ther. 24:701714.
51. Mackie,, R. I.,, A. Sghir, and, H. R. Gaskins. 1999. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69:1035S–1045S.
52. Montreuil, J. 1957. Les glucides du lait de femme. Bull. Soc. Chim. Biol. 39:395411.
53. Montreuil, J., and, S. Mullet. 1959. Evolution de la constitution glucidique du lait de femme au cours de la lactation. C. R. Soc. Biol. 153:13641366.
54. Moro,, G.,, I. Minoli,, F. Mosca,, S. Fanaro,, J. Jelinek,, B. Stahl, and, G. Boehm. 2002. Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J. Pediatr. Gastroenterol. Nutr. 34:291295.
55. Moro,, G.,, S. Arslanoglu,, B. Stahl,, J. Jelinek,, U. Wahn, and, G. Boehm. 2006. A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch. Dis. Child. 91:814819.
56. Mountzouris,, K. C.,, A. L. McCartney, and, G. R. Gibson. 2002. Intestinal microflora of human infants and current trends for its nutritional modulation. Br. J. Nutr. 87:405420.
57. Mountzouris,, K. C., and, G. R. Gibson. 2003. Colonization of the gastrointestinal tract. Ann. Nestlé 61:4354.
58. Napoli,, J. E.,, J. C. Brand-Miller, and, P. Conway. 2003. Bifidogenic effects of feeding infant formula containing galacto-oligosaccharides in healthy formula-fed infants. Asia Pac. J. Clin Nutr. 12:S60–S62.
59. Newburg,, D. S. 2000. Oligosaccharides in human milk and bacterial colonization. J. Pediatr. Gastroenterol. Nutr. 30:S8S17.
60. Ninonuevo,, M. R.,, R. E. Ward,, R. G. LoCascio,, J. B. German,, S. L. Freeman,, M. Barboza,, D. A. Mills, and, C. B. Lebrilla. 2007. Methods for the quantitation of human milk oligosaccharides in bacterial fermentation by mass spectrometry. Anal. Biochem. 361:1523.
61. Orrhage, K., and, C. E. Nord. 1999. Factors controlling the bacterial colonization of the intestine in breast-fed infants. Acta Pediatr. 430S:4757.
62. Parche,, S.,, M. Beleut,, E. Rezzonico,, D. Jacobs,, F. Arigoni,, F. Titgemeyer, and, I. Jankovic. 2006. Lactose-over-glucose preference in Bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression. J. Bacteriol. 188:12601265.
63. Parrett,, A. M., and, C. A. Edwards. 1997. In vitro fermentation of carbohydrates by breast fed and formula fed infants. Arch. Dis. Child. 76:249253.
64. Penders,, J.,, C. Vonk,, C. Driessen,, N. London,, C. Thijs, and, E. E. Stobberingh. 2005. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol. Lett. 243:141147.
65. Polonowski, M., and, A. Lespagnol. 1933. Nouvelles acquisitions sur les composés glucidiques du lait de femme. Bull. Soc. Chim. Biol. 15:320349.
66. Radke, M.,, C. Mohr,, K. D. Wutzke, and, W. Heine. 1992. Phosphate concentration. Does reduction in infant formula feeding modify the micro-ecology of the intestine? Monatsschr. Kinderheilkd. 140:S40–S44.
67. Roberts,, A. K.,, R. Chierici,, G. Sawatzki,, M. J. Hill,, S. Volpato, and, V. Vigi. 1992. Supplementation of an adapted formula with bovine lactoferrin. 1. Effect on the faecal flora. Acta Paediatr. 81:119124.
68. Rudloff, S.,, C. Stefan,, G. Pohlentz, and, C. Kunz. 2002. Detection of ligands for selectins in the oligosaccharide fraction of human milk. Eur. J. Nutr. 41:8592.
69. Schell,, M. A.,, M. Karmirantzou,, B. Snel,, D. Vilanova,, B. Berger,, G. Pessi,, M.-C. Zwahlen,, F. Desiere,, P. Bork,, M. Delley,, R. D. Pridmore, and, F. Arigoni. 2002. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. USA 99:1442214427.
70. Schonfeld, H. 1926. Uber die Beziehungen der einzelnen Bestandteile der Frauenmilch zur bifidus Flora. Jahrbuch Kinderh. 113:1960.
71. Shoaf, K.,, G. L. Mulvey,, G. D. Armstrong, and, R. W. Hutkins. 2006. Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect. Immun. 74:69206928.
72. Simon,, P. M.,, P. L. Goore,, A. Mobasseri, and, D. Zopf. 1997. Inhibition of Helicobacter pylori binding to gastrointestinal epithelial cells by sialic acid-containing oligosaccharides. Infect. Immun. 65:750757.
73. Stahl,, B.,, S. Thurl,, J. Henker,, M. Siegel,, B. Finke, and, G. Sawatzki. 2001. Detection of four human milk groups with respect to Lewis-blood-group-dependent oligosaccharides by serologic and chromatographic analysis. Adv. Exp. Med. Biol. 501:299306.
74. Szilagyi, A. 2002. Lactose—a potential prebiotic. Aliment. Pharmacol. Ther. 16:15911602.
75. Tamine,, A. Y.,, V. M., E. Marshall, and, R. K. Robinson. 1995. Microbiological and technological aspects of milks fermented by bifidobacteria. J. Dairy Res. 62:151187.
76. Thurl, S.,, B. Muller-Werner, and, G. Sawatzki. 1996. Quantification of individual oligosaccharide compounds from human milk using high-pH anion-exchange chromatography. Anal. Biochem. 235:202206.
77. Tissier, H. 1900. Recherches sur la flore intestinale des nourrissons (état normal et pathologique). Thesis. G. Carré and C. Naud, Paris, France.
78. Topping,, D. L. 1996. Short-chain fatty acids produced by intestinal bacteria. Asia Pacific J. Clin. Nutr. 5:1519.
79. Varki,, A.,, R. Cummings,, J. Esko,, H. Freeze,, G. Hart, and, J. Marth. 1999. Protein-glycan interaction, p. 41–56. In A. Varki,, R. Cummings,, J. Esko,, H. Freeze,, G. Hart, and, J. Marth (ed.), Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
80. Ventura, M.,, C. Canchaya,, G. F. Fitzgerald,, R. S. Gupta, and, D. van Sinderen. 2007. Genomics as a means to understand bacterial phylogeny and ecological adaptation: the case of bifidobacteria. Antonie Leeuwenhoek 91:351372.
81. Viverge,, D.,, L. Grimmonprez,, G. Cassanas,, L. Bardet,, H. Bonnet, and, M. Solere. 1985. Variations of lactose and oligosaccharides in milk from women of blood type secretor A or H, secretor Lewis and secretor H/non secretor Lewis during the course of lactation. Ann. Nutr. Metab. 29:111.
82. Wang, B.,, P. McVeagh,, P. Petocz, and, J. Brand-Miller. 2003. Brain ganglioside and glycoproteins sialic acid in breast-fed compared with formula-fed infants. Am. J. Clin. Nutr. 78:10241029.
83. Wang,, B.,, B. Yu,, M. Karim,, H. Hu,, Y. Sun,, P. McGreevy,, P. Petocz,, S. Held, and, J. Brand-Miller. 2007. Dietary sialic acid supplementation improves learning and memory in pig-lets. Am. J. Clin. Nutr. 85:561569.
84. Ward,, R. E.,, M. Ninonuevo,, D. I. Mills,, C. B. Lebrilla, and, J. B. German. 2006. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl. Environ. Microbiol. 72:44974499.
85. WHO Collaborative Study Team on the Role of Breastfeeding on the Prevention of Infant Mortality. 2000. Effect of breastfeeding on infant and child mortality due to infectious diseases in less developed countries: a pooled analysis. Lancet 355:451455.
86. Zopf, D., and, S. Roth. 1996. Oligosaccharide anti-infective agents. Lancet 347:10171021.

Tables

Generic image for table
Table 1

Glycosyltransferases in the mammary gland

Citation: Coppa G, Gabrielli O. 2008. Human Milk Oligosaccharides as Prebiotics, p 131-146. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error