1887

Chapter 15 : Functional Genomics of Lactic Acid Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Functional Genomics of Lactic Acid Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815462/9781555814038_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555815462/9781555814038_Chap15-2.gif

Abstract:

The lactic acid bacteria (LAB) are a diverse group of microorganisms related by their common metabolic and physiological characteristics and named for the major end product of their primary metabolism. Major advances have been made in the genomic characterization of the LAB. A number of LAB genomes have been sequenced and are publicly available, while more genomes are being sequenced. This chapter lists genome features of sequenced LAB. While genomic analyses of LAB have identified features important for the functionality of the organisms in bioprocessing and health, further characterization of genes and gene products remains important for understanding cell physiology, metabolic and signaling networks, and molecular interactions of LAB with their environments. This information is rapidly providing a mechanistic understanding of these microorganisms and identifying important gene sets critical to their functionality. An understanding of genes directing important metabolic pathways combined with the tools available for the inactivation of undesirable genes and overexpression of existing or novel genes will certainly aid in the production of important food ingredients or food products with improved flavor and nutritional properties. Because of their acid tolerance, record of safety, and ability to modulate the immune system, considerable interest has developed for using LAB as live vectors for the delivery of vaccines and other biotherapeutics to the intestinal mucosa.

Citation: Duong T, Klaenhammer T. 2008. Functional Genomics of Lactic Acid Bacteria, p 193-204. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch15
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

A phylogenetic tree of constructed on the basis of concatenated alignments of genes encoding four subunits of the DNA-dependent RNA polymerase. Reprinted from ( ) with permission of the publisher.

Citation: Duong T, Klaenhammer T. 2008. Functional Genomics of Lactic Acid Bacteria, p 193-204. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Synteny between and genomes. axis, position on genome (unit, mega-base pairs); axis, position on genome (unit, megabase pairs). 0, replication origin. Dots indicate windows of significant protein similarity by BLAST scores. Adapted from ( ) with permission of the publisher.

Citation: Duong T, Klaenhammer T. 2008. Functional Genomics of Lactic Acid Bacteria, p 193-204. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

A comparison of the gene contents of 20 strains. Strains are indicated on the left. Gene content is indicated in a rectangle mapping onto the WCFS1 genome sequence: the presence (no line) and absence (black line) of fragments are indicated. The upper rectangle, labeled “missing,” shows in black the fragments of the genome that were not spotted on the microarray. Sum of distances indicates genotypic variation mapping onto the loci of the WCFS1 genome. The lower panel shows the base deviation index along the chromosome of WCFS1. A phylogenetic tree of the strains compared is shown on the left. Reprinted from the ( ) with permission of the publisher.

Citation: Duong T, Klaenhammer T. 2008. Functional Genomics of Lactic Acid Bacteria, p 193-204. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

(A) Chemical structures of intermediates and end products in the tetrahydrofolate and folate biosynthesis pathways. Thick arrows indicate enzymatic reactions that are controlled in metabolic engineering experiments. (B) Schematic representation of folate biosynthesis genes in encodes a bifunctional protein. Hatched arrows represent genes involved in folate biosynthesis, black arrows represent genes involved in folate biosynthesis that are overexpressed by metabolic engineering, and white arrows represent genes that are not expected to be involved in folate biosynthesis. Reprinted from ( ) with permission of the publisher.

Citation: Duong T, Klaenhammer T. 2008. Functional Genomics of Lactic Acid Bacteria, p 193-204. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Schematic diagram of a replacement strategy. Gray lines represent target areas for recombination, thick black lines represent nontarget chromosome fragments, and thin black lines represent the exchange vector. 1, 2, and 3 represent PCR primer pairs. Stages include the following: (1) introduction of the nonreplicative vector; (2) 5′ crossover event, facilitated by erythromycin (Em) selection; (3) second crossover event in the absence of Em; (4) acquisition of desired transgenic chromosome organization. , human IL-10 gene; , thymidylate synthase gene. Reprinted from ( ) with permission from Macmillan Publishers Ltd.

Citation: Duong T, Klaenhammer T. 2008. Functional Genomics of Lactic Acid Bacteria, p 193-204. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815462.ch15
1. Altermann,, E.,, W. M. Russell,, M. A. Azcarate-Peril,, R. Barrangou,, B. L. Buck,, O. McAuliffe,, N. Souther,, A. Dobson,, T. Duong,, M. Callanan,, S. Lick,, A. Hamrick,, R. Cano, and, T. R. Klaenhammer. 2005. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl. Acad. Sci. USA 102:39063912.
2. Azcarate-Peril,, M. A.,, O. McAuliffe,, E. Altermann,, S. Lick,, W. M. Russell, and, T. R. Klaenhammer. 2005. Microarray analysis of a two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl. Environ. Microbiol. 71:57945804.
3. Barrangou, R.,, E. Altermann,, R. Hutkins,, R. Cano, and, T. R. Klaenhammer. 2003. Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc. Natl. Acad. Sci. USA 100:89578962.
4. Barrangou,, R.,, M. A. Azcarate-Peril,, T. Duong,, S. B. Conners,, R. M. Kelly, and, T. R. Klaenhammer. 2006. Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proc. Natl. Acad. Sci. USA 103:38163821.
5. Barrangou,, R.,, C. Fremaux,, H. Deveau,, M. Richards,, P. Boyaval,, S. Moineau,, D. A. Romero, and, P. Horvath. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:17091712.
6. Bernet,, M. F.,, D. Brassart,, J. R. Neeser, and, A. L. Servin. 1994. Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35:483489.
7. Bolotin,, A.,, B. Quinquis,, P. Renault,, A. Sorokin,, S. D. Ehrlich,, S. Kulakauskas,, A. Lapidus,, E. Goltsman,, M. Mazur,, G. D. Pusch,, M. Fonstein,, R. Overbeek,, N. Kyprides,, B. Purnelle,, D. Prozzi,, K. Ngui,, D. Masuy,, F. Hancy,, S. Burteau,, M. Boutry,, J. Delcour,, A. Goffeau, and, P. Hols. 2004. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat. Biotechnol. 22:15541558.
8. Bolotin, A.,, B. Quinquis,, A. Sorokin, and, S. D. Ehrlich. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Micro-biology 151:25512561.
9. Bolotin,, A.,, P. Wincker,, S. Mauger,, O. Jaillon,, K. Malarme,, J. Weissenbach,, S. D. Ehrlich, and, A. Sorokin. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11:731753.
10. Braat,, H.,, P. Rottiers,, D. W. Hommes,, N. Huyghebaert,, E. Remaut,, J. P. Remon,, S. J. van Deventer,, S. Neirynck,, M. P. Peppelenbosch, and, L. Steidler. 2006. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin. Gastroenterol. Hepatol. 4:754759.
11. Bron,, P. A.,, C. Grangette,, A. Mercenier,, W. M. de Vos, and, M. Kleerebezem. 2004a. Identification of Lactobacillus plantarum genes that are induced in the gastrointestinal tract of mice. J. Bacteriol. 186:57215729.
12. Bron,, P. A.,, M. Marco,, S. M. Hoffer,, E. Van Mullekom,, W. M. de Vos, and, M. Kleerebezem. 2004b. Genetic characterization of the bile salt response in Lactobacillus plantarum and analysis of responsive promoters in vitro and in situ in the gastrointestinal tract. J. Bacteriol. 186:78297835.
13. Brussow, H. 2001. Phages of dairy bacteria. Annu. Rev. Micro-biol. 55:283303.
14. Brussow, H., and, F. Desiere. 2001. Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol. Microbiol. 39:213222.
15. Brussow, H., and, R. W. Hendrix. 2002. Phage genomics: small is beautiful. Cell 108:1316.
16. Buck,, B. L.,, E. Altermann,, T. Svingerud, and, T. R. Klaenhammer. 2005. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl. Environ. Micro-biol. 71:83448351.
17. Chaillou,, S.,, M. C. Champomier-Verges,, M. Cornet,, A. M. Crutz-Le Coq,, A. M. Dudez,, V. Martin,, S. Beaufils,, E. Darbon-Rongere,, R. Bossy,, V. Loux, and, M. Zagorec. 2005. The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat. Biotechnol. 23:15271533.
18. Christensen,, H. R.,, H. Frokiaer, and, J. J. Pestka. 2002. Lacto-bacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 168:171178.
19. Claesson,, M. J.,, Y. Li,, S. Leahy,, C. Canchaya,, J. p. van Pijkeren,, A. M. Cerdeno-Tarraga,, J. Parkhill,, S. Flynn,, G. C. O’Sullivan,, J. K. Collins,, D. Higgins,, F. Shanahan,, G. F. Fitzgerald,, D. van Sinderen, and, P. W. O’Toole. 2006. Multireplicon genome architecture of Lactobacillus salivarius. Proc. Natl. Acad. Sci. USA 103:67186723.
20. de Ruyter,, P. G.,, O. P. Kuipers, and, W. M. de Vos. 1996. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microbiol. 62:36623667.
21. Duggan,, D. J.,, M. Bittner,, Y. Chen,, P. Meltzer, and, J. M. Trent. 1999. Expression profiling using cDNA microarrays. Nat. Genet. 21:1014.
22. Goh,, Y. J.,, C. Zhang,, A. K. Benson,, V. Schlegel,, J. H. Lee, and, R. W. Hutkins. 2006. Identification of a putative operon involved in fructooligosaccharide utilization by Lactobacillus paracasei. Appl. Environ. Microbiol. 72:75187530.
23. Grangette,, C.,, H. Muller-Alouf,, P. Hols,, D. Goudercourt,, J. Delcour,, M. Turneer, and, A. Mercenier. 2004. Enhanced mucosal delivery of antigen with cell wall mutants of lactic acid bacteria. Infect. Immun. 72:27312737.
24. Grangette,, C.,, S. Nutten,, E. Palumbo,, S. Morath,, C. Hermann,, J. Dewulf,, B. Pot,, T. Hartung,, P. Hols, and, A. Mercenier. 2005. Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc. Natl. Acad. Sci. USA 102:1032110326.
25. Jansen, R.,, J. D. Embden,, W. Gaastra, and, L. M. Schouls. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43:15651575.
26. Klaenhammer,, T. R.,, R. Barrangou,, B. L. Buck,, M. A. Azcarate-Peril, and, E. Altermann. 2005. Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol. Rev. 29:393409.
27. Kleerebezem,, M.,, J. Boekhorst,, R. van Kranenburg,, D. Molenaar,, O. P. Kuipers,, R. Leer,, R. Tarchini,, S. A. Peters,, H. M. Sandbrink,, M. W. Fiers,, W. Stiekema,, R. M. Lankhorst,, P. A. Bron,, S. M. Hoffer,, M. N. Groot,, R. Kerkhoven,, M. de Vries,, B. Ursing,, W. M. de Vos, and, R. J. Siezen. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 100:19901995.
28. Liu,, X.,, L. A. Lagenaur,, D. A. Simpson,, K. P. Essenmacher,, C. L. Frazier-Parker,, Y. Liu,, D. Tsai,, S. S. Rao,, D. H. Hamer,, T. P. Parks,, P. P. Lee, and, Q. Xu. 2006. Engineered vaginal Lactobacillus strain for mucosal delivery of the human immunodeficiency virus inhibitor cyanovirin-N. Antimicrob. Agents Chemother. 50:32503259.
29. Lucchini, S.,, F. Desiere, and, H. Brussow. 1999. Comparative genomics of Streptococcus thermophilus phage species supports a modular evolution theory. J. Virol. 73:86478656.
30. Makarova,, K.,, A. Slesarev,, Y. Wolf,, A. Sorokin,, B. Mirkin,, E. Koonin,, A. Pavlov,, N. Pavlova,, V. Karamychev,, N. Polouchine,, V. Shakhova,, I. Grigoriev,, Y. Lou,, D. Rohksar,, S. Lucas,, K. Huang,, D. M. Goodstein,, T. Hawkins,, V. Plengvidhya,, D. Welker,, J. Hughes,, Y. Goh,, A. Benson,, K. Baldwin,, J. H. Lee,, I. Diaz-Muniz,, B. Dosti,, V. Smeianov,, W. Wechter,, R. Barabote,, G. Lorca,, E. Altermann,, R. Barrangou,, B. Ganesan,, Y. Xie,, H. Rawsthorne,, D. Tamir,, C. Parker,, F. Breidt,, J. Broadbent,, R. Hutkins,, D. O’Sullivan,, J. Steele,, G. Unlu,, M. Saier,, T. Klaenhammer,, P. Richardson,, S. Kozyavkin,, B. Weimer, and, D. Mills. 2006a. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci USA 103:1561115616.
31. Makarova,, K. S.,, N. V. Grishin,, S. A. Shabalina,, Y. I. Wolf, and, E. V. Koonin. 2006b. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct. 1:7.
32. Makarova,, K. S., and, E. V. Koonin. 2007. Evolutionary genomics of lactic acid bacteria. J. Bacteriol. 189:11991208.
33. Marco,, M. L.,, R. S. Bongers,, W. M. de Vos, and, M. Kleerebezem. 2007. Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice. Appl. Environ. Microbiol. 73:124132.
34. McKay,, L. L. 1983. Functional properties of plasmids in lactic streptococci. Antonie Leeuwenhoek 49:259274.
35. Mohamadzadeh,, M.,, S. Olson,, W. V. Kalina,, G. Ruthel,, G. L. Demmin,, K. L. Warfield,, S. Bavari, and, T. R. Klaenhammer. 2005. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc. Natl. Acad. Sci. USA 102:28802885.
36. Molenaar,, D.,, F. Bringel,, F. H. Schuren,, W. M. de Vos,, R. J. Siezen, and, M. Kleerebezem. 2005. Exploring Lactobacillus plantarum genome diversity by using microar-rays. J. Bacteriol. 187:61196127.
37. Murray,, A. E.,, D. Lies,, G. Li,, K. Nealson,, J. Zhou, and, J. M. Tiedje. 2001. DNA/DNA hybridization to microar-rays reveals gene-specific differences between closely related microbial genomes. Proc. Natl. Acad. Sci. USA 98:98539858.
38. Ohnishi, M.,, K. Kurokawa, and, T. Hayashi. 2001. Diversification of Escherichia coli genomes: are bacteriophages the major contributors? Trends Microbiol 9:481485.
39. Pavlovic, M.,, S. Hormann,, R. F. Vogel, and, M. A. Ehrmann. 2005. Transcriptional response reveals translation machinery as target for high pressure in Lactobacillus sanfranciscensis. Arch. Microbiol. 184:1117.
40. Pieterse, B.,, R. J. Leer,, F. H. Schuren, and, M. J. van der Werf. 2005. Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151:38813894.
41. Pridmore,, R. D.,, B. Berger,, F. Desiere,, D. Vilanova,, C. Barretto,, A. C. Pittet,, M. C. Zwahlen,, M. Rouvet,, E. Altermann,, R. Barrangou,, B. Mollet,, A. Mercenier,, T. Klaen-hammer,, F. Arigoni, and, M. A. Schell. 2004. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc. Natl. Acad. Sci. USA 101:25122517.
42. Robinson,, K.,, L. M. Chamberlain,, K. M. Schofield,, J. M. Wells, and, R. W. Le Page. 1997. Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat. Biotechnol. 15:653657.
43. Sanger,, F.,, G. M. Air,, B. G. Barrell,, N. L. Brown,, A. R. Coulson,, C. A. Fiddes,, C. A. Hutchison,, P. M. Slocombe, and, M. Smith. 1977. Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687695.
44. Siezen,, R. J.,, B. Renckens,, I. van Swam,, S. Peters,, R. van Kranenburg,, M. Kleerebezem, and, W. M. de Vos. 2005. Complete sequences of four plasmids of Lactococcus lactis subsp. cremoris SK11 reveal extensive adaptation to the dairy environment. Appl. Environ. Microbiol. 71:83718382.
45. Steidler,, L.,, S. Neirynck,, N. Huyghebaert,, V. Snoeck,, A. Vermeire,, B. Goddeeris,, E. Cox,, J. P. Remon, and, E. Remaut. 2003. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol. 21:785789.
46. Stiles,, M. E. 1996. Biopreservation by lactic acid bacteria. Antonie Leeuwenhoek 70:331345.
47. Sturino,, J. M., and, T. R. Klaenhammer. 2002. Expression of antisense RNA targeted against Streptococcus thermophilus bacteriophages. Appl. Environ. Microbiol. 68:588596.
48. Sturino,, J. M., and, T. R. Klaenhammer. 2004. Antisense RNA targeting of primase interferes with bacteriophage replication in Streptococcus thermophilus. Appl. Environ. Micro-biol. 70:17351743.
49. Sturino,, J. M., and, T. R. Klaenhammer. 2006. Engineered bacteriophage-defense systems in bioprocessing. Nat. Rev. Microbiol. 4:395404.
50. Sturme,, M. H.,, J. Nakayama,, D. Molenaar,, Y. Murakami,, R. Kunugi,, T. Fujii,, E. E. Vaughan,, M. Kleerebezem, and, W. M. de Vos. 2005. An agr-like two-component regulatory system in Lactobacillus plantarum is involved in production of a novel cyclic peptide and regulation of adherence. J. Bacteriol. 187:52245235.
51. Sybesma,, W.,, M. Starrenburg,, M. Kleerebezem,, I. Mierau,, W. M. de Vos, and, J. Hugenholtz. 2003. Increased production of folate by metabolic engineering of Lactococcus lactis. Appl. Environ. Microbiol. 69:30693076.
52. Tao,, Y.,, K. A. Drabik,, T. S. Waypa,, M. W. Musch,, J. C. Alverdy,, O. Schneewind,, E. B. Chang, and, E. O. Petrof. 2006. Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells. Am. J. Physiol. Cell Physiol. 290:C1018–C1030.
53. Valeur, N.,, P. Engel,, N. Carbajal,, E. Connolly, and, K. Ladefoged. 2004. Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract. Appl. Environ. Microbiol. 70:11761181.
54. van de Guchte,, M.,, S. Penaud,, C. Grimaldi,, V. Barbe,, K. Bryson,, P. Nicolas,, C. Robert,, S. Oztas,, S. Mangenot,, A. Couloux,, V. Loux,, R. Dervyn,, R. Bossy,, A. Bolotin,, J. M. Batto,, T. Walunas,, J. F. Gibrat,, P. Bessieres,, J. Weissenbach,, S. D. Ehrlich, and, E. Maguin. 2006. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc. Natl. Acad. Sci. USA 103:92749279.
55. Walter,, J.,, N. C. Heng,, W. P. Hammes,, D. M. Loach,, G. W. Tannock, and, C. Hertel. 2003. Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Appl. Environ. Microbiol. 69:20442051.
56. Wegmann,, U.,, M. O’Connell-Motherway,, A. Zomer,, G. Buist,, C. Shearman,, C. Canchaya,, M. Ventura,, A. Goesmann,, M. J. Gasson,, O. P. Kuipers,, D. van Sinderen, and, J. Kok. 2007. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J. Bacteriol. 189:32563270.
57. Wells,, J. M.,, K. Robinson,, L. M. Chamberlain,, K. M. Schofield, and, R. W. Le Page. 1996. Lactic acid bacteria as vaccine delivery vehicles. Antonie Leeuwenhoek 70:317330.

Tables

Generic image for table
Table 1

Features of sequenced LAB genomes

Citation: Duong T, Klaenhammer T. 2008. Functional Genomics of Lactic Acid Bacteria, p 193-204. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error