Chapter 3 : Natural Microbial Ecosystems and Their Progression in Fresh Foods

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Natural Microbial Ecosystems and Their Progression in Fresh Foods, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815479/9781555814052_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555815479/9781555814052_Chap03-2.gif


The microbial ecosystem of fresh foods is not as complex as that of the corresponding preharvest products, and this is due in large part to the removal of many microbes from meats by animal carcass washing in which hot water, steam, and/or organic acids are applied. Assuming that fresh foods are harvested, processed, packaged, and stored according to acceptable procedures, the fate of each group of microbes can be predicted if one knows how the foods are packaged along with the time and temperature of storage. While some fresh foods are inhibited by specific toxic products of others, some are inhibited by as-yet-unknown means, and this is discussed further in a section on nonspecific microbial interference. When fresh foods that contain a typical microbiota undergo refrigerator spoilage, some or all of the microbial growth parameters come into play. A number of studies on the fate of in chicken pot pies, in macaroni and cheese dinners, and in laboratory culture media were published by researchers at the Campbell Soup Co. in the 1960s. Overall, this research demonstrated the inability of this pathogen to compete with naturally occurring organisms under various conditions. The microbial ecosystem of fresh foods is composed of a large number of bacterial genera and species, with most consisting of and . Whatever the mechanism of microbial interference, both the direct and demonstrated mechanisms, along with the less well-defined mechanisms, interact to affect microbial progression in fresh foods.

Citation: Jay (deceased) J. 2009. Natural Microbial Ecosystems and Their Progression in Fresh Foods, p 41-61. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch3

Key Concept Ranking

Gram-Negative Bacteria
Gram-Positive Bacteria
Canned Foods
Fruits and Vegetables
Lactic Acid Bacteria
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Beuchat, L. R. (ed.). 1987. Food and Beverage Mycology, 2nd ed. Springer, New York, NY.
2. Boddy, L., and, J. W. T. Wimpenny. 1992. Ecological concepts in food microbiology. Soc. Appl. Bacteriol. Symp. Ser. 21:23S38S.
3. Brashears, M. M.,, S. S. Reilly, and, S. E. Gilliland. 1998. Antagonistic action of cells of Lactobacillus lactis toward Escherichia coli O157:H7 on refrigerated raw chicken meat. J. Food Protect. 61:166170.
4. Bredholt, S.,, T. Nesbakken, and, A. Holek. 1999. Protective cultures inhibit growth of Listeria monocytogenes and Escherichia coli O157:H7 in cooked, sliced, vacuum- and gas-packaged meat. Int. J. Food Microbiol. 53:4352.
5. Brook, I. 1999. Bacterial interference. Crit. Rev. Microbiol. 25:155172.
6. Buchanan, R. L., and, L. K. Bagi. 1999. Microbial competition: effect of Pseudomonas fluorescens on the growth of Listeria monocytogenes. Food Microbiol. 16:523529.
7. Cooley, M. B.,, D. Chao, and, R. E. Mandrell. 2006. Escherichia coli O157:H7 survival and growth on lettuce is altered by the presence of epiphytic bacteria. J. Food Prot. 69:23292335.
8. Dack, G. M., and, G. Lippitz. 1962. Fate of staphylococci and enteric microorganisms introduced into slurry of frozen pot pies. Appl. Microbiol. 10:472479.
9. Dahiya, R. S., and, M. L. Speck. 1968. Hydrogen peroxide formation by lactobacilli and its effect on Staphylococcus aureus. J. Dairy Sci. 51:15681572.
10. Dainty, R. H., and, B. M. Mackey. 1992. The relationship between the phenotypic properties of bacteria from chill-stored meat and spoilage processes. J. Appl. Bacteriol. 73:10351045.
11. Dainty, R. H.,, B. G. Shaw,, K. A. DeBoer, and, E. S. J. Scheps. 1975. Protein changes caused by bacterial growth on beef. J. Appl. Bacteriol. 39:7381.
12. Daly, C.,, W. E. Sandine, and, P. R. Elliker. 1972. Interactions of food starter cultures and food-borne pathogens: Streptococcus diacetilactis versus food pathogens. J. Milk Food Technol. 35:349357.
13. Dillon, V. M., and, R. G. Board. 1991. Yeasts associated with red meats. J. Appl. Bacteriol. 71:93108.
14. Doyle, M. P., and, L. R. Beuchat (ed.). 2007. Food Microbiology—Fundamentals and Frontiers, 3rd ed. ASM Press, Washington, DC.
15. Duffy, G.,, R. C. Whiting, and, J. J. Sheridan. 1999. The effect of a competitive microflora, pH and temperature on the growth kinetics of Escherichia coli O157:H7. Food Microbiol. 16:299307.
16. Dworkin, M.,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer, and, E. Stackebrandt (ed.). 2007. The Prokaryotes, 3rd ed. Springer, New York, NY.
17. Eppert, I.,, N. Valdés-Stauber,, H. Götz,, M. Busse, and, S. Scherer. 1997. Growth reduction of Listeria spp. caused by undefined industrial red smear cheese cultures and bacteteriocin-producing Brevibacterium linens as evaluated in situ on soft cheese. Appl. Environ. Microbiol. 63:48124817.
18. Fedorka-Cray, P. J.,, J. S. Bailey,, N. J. Stern,, N. A. Cox,, S. R. Ladely, and, M. Musgrove. 1999. Mucosal competitive exclusion to reduce Salmonella in swine. J. Food Prot. 62:13761380.
19. Florey, H. W. 1946. The use of micro-organisms for therapeutic purposes. Yale J. Biol. Med. 19:101118.
20. Fredrickson, A. G., and, G. Stephanopoulos. 1981. Microbial competition. Science 213:972979.
21. Freedman, D. J.,, J. K. Kondo, and, D. L. Willrett. 1989. Antagonism of foodborne bacteria by Pseudomonas spp.: a possible role for iron. J. Food Prot. 52:484489.
22. Garrity, G. M. 2001. Bergey’s Manual of Systematic Bacteriology, 2nd ed. Springer, New York, NY.
23. Gennari, M., and, F. Dragotto. 1992. A study of the incidence of different fluorescent Pseudomonas species and biovars in the microflora of fresh and spoiled meat and fish, raw milk, cheese, soil and water. J. Appl. Bacteriol. 72:281288.
24. Gill, C. O. 1983. Meat spoilage and evaluation of the potential storage life of fresh meat. J. Food Prot. 46:444452.
25. Gill, C. O. 1976. Substrate limitation of bacterial growth at meat surfaces. J. Appl. Bacteriol. 41:401410.
26. Gilliland, S. E., and, M. L. Speck. 1975. Inhibition of psychrotrophic bacteria by lactobacilli and pediococci in nonfermented refrigerated foods. J. Food Sci. 40:903905.
27. Goepfert, J. M., and, H. U. Kim. 1975. Behavior of selected food-borne pathogens in raw ground beef. J. Milk Food Technol. 38:449452.
28. Goerges, S.,, U. Aigner,, B. Silakowski, and, S. Scherer. 2006. Inhibition of Listeria monocytogenes by food-borne yeasts. Appl. Environ. Microbiol. 72:313318.
29. Gram, L. 1993. Inhibitory effect against pathogenic and spoilage bacteria of Pseudomonas strains isolated from spoiled and fresh fish. Appl. Environ. Microbiol. 59:21972203.
30. Hamdan, H.,, D. M. Weller, and, L. S. Thomashow. 1991. Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R. Appl. Environ. Microbiol. 57:32703277.
31. Henry, M. B.,, J. M. Lynch, and, T. R. Fermor. 1991. Role of siderophores in the biocontrol of Pseudomonas tolaasii by fluorescent pseudomonad antagonists. J. Appl. Bacteriol. 70:104106.
32. Hillman, J. D.,, T. A. Brooks,, S. M. Michalek,, C. C. Harmon,, J. L. Snoep, and, C. C. van der Weijden. 2000. Construction and characterization of an effector strain of Streptococcus mutans for replacement therapy of dental caries. Infect. Immun. 68:543549.
33. Holzapfel, W. H.,, R. Geisen, and, U. Schilinger. 1995. Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 24:343362.
34. Hsieh, D. Y., and, J. M. Jay. 1984. Characterization and identification of yeasts from fresh and spoiled ground beef. Int. J. Food Microbiol. 1:141147.
35. Hurst, A. 1973. Microbial antagonism in foods. Can. Inst. Food Sci. Technol. J. 6:8090.
36. Hurst, A. 1978. Nisin: its preservative effect and function in the growth cycle of the producer organism, p. 297313. In F. A. Skinner and, L. B. Quesnel (ed.), Streptococci. Academic Press, London, United Kingdom.
37. Iandolo, J. J.,, C. W. Clark,, L. Bluhm, and, Z. J. Ordal. 1965. Repression of Staphylococcus aureus in associative culture. Appl. Microbiol. 13:646649.
38. Jack, R. W.,, J. R. Tagg, and, B. Ray. 1995. Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59:171200.
39. Jay, J. M. 1982. Antimicrobial properties of diacetyl. Appl. Environ. Microbiol. 44:525532.
40. Jay, J. M. 1995. Foods with low numbers of microorganisms may not be the safest foods or, why did human listeriosis and hemorrhagic colitis become foodborne diseases? Dairy Food Environ. Sanit. 15:674677.
41. Jay, J. M. 1996. Microorganisms in fresh ground meats: the relative safety of products with low versus high numbers. Meat Sci. 43:S59S66.
42. Jay, J. M. 1997. Do background microorganisms play a role in the safety of fresh foods? Trends Food Sci. Technol. 8:421424.
43. Jay, J. M. 2003. A review of recent taxonomic changes in seven genera of bacteria commonly found in foods. J. Food Prot. 66:13041309.
44. Jay, J. M.,, J. P. Vilai, and, M. E. Hughes. 2003. Profile and activity of the bacterial biota of ground beef held from freshness to spoilage at 5–7°C. Int. J. Food Microbiol. 81:105111.
45. Jay, J. M.,, M. J. Loessner, and, D. A. Golden. 2005. Modern Food Microbiology, 7th ed. Springer, New York, NY.
46. Juven, B. J.,, R. J. Meinersmann, and, N. J. Stern. 1991. Antagonistic effects of lactobacilli and pediococci to control intestinal colonization by human enteropathogens in live poultry. J. Appl. Bacteriol. 70:95103.
47. Klaenhammer, T. R. 1988. Bacteriocins of lactic acid bacteria. Biochimie 70:337349.
48. Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12:3986.
49. Leistner, L., and, L. G. M. Gorris. 1995. Food preservation by hurdle technology. Trends Food Sci. Technol. 6:4146.
50. Leistner, L., and, G. Gould. 2002. Hurdle Technology—Combination Treatments for Food Stability, Safety and Quality. Springer, New York NY.
51. Leverentz, B.,, W. S. Conway,, W. Janisiewicz,, M. Abadias,, C. P. Kurtman, and, M. J. Camp. 2006. Biocontrol of the food-borne pathogens Listeria monocytogenes and Salmonella enterica serovar Poona on fresh-cut apples with naturally occurring bacterial and yeast antagonists. Appl. Environ. Microbiol. 72:11351140.
52. Light, I. J.,, R. L. Walton,, J. M. Sutherland,, H. R. Shinefield, and, V. Brackvogel. 1967. Use of bacterial interference to control a staphylococcal nursery outbreak. Am. J. Dis. Child. 113:291299.
53. Lücke, F.-K. 2000. Utilization of microbes to process and preserve meat. Meat Sci. 56:105115.
54. Lund, B. M. 1992. Ecosystems in vegetable foods. J. Appl. Bacteriol. 73:S115S126.
55. Matthews, K. R. (ed.). 2006. Microbiology of Fresh Produce. ASM Press, Washington, DC.
56. Mattila-Sandholm, T., and, E. Skyttä. 1991. The effect of spoilage flora on the growth of food pathogens in minced meat stored at chilled temperature. Lebensm.-Wiss. Technol. 24:116120.
57. Mattila-Sandholm, T.,, A. Haikara, and, E. Skyttä. 1991. The effect of Pediococcus damnosus and Pediococcus pentosaceus on the growth of pathogens in minced meat. Int. J. Food Microbiol. 13:8794.
58. Miller, W. A. 1955. Effect of freezing ground pork and subsequent storing above 32°F upon the bacterial flora. Food Technol. 9:332334.
59. Nissen, H.,, T. Maugesten, and, P. Lea. 2001. Survival and growth of Escherichia coli O157:H7, Yersinia enterocolitica and Salmonella enteritidis on decontaminated and untreated meat. Meat Sci. 57:291298.
60. Nunes, C.,, J. Usall,, N. Teixidó,, E. Fons, and, I. Viñas. 2002. Post-harvest biological control by Pantoea agglomerans (CPA-2) on Golden Delicious apples. J. Appl. Microbiol. 92:247255.
61. Palumbo, S. A.,, A. Pickard, and, J. E. Call. 1997. Population changes and verotoxin production of enterohemorrhagic Escherichia coli strains inoculated in milk and ground beef held at low temperatures. J. Food Prot. 60:746750.
62. Peterson, A. C.,, J. J. Black, and, M. F. Gunderson. 1962. Staphylococci in competition. II. Effect of total numbers and proportion of staphylococci in mixed cultures on growth in artificial culture medium. Appl. Microbiol. 10:2330.
63. Pivnick, H., and, E. Nurmi. 1982. The Nurmi concept and its role in the control of salmonellae in poultry, p. 4170. In R. Davies (ed.), Developments in Food Microbiology. Applied Science Publishers, London, United Kingdom.
64. Price, R. J., and, J. S. Lee. 1970. Inhibition of Pseudomonas species by hydrogen peroxide producing lactobacilli. J. Milk Food Technol. 33:1318.
65. Prieto, M.,, M. L. Garcia-Lópes,, T. M. López, and, B. Moreno. 1993. Factors affecting spoilage microflora succession on lamb carcasses at refrigerator temperatures. J. Appl. Bacteriol. 74:521525.
66. Restuccia, C.,, F. Giusino,, F. Licciardello,, C. Randazzo,, C. Caggia, and, G. Muratore. 2006. Biological control of peach fungal pathogens by commercial products and indigenous yeasts. J. Food Prot. 69:24652470.
67. Samelis, J.,, J. N. Sofos,, P. A. Kendall, and, G. C. Smith. 2001. Influence of the natural microbial flora on acid tolerance response of Listeria monocytogenes in a model system of fresh meat de-contamination fluids. Appl. Environ. Microbiol. 67:24102420.
68. Schillinger, U.,, R. Geisen, and, W. H. Holzapfel. 1996. Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci. Technol. 7:158164.
69. Schoeni, J. L., and, A. C. L. Wong. 1994. Inhibition of Campylobacter jejuni colonization in chicks by defined competitive exclusion bacteria. Appl. Environ. Microbiol. 60:11911197.
70. Shinefield, H. R.,, J. C. Ribble, and, M. Boris. 1971. Bacterial interference between strains of Staphylococcus aureus, 1960 to 1970. Am. J. Dis. Child. 121:148153.
71. Smith, L. D. 1975. Inhibition of Clostridium botulinum by strains of Clostridium perfringens isolated from soil. Appl. Microbiol. 30:319323.
72. Straka, R. P., and, F. M. Combs. 1952. Survival and multiplication of Micrococcus pyogenes var. aureus in creamed chicken under various holding, storage and defrosting conditions. Food Res. 17:448455.
73. Tagg, J. R.,, A. S. Dajani, and, L. W. Wannamaker. 1976. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40:722756.
74. Troller, J. A., and, W. C. Frazier. 1963. Repression of Staphylococcus aureus by food bacteria. I. Effect of environmental factors on inhibition. Appl. Microbiol. 11:1114.
75. Troller, J. A., and, W. C. Frazier. 1963. Repression of Staphylococcus aureus by food bacteria. II. Causes of inhibition. Appl. Microbiol. 11:163165.
76. U.S. Department of Agriculture. 1996. Nationwide Federal Plant Raw Ground Beef Microbio-logical Survey, August 1993–March 1994. U.S. Department of Agriculture, Washingon, DC.
77. van der Wielen, W. J. J.,, L. J. A. Lipman,, F. van Knapen, and, S. Biesterveld. 2002. Competitive exclusion of Salmonella enterica serovar Enteritidis by Lactobacillus crispatus and Clostridium lactatifermentans in a sequencing fed-batch culture. Appl. Environ. Microbiol. 68:555559.
78. Vanneste, J. L.,, J. Yu, and, S. V. Beer. 1992. Role of antibiotic production by Erwinia herbicola Eh252 in biological control of Erwinia amylovora. J. Bacteriol. 174:27852796.
79. Vimont, A.,, C. Vernozy-Rozand,, M. P. Montet,, C. Laizzera,, C. Bavai, and, M.-L. Delignette-Muller. 2006. Modeling and predicting the simultaneous growth of Escherichia coli O157:H7 and ground beef background microflora for various enrichment protocols. Appl. Environ. Microbiol. 72:261268.
80. Vold, L.,, A. Holck,, Y. Wasteson, and, H. Nissen. 2000. High levels of background flora inhibits growth of Escherichia coli O157:H7 in ground beef. Int. J. Food Microbiol. 56:219225.
81. Wentz, M.,, H. Scott, and, J. Vennes. 1967. Clostridium botulinum type F: seasonal inhibition by Bacillus licheniformis. Science 155:8990.


Generic image for table

The most common genera of bacteria found in foods, beverages, and food processing environments

Citation: Jay (deceased) J. 2009. Natural Microbial Ecosystems and Their Progression in Fresh Foods, p 41-61. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch3
Generic image for table

Commonly reported genera of yeasts and molds in most fresh, preserved, and fermented foods

Citation: Jay (deceased) J. 2009. Natural Microbial Ecosystems and Their Progression in Fresh Foods, p 41-61. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch3
Generic image for table

Predominant microbial groups on intact lamb carcasses held at 5°C in air

Citation: Jay (deceased) J. 2009. Natural Microbial Ecosystems and Their Progression in Fresh Foods, p 41-61. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch3
Generic image for table

Demonstrated and suggested mechanisms of microbial interference in foods

Citation: Jay (deceased) J. 2009. Natural Microbial Ecosystems and Their Progression in Fresh Foods, p 41-61. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error