1887

Chapter 6 : Biofilms in the Food Environment

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Biofilms in the Food Environment, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815479/9781555814052_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555815479/9781555814052_Chap06-2.gif

Abstract:

Biofilms are structured microbial communities of cells differentiated to play specific roles in the maintenance of the community and its structure. In this chapter, the discussion of biofilm development is organized into three sections: initiation (reversible and irreversible attachment), structure development (maturation), and dispersal. Although there is a general process for how biofilms develop, mechanisms underlying the process differ among microorganisms. The chapter talks about the biofilm matrix, and biofilm ecosystem. Research on food processing biofilms has centered on the ability of pathogenic and spoilage microorganisms to grow or survive in these environments, with emphasis on the influence of sanitation procedures. Researchers isolated two types of rough colony variants of from biofilms, distinguished by short-chain and long-chain cell morphologies. Both types of rough variants exhibited enhanced biofilm formation, with the variants exhibiting increased cell chain length (filamentous growth) when grown as biofilms. The predominant microflora of water system biofilms can be characterized as having low physiological activity and as being difficult to culture using conventional plating methods. Biofilms containing mainly commensal microorganisms can form on roots, leaves, and the internal vascular tissues of edible plants. Cells in biofilms are more difficult to inactivate by application of antimicrobial chemicals and physical stresses than their planktonic counterparts. The major contributor of biofilm microorganisms in our diet is most likely fresh produce, since biofilms form on these foods before harvest, postharvest growth is likely, and the products are consumed without heat treatment.

Citation: Frank J. 2009. Biofilms in the Food Environment, p 95-115. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch6

Key Concept Ranking

Bacterial Proteins
0.6548958
Viruses
0.5287042
Chemicals
0.5235609
Gram-Negative Bacteria
0.5057251
Gram-Positive Bacteria
0.49844846
Furanosyl Borate Diester
0.49664992
0.6548958
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Monospecies biofilms produced on polyvinyl chloride by unidentified isolates from a chicken house water system (stained with acridine orange). Incubation was in R2A broth for 7 days at 12°C. (Top) Dispersal of single cells and small micro-colonies between larger porous micro-colonies; (bottom) open space between porous microcolonies. (Micrographs by Nathanon Trachoo and J. F. Frank.)

Citation: Frank J. 2009. Biofilms in the Food Environment, p 95-115. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Micrographs illustrating the diversity of biofilms produced by five strains of grown on stainless steel at 32°C for 24 h in TSB. Reprinted from the ( ) with permission of the publisher.

Citation: Frank J. 2009. Biofilms in the Food Environment, p 95-115. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Biofilm formed in 1 day on a stainless steel coupon attached to the inner surface of the drip pan of a chiller unit. The unit was located on the ceiling of a room in a ready-to-eat meat processing plant. The coupon was stained with acridine orange and observed using the oil immersion objective (100×) and a 10× ocular lens on a Carl Zeiss Standard Microscope equipped for epifluorescence. Image courtesy of Amy C. Wong, Food Research Institute, University of Wisconsin, Madison.

Citation: Frank J. 2009. Biofilms in the Food Environment, p 95-115. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815479.ch06
1. Agarwal, S.,, K. Sharma,, B. G. Swanson,, G. U. Yuksei, and, S. Clark. 2006. Nonstarter lactic acid bacteria biofilms and calcium lactate crystals in cheddar cheese. J. Dairy Sci. 89:14521466.
2. Agle, M. 2007. Biofilms in the food industry, p. 318. In H. P. Blaschek,, H. H. Wang, and, M. E. Agle (ed.), Biofilms in the Food Environment. IFT Press, Blackwell Publishing, Ames, IA.
3. Ammor, S.,, G. Tauveron,, E. Dufour, and, I. Chevallier. 2006. Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility. 2. Behaviour of pathogenic and spoilage bacteria in dual species biofilms including a bacteriocin-like-producing lactic acid bacteria. Food Control 17:462468.
4. Ashton, L. V.,, I. Geornaras,, J. D. Stopporth,, P. N. Skandamis,, K. E. Belk,, J. A. Scanga,, G. C. Smith, and, J. N. Sofos. 2006. Fate of inoculated Escherichia coli O157:H7, cultured under different conditions, on fresh and de-contaminated beef transitioned from vacuum to aerobic packaging. J. Food Prot. 69:12731279.
5. Austin, J. W., and, G. Bergeron. 1995. Development of bacterial biofilms in dairy processing lines. J. Dairy Res. 62:509519.
6. Balaban, N.,, P. Stoodley,, C. A. Fux,, S. Wilson,, J. W. Costerton, and, G. Dell’Acqua. 2005. Prevention of staphylococcal biofilm-associated infections by the quorum sensing inhibitor RIP. Clin. Orthop. Relat. Res. 437:4854.
7. Barraud, N.,, D. J. Hassett,, S.-H. Hwang,, S. A. Rice,, S. Kjeleberg, and, J. S. Webb. 2006. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J. Bacteriol. 188:73447353.
8. Borucki, M. K.,, J. D. Peppin,, D. White,, F. Loge, and, D. R. Call. 2003. Variation in biofilm formation among strains of Listeria monocytogenes. Appl. Environ. Microbiol. 69:73367342.
9. Boureau, T.,, M.-A. Jacques,, R. Beruyer,, Y. Dessaux,, H. Dominguez, and, C. E. Morris. 2003. Comparison of the phenotypes and genotypes of biofilm and solitary epiphytic bacterial populations on broad-leaved endive. Microbiol. Ecol. 47:8795.
10. Branda, S. S.,, F. Chu,, D. B. Kearns,, R. Losick, and, R. Kolter. 2006. A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol. 59:12291238.
11. Brandl, M. T., and, R. E. Mandrell. 2002. Fitness of Salmonella enterica serovar Thompson in the cilantro phyllosphere. Appl. Environ. Microbiol. 68:36143621.
12. Bremer, P. J.,, I. Monk, and, C. M. Osborne. 2001. Survival of Listeria monocytogenes attached to stainless steel surfaces in the presence or absence of Flavobacterium spp. J. Food Prot. 64:13691376.
13. Brown, M. R. W., and, J. Barker. 1999. Unexplored reservoirs of pathogenic bacteria: protozoa and biofilms. Trends Microbiol. 7:4650.
14. Burmolle, M.,, J. S. Webb,, D. Rao,, L. H. Hansen,, S. J. Sorensen, and, S. Kjelleberg. 2006. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl. Environ. Microbiol. 72:39163923.
15. Camilli, A., and, B. L. Bassler. 2006. Bacterial small-molecule signaling pathways. Science 311:11131116.
16. Carpentier, B., and, D. Chassaing. 2004. Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry premises. Int. J. Food Microbiol. 97:111122.
17. Chambless, J. D.,, S. M. Hunt, and, P. S. Stewart. 2006. A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Appl. Environ. Microbiol. 72:20052013.
18. Chmielewski, R. A. N., and, J. F. Frank. 2003. Biofilm formation and control in food processing facilities. Comp. Rev. Food Sci. Safety 2:2232.
19. Chmielewski, R. A. N., and, J. F. Frank. 2007. Inactivation of Listeria monocytogenes biofilms using chemical sanitizers and heat, p. 73104. In H. P. Blaschek,, H. H. Wang, and, M. E. Agle (ed.), Biofilms in the Food Environment. IFT Press, Blackwell Publishing, Ames, IA.
20. Cochran, W. L.,, G. A. McFeters, and, P. S. Stewart. 2000. Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine. J. Appl. Microbiol. 88:2230.
21. Cooley, M. B.,, D. Chao, and, R. E. Mandrell. 2006. Escherichia coli O157:H7 survival and growth on lettuce is altered by the presence of epiphytic bacteria. J. Food Prot. 69:23292335.
22. Davey, M. E., and, G. A. O’Toole. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64:847867.
23. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton, and, E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of bacterial biofilm. Science 280:295298.
24. Deziel, E.,, Y. Comeau, and, R. Villemur. 2001. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J. Bacteriol. 183:11951204.
25. Dickson, J. S., and, G. R. Siragusa. 1994. Cell surface charge and initial attachment characteristics of rough strains of Listeria monocytogenes. Lett. Appl. Microbiol. 19:192196.
26. Djordjevic, D.,, M. Wiedmann, and, L. A. McLandsborough. 2002. Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl. Environ. Microbiol. 68:29502958.
27. Drenkard, E. 2003. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microb. Infect. 5:12131219.
28. Dykes, G. A. 2003. Behaviour of Listeria monocytogenes on two processed meat products as influenced by temperature or attached growth during preincubation. Food Microbiol. 20:9196.
29. Federle, M. J., and, B. L. Bassler. 2003. Interspecies communication in bacteria. J. Clin. Investig. 112:12911299.
30. Fett, W. W. 2000. Naturally occurring biofilms on alfalfa and other types of sprouts. J. Food Prot. 63:625632.
31. Folsom, J. P., and, J. F. Frank. 2006. Chlorine resistance of Listeria monocytogenes biofilms and relationship to subtype, cell density, and planktonic cell chlorine resistance. J. Food Prot. 69:12921296.
32. Folsom, J. P., and, J. F. Frank. 2007. Proteomic analysis of a hypochlorous acid-tolerant Listeria monocytogenes cultural variant exhibiting enhanced biofilm production. J. Food Prot. 70:11291136.
33. Folsom, J. P.,, G. R. Siragusa, and, J. F. Frank. 2006. Formation of biofilm at different nutrient levels by various genotypes of Listeria monocytogenes. J. Food Prot. 69:826834.
34. Frank, J. F. 2000. Control of biofilms in the food and beverage industry, p. 205224. In J. Walkeer,, S. Surman, and, J. Jass (ed.), Industrial Biofouling. John Wiley & Sons, Ltd., West Sussex, United Kingdom.
35. Frank, J. F. 2001. Microbial attachment to food and food contact surfaces. Adv. Food Nutr. Res. 43:319370.
36. Frank, J. F.,, J. Ehlers, and, L. Wicker. 2003. Removal of Listeria monocytogenes and poultry soil-containing biofilms using chemical cleaning and sanitizing agents under static conditions. Food Prot. Trends 8:654663.
37. Frank, J. F.,, R. A. N. Gillett, and, G. O. Ware. 1990. Association of Listeria spp. contamination in the dairy processing plant environment with the presence of staphylococci. J. Food Prot. 53:928932.
38. Frank, J. F., and, R. Koffi. 1990. Surface-adherent growth of Listeria monocytogenes is associated with increased resistance to surfactant sanitizers and heat. J. Food Prot. 53:550554.
39. Gunduz, G. T., and, G. Tuncel. 2006. Biofilm formation in an ice cream plant. Antonie van Leeuwenhoek 89:329336.
40. Hanna, S. E., and, H. H. Wang. 2007. Biofilm development by Listeria monocytogenes, p. 4771. In H. P. Blaschek,, H. H. Wang, and, M. E. Agle (ed.), Biofilms in the Food Environment. IFT Press, Blackwell Publishing, Ames, IA.
41. Hastings, J. W., and, G. Mitchell. 1971. Endosymbiotic bioluminescent bacteria from the light organ of pony fish. Biol. Bull. 141:261268.
42. Haussler, S. 2004. Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ. Microbiol. 6:546551.
43. Heydorn, A.,, B. Ersboll,, J. Kato,, M. Hentzer,, M. R. Parsek,, T. Tolker-Nielsen,, M. Givskov, and, S. Molin. 2002. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl. Environ. Microbiol. 68:20082017.
44. Hunter, R. C., and, T. J. Beveridge. 2005. High-resolution visualization of Pseudomonas aeruginosa PAO1 biofilms by freeze-substitution transmission electron microscopy. J. Bacteriol. 187:76197630.
45. Jacobsen, T., and, A. G. Koch. 2006. Influence of histories of the inoculum on lag phase and growth of Listeria monocytogenes in meat models. J. Food Prot. 69:532541.
46. Jahn, A., and, P. H. Nielsen. 1998. Cell bio-mass and exopolymer composition in sewer biofilms. Water Sci. Technol. 37:1724.
47. Jayasinghearachchi, H. S., and, G. Seneviratne. 2004. A bradyrhizobial-Penicillium spp. biofilm with nitrogenase activity improves N2 fixing symbiosis of soybean. Biol. Fertil. Soils 40:432434.
48. Jefferson, K. K. 2004. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 236:163173.
49. Jeong, D. K., and, J. F. Frank. 1994. Growth of Listeria monocytogenes at 21 EC in biofilms with microorganisms isolated from meat and dairy processing environments. Lebensm.-Wiss. Technol. 27:415423.
50. Jeong, D. K., and, J. F. Frank. 1994. Growth of Listeria monocytogenes at 10 EC in biofilms with microorganisms isolated from meat and dairy processing environments. J. Food Prot. 57:576586.
51. Keinanen-Toivola, M.,, R. P. Revetta, and, J. W. Santo Domingo. 2006. Identification of active bacterial communities in a model drinking water biofilm system using 16S rRNA-based clone libraries. FEMS Microbiol. Lett. 257:182188.
52. Kikuchi, T.,, Y. Mizunoe,, A. Takade,, S. Naito, and, S. Yoshida. 2005. Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol. Immunol. 49:875884.
53. Kives, J.,, D. Guadarrama,, B. Orgaz,, A. Rivera-Sen,, J. Vazquez, and, C. San-Jose. 2005. Interactions in biofilms of Lactococcus lactis ssp. cremoris and Pseudomonas fluorescens cultured in cold UHT milk. J. Dairy Sci. 88:41654171.
54. Kornacki, J. L., and, J. Gurtler. 2007. Incidence and control of Listeria in food processing facilities, p. 681766. In E. T. Ryser and, E. H. Marth (ed.), Listeria, Listeriosis, and Food Safety. CRC Press, Boca Raton, FL.
55. Langeveld, L. P.,, R. M. van Montfort-Quasig,, A. H. Weerkamp,, R. Waalesijn, and, J. S. Wever. 1995. Adherence, growth and release of bacteria in a tube heat-exchanger for milk. Neth. Milk Dairy J. 49:207220.
56. Langmark, J.,, M. V. Storey,, N. J. Ashboit, and, T. A. Stanstrom. 2005. Biofilms in an urban water distribution system: measurement of biofilm biomass, pathogens and pathogen persistence within the greater Stockholm area, Sweden. Water Sci. Technol. 52:181189.
57. Langsrud, S.,, T. Moreto, and, G. Sundheim. 2003. Characterization of Serratia marcescens survival in disinfecting footbaths. J. Appl. Microbiol. 95:186195.
58. Lapidot, A.,, U. Romling, and, S. Yaron. 2006. Biofilm formation and the survival of Salmonella Typhimurium on parsley. J. Food Microbiol. 109:229233.
59. Lasa, I. 2006. Towards the identification of the common features of bacterial biofilm development. Int. Microbiol. 9:2128.
60. Lasa, I., and, J. R. Penades. 2006. Bap: a family of surface proteins involved in biofilm formation. Res. Microbiol. 157:99107.
61. Ledebor, N. A.,, J. G. Frye,, M. McClelland, and, B. D. Jones. 2006. Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infect. Immun. 74:31563169.
62. Lee, D.-G.,, J.-H. Lee, and, S.-J. Kim. 2005. Diversity and dynamics of bacterial species in a biofilm at the end of the Seoul water distribution system. World J. Microbiol. Biotechnol. 21:155162.
63. Lee, S. H., and, J. F. Frank. 1992. Competitive growth and attachment of Listeria monocytogenes and Lactococcus lactis ssp. lactis ATCC 11454. J. Microbiol. Biotechnol. 2:7377.
64. Lehtola, M. J.,, T. Pitkanen,, L. Miebach, and, I. T. Miettinen. 2006. Survival of Campylobacter jejuni in potable water biofilms: a comparative study with different detection methods. Water Sci. Technol. 54:5761.
65. Lemon, K. P.,, D. E. Higgins, and, R. Kolter. 2007. Flagellar motility is critical for Listeria monocytogenes biofilm formation. J. Bacteriol. 189:44184424.
66. Lequette, Y., and, E. P. Greenberg. 2005. Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J. Bacteriol. 187:3744.
67. Leriche, V.,, R. Briandet, and, B. Carpentier. 2003. Ecology of mixed biofilms subjected daily to a chlorinated alkaline solution: spatial distribution of bacterial species suggests a protective effect of one species to another. Environ. Microbiol. 5:6471.
68. Leriche, V., and, B. Carpentier. 2000. Limitation of adhesion and growth of Listeria monocytogenes on stainless steel surfaces by Staphylococcus sciuri biofilms. J. Appl. Microbiol. 88:594605.
69. Leriche, V.,, D. Chassaing, and, B. Carpentier. 1999. Behaviour of L. monocytogenes in an artificially made biofilm of a nisin-producing strain of Lactococcus lactis. Int. J. Food Microbiol. 51:169182.
70. Leriche, V.,, P. Sibille, and, B. Carpentier. 2000. Use of an enzyme-linked lectinsorbent assay to monitor the shift in polysaccharide composition in bacterial biofilms. Appl. Environ. Microbiol. 66:18511856.
71. Lewis, K. 2005. Persister cells and the riddle of biofilm survival. Biochemistry (Moscow) 70:267274.
72. Lindsay, D.,, V. S. Brozel,, J. F. Mostert, and, A. von Holy. 2002. Differential efficacy of a chlorine dioxide-containing sanitizer against single species and binary biofilms of a dairy-associated Bacillus cereus and a Pseudomonas fluorescens isolate. J. Appl. Microbiol. 92:352361.
73. Machata, S.,, T. Hain,, M. Rohde, and, T. Chakraborty. 2005. Simultaneous deficiency of both MurA and p60 proteins generates a rough phenotype in Listeria monocytogenes. J. Bacteriol. 187:83858394.
74. Mack, D.,, P. Becker,, I. N. Chatterjee,, S. Dobinsky,, J. K.-M. Knobloch,, G. Peters,, R. Holger, and, M. Herrmann. 2004. Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. Int. J. Med. Microbiol. 294:203212.
75. Martiny, A. C.,, T. M. Jorgensen,, H.-J. Albrechsten,, E. Arvin, and, S. Molin. 2003. Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system. Appl. Environ. Microbiol. 69:68996907.
76. Moltz, A. G., and, S. E. Martin. 2005. Formation of biofilms by Listeria monocytogenes under various growth conditions. J. Food Prot. 68:9297.
77. Monk, I. R.,, G. M. Cook,, B. C. Monk, and, P. J. Bremer. 2004. Morphotypic conversion of Listeria monocytogenes biofilm formation: biological significance of rough colony isolates. Appl. Environ. Microbiol. 70:66866694.
78. Moons, P.,, R. Van Houdt,, A. Aertsen,, K. Vanoirbeek,, Y. Engelborghs, and, C. W. Michiels. 2006. Role of quorum sensing and antimicrobial component production by Serratia plymuthica in formation of biofilms, including mixed biofilms with Escherichia coli. Appl. Environ. Microbiol. 72:72947300.
79. Morgan, R.,, S. Kohn,, S.-H. Hwang,, D. J. Hassett, and, K. Sauer. 2006. BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J. Bacteriol. 188:73357343.
80. Morris, C. E., and, J.-M. Monier. 2003. The ecological significance of biofilm formation by plant-associated bacteria. Annu. Rev. Phytopathol. 41:429453.
81. Morris, C. E.,, J.-M. Monier, and, M.-A. Jacques. 1997. Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl. Environ. Microbiol. 63:15701576.
82. O’Toole, G. A., and, R. Kolter. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30:295304.
83. Piao, Z.,, C. C. Sze,, O. Barysheva,, K. Iida, and, S. Yoshida. 2006. Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila. Appl. Environ. Microbiol. 72:16131622.
84. Pratt, L. A., and, R. Kolter. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30:285293.
85. Pruss, B. M.,, C. Besemann,, A. Denton, and, A. J. Wolfe. 2006. A complex transcription network controls the early stages of biofilm development by Escherichia coli. J. Bacteriol. 188:37313739.
86. Purevdorj, B.,, J. W. Costerton, and, P. Stoodley. 2002. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 68:44574464.
87. Rayner, J.,, R. Veeh, and, J. Flood. 2004. Prevalence of microbial biofilms on selected fresh produce and household surfaces. Int. J. Food Microbiol. 95:2939.
88. Rickard, A. H.,, P. Gilbert,, N. J. High,, P. E. Kolenbrander, and, P. S. Handley. 2003. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 11:9499.
89. Ryu, J. H.,, H. Kim,, J. F. Frank, and, L. R. Beuchat. 2004. Attachment and biofilm formation on stainless steel by Escherichia coli O157:H7 as affected by curli production. Lett. Appl. Microbiol. 39:359362.
90. Sauer, K.,, A. K. Camper,, G. D. Ehrlich,, J. W. Costerton, and, D. G. Davies. 2002. Pseudomonas aeruginosa displays multiple pheno-types during development as a biofilm. J. Bacteriol. 184:11401154.
91. Schooling, S. R., and, T. J. Beveridge. 2006. Membrane vesicles: an overlooked component of matrices of biofilms. J. Bacteriol. 188:59455957.
92. Searcy, K. E.,, A. I. Packman,, E. R. Atwill, and, T. Harter. 2006. Capture and retention of Cryptosporidium parvum oocysts by Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 72:62426247.
93. Sela, S.,, S. Frank,, E. Belausoz, and, R. Pinto. 2006. A mutation in the lux S gene influences Listeria monocytogenes biofilm formation. Appl. Environ. Microbiol. 72:56535658.
94. Seo, K. H., and, J. F. Frank. 1999. Attachment of Escherichia coli O157:H7 to lettuce leaf surface and bacterial viability in response to chlorine treatment as demonstrated using confocal scanning laser microscopy. J. Food Prot. 62:39.
95. Sharma, M., and, S. K. Anand. 2002. Characterization of constitutive microflora of biofilms in dairy processing lines. Food Microbiol. 19:627636.
96. Shirtiff, M. E.,, J. T. Mader, and, A. K. Camper. 2002. Molecular interactions in biofilms. Chem. Biol. 9:859871.
97. Simoes, L. C.,, N. Azedo,, A. Pacheco,, C. W. Keevil, and, M. J. Vieira. 2006. Drinking water biofilm assessment of total and culturable bacteria under different operating conditions. Biofouling 22:9199.
98. Somers, E. B.,, M. E. Johnson, and, A. C. L. Wong. 2001. Biofilm formation and contamination of cheese by nonstarter lactic acid bacteria in the dairy environment. J. Dairy Sci. 84:19261936.
99. Southerland, I. W. 2001. The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol. 9:222227.
100. Spoering, A. L., and, M. S. Gilmore. 2006. Quorum sensing and DNA release in bacterial biofilms. Curr. Opin. Microbiol. 9:133137.
101. Stewart, P. S.,, A. K. Camper,, S. D. Handran,, C.-T. Huang, and, M. Warnecke. 1997. Spatial distribution and coexistence of Klebsiella pneumoniae and Pseudomonas aeruginosa in biofilms. Microb. Ecol. 33:210.
102. Stewart, P. S.,, J. Rayner,, F. Roe, and, W. M. Rees. 2001. Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. J. Appl. Microbiol. 91:525532.
103. Stoodley, P.,, K. Sauer,, D. G. Davies, and, J. W. Costerton. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56:187209.
104. Stoodley, P.,, S. Wilson,, L. Hall-Stoodley,, J. D. Boyle,, H. M. Lappin-Scott, and, J. W. Costerton. 2001. Growth and detachment of cell clusters from mature mixed-species biofilms. Appl. Environ. Microbiol. 67:56085613.
105. Thomas, C. M., and, K. M. Nielsen. 2005. Mechanisms of, and barriers to, horizontal gene transmission between bacteria. Nat. Rev. Microbiol. 3:711721.
106. Thormann, K. M.,, S. Duttler,, R. M. Saville,, M. Hyodo,, S. Shukla,, Y. Hayakawa, and, A. M. Spormann. 2006. Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J. Bacteriol. 188:26812691.
107. Trachoo, N., and, J. F. Frank. 2002. Effectiveness of chemical sanitizers against Campylobacter jejuni- containing biofilms. J. Food Prot. 65:11171121.
108. Trachoo, N.,, J. F. Frank, and, N. J. Stern. 2002. Survival of Campylobacter jejuni in biofilms isolated from chicken houses. J. Food Prot. 65:11101116.
109. Trotonda, M. P.,, A. C. Manna,, A. L. Cheung,, I. Lasa, and, J. R. Penades. 2005. SarA positively controls Bap-dependent biofilm formation in Staphylococcus aureus. J. Bacteriol. 187:57905798.
110. Ulrich, G. A.,, P. H. Cooke, and, E. B. Solomon. 2006. Analyses of the red-dry-rough phenotype of an Escherichia coli O157:H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl. Environ. Microbiol. 72:25642572.
111. Vaerewijck, M. J. M.,, G. Huys,, J. C. Palomino,, J. Swings, and, F. Portaels. 2005. Mycobacteria in drinking water distribution systems: ecology and significance for human health. FEMS Microbiol. Rev. 29:911934.
112. Van Houdt, R.,, A. Aertsen,, A. Jansen,, A. L. Quintana, and, C. W. Michiels. 2004. Biofilm formation and cell-to-cell signaling in Gram-negative bacteria isolated from a food processing environment. J. Appl. Microbiol. 96:177184.
113. Watson, C. L.,, R. J. Owen,, B. Said,, S. Lai,, J. V. Lee,, S. Surman-Lee, and, G. Nichols. 2004. Detection of Helicobacter pylori by PCR but not culture in water and biofilm samples from drinking water distribution systems in England. J. Appl. Microbiol. 97:690698.
114. Whitchurch, C. B.,, T. Tolker-Nielsen,, P. C. Ragas, and, J. S. Mattick. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295:1487.
115. Zhao, T.,, T. C. Podtburg,, P. Zhao,, B. E. Schmidt,, D. A. Baker,, B. Cords, and, M. P. Doyle. 2006. Control of Listeria spp. by competitive-exclusion bacteria in floor drains of a poultry processing plant. Appl. Environ. Microbiol. 72:33143320.
116. Zheng, Z. L., and, P. S. Stewart. 2002. Penetration of rifampin through Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 46:900903.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error