1887

Chapter 14 : Commensal Bacteria, Microbial Ecosystems, and Horizontal Gene Transmission: Adjusting Our Focus for Strategic Breakthroughs against Antibiotic Resistance

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Commensal Bacteria, Microbial Ecosystems, and Horizontal Gene Transmission: Adjusting Our Focus for Strategic Breakthroughs against Antibiotic Resistance, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815479/9781555814052_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555815479/9781555814052_Chap14-2.gif

Abstract:

This chapter describes the molecular mechanisms and major routes in the dissemination and persistence of foreign genes in microbial ecosystems. Emphasis is placed on commensal bacteria with respect to the emergence, circulation, and enrichment of antibiotic resistance (AR) in the natural environment, the food chain, and the animal or human host. For the microbial consortium, AR is nothing more than another trait offering a survival advantage in adverse environments. Therefore, improved understanding of the basic molecular mechanisms and critical control steps involved in horizontal gene transmission (HGT) in microbial ecosystems will shed light on the development of strategies for control of AR dissemination. Increasing evidence from recent ecological analyses indicates that certain bacteria might play more important roles than others in HGT in microbial ecosystems. Probiotics as a business has grown rapidly in the last couple of decades based on the belief that consumption of certain lactic acid bacteria and bifidobacteria is beneficial for the maintenance of a healthy gut microflora. Expanded coverage, particularly the quantitative assessment of the AR gene pools in commensal bacteria, could provide a more precise picture of the AR status in the environmental, food, animal, and human microbial ecosystems, enabling prediction of the forthcoming risks associated with AR in targeted pathogens.

Citation: Wang H. 2009. Commensal Bacteria, Microbial Ecosystems, and Horizontal Gene Transmission: Adjusting Our Focus for Strategic Breakthroughs against Antibiotic Resistance, p 267-281. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch14

Key Concept Ranking

Lactic Acid Bacteria
0.4803409
Human Pathogenic Bacteria
0.42388272
16s rRNA Sequencing
0.41445643
0.4803409
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815479.ch14
1. Aires, J.,, F. Doucet-Populaire, and, M. J. Butel. 2007. Tetracycline resistance mediated by tet (W), tet (M), and tet (O) genes of Bifidobacterium isolates from humans. Appl. Environ. Microbiol. 73:27512754.
2. Ammor, M. S.,, M. Gueimonde,, M. Danielsen,, M. Zagorec,, A. H. van Hoek,, C. G. de Los Reyes-Gavilán,, B. Mayo, and, A. Margolles. 2008. Two different tetracycline resistance mechanisms, plasmid-carried tet (L) and chromosomally located transposon-associated tet (M), coexist in Lactobacillus sakei Rits 9. Appl. Environ. Microbiol. 74:13941401.
3. Andremont, A. 2003. Commensal flora may play key role in spreading antibiotic resistance. ASM News 69:601607.
4. Andrup, L.,, J. Damgaard, and, K. Wassermann. 1993. Mobilization of small plasmids in Bacillus thuringiensis subsp. israelensis is accompanied by specific aggregation. J. Bacteriol. 175:65306536.
5. Benveniste, R., and, J. Davies. 1973. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. USA 70:22762280.
6. Boehme, S.,, G. Werner,, I. Klare,, R. Reissbrodt, and, W. Witte. 2004. Occurrence of antibiotic-resistant enterobacteria in agricultural foodstuffs. Mol. Nutr. Food Res. 48:522531.
7. Breukink, E.,, I. Wiedemann,, C. van Kraaij,, O. P. Kuipers,, H. Sahl, and, B. de Kruijff. 1999. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:23612364.
8. Bryan, E. M.,, T. Bae,, M. Kleerebezem, and, G. M. Dunny. 2000. Improved vectors for nisin-controlled expression in gram-positive bacteria. Plasmid 44:183190.
9. Burmølle, M.,, M. I. Bahl,, L. B. Jensen,, S. J. Sørensen, and, L. H. Hansen. 2008. Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains. Microbiology 154:187195.
10. Ceglowski, P.,, A. Boitsov,, S. Chai, and, J. C. Alonso. 1993. Analysis of the stabilization system of pSM19035-derived plasmid pBT233 in Bacillus subtilis Gene 136:112.
11. Charpentier, E., and, P. Courvalin. 1999. Antibiotic resistance in Listeria spp. Antimicrob. Agents Chemother. 43:21032108.
12. Chee-Sanford J. C.,, R. I. Aminov,, I. J. Krapac,, N. Garrigures-Jeanjean, and, R. I. Mackie. 2001. Occurrence and diversity of tetracycline resistance gene in lagoons and ground-water underlying two swine production facilities. Appl. Environ. Microbiol. 67:2232.
13. Chen, J.,, Z. Yu,, F. C. Michel, Jr.,, T. Wittum, and, M. Morrison. 2007. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Appl. Environ. Microbiol. 73:44074416.
14. Chen, S.,, S. Zhao,, D. G. White,, C. M. Schroeder,, R. Lu,, H. Yang,, P. F. McDermott,, S. Ayers, and, J. Meng. 2004. Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats. Appl. Environ. Microbiol. 70:17.
15. Coleman, D. C.,, H. Pomeroy,, J. K. Estridge,, C. T. Keane,, M. T. Cafferkey,, R. Hone, and, T. J. Foster. 1985. Susceptibility to antimicrobial agents and analysis of plasmids in gentamicin- and methicillin-resistant Staphylococcus aureus from Dublin hospitals. J. Med. Microbiol. 20:157167.
16. Costerton, J. W.,, Z. Lewandowski,, D. E. Caldwell,, D. R. Korber, and, H. M. Lappin-Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49:711745.
17. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton, and, E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295298.
18. Davis, I. J.,, A. P. Roberts,, D. Ready,, H. Richards,, M. Wilson, and, P. Mullany. 2005. Linkage of a novel mercury resistance operon with streptomycin resistance on a conjugative plasmid in Enterococcus faecium. Plasmid 54:2638.
19. DeNap, J. C., and, P. J. Hergenrother. 2005. Bacterial death comes full circle: targeting plasmid replication in drug-resistant bacteria. Org. Biomol. Chem. 3:959966.
20. Denap, J. C.,, J. R. Thomas,, D. J. Musk, and, P. J. Hergenrother. 2004. Combating drug-resistant bacteria: small molecule mimics of plasmid incompatibility as antiplasmid compounds. J. Am. Chem. Soc. 126:15402.
21. Dunny, G. M.,, B. L. Brown, and, D. B. Clewell. 1978. Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc. Natl. Acad. Sci. USA 75:34793483.
22. Duran, G. M., and, D. L. Marshall. 2005. Ready-to-eat shrimp as an international vehicle of antibiotic-resistant bacteria. J. Food Prot. 68:23952401.
23. Eckert, R.,, J. He,, D. K. Yarbrough,, F. Qi,, M. H. Anderson, and, W. Shi. 2006. Targeted killing of Streptococcus mutans by a pheromone-guided “smart” antimicrobial peptide. Antimicrob. Agents Chemother. 50:36513657.
24. Engelberg-Kulka, H.,, B. Sat,, M. Reches,, S. Amitai, and, R. Hazan. 2004. Bacterial programmed cell death systems as targets for antibiotics. Trends Microbiol. 12:6671.
25. Feirtag, J. M.,, J. P. Petzel,, E. Pasalodos,, K. A. Baldwin, and, L. L. McKay. 1991. Thermosensitive plasmid replication, temperature-sensitive host growth, and chromosomal plasmid integration conferred by Lactococcus lactis subsp. cremoris lactose plasmids in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 57:539548.
26. Ghigo, J. M. 2001. Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442445.
27. Girlich, D.,, R. Leclercq,, T. Naas, and, P. Nordmann. 2007. Molecular and biochemical characterization of the chromosome-encoded class A beta-lactamase BCL-1 from Bacillus clausii. Antimicrob. Agents Chemother. 51:40094014.
28. Gueimonde, M.,, S. Salminen, and, E. Isolauri. 2006. Presence of specific antibiotic (tet) resistance genes in infant faecal microbiota. FEMS Immunol. Med. Microbiol. 48:2125.
29. Hanselman, B. A.,, S. A. Kruth,, J. Rousseau,, D. E. Low,, B. M. Willey,, A. McGeer, and, J. S. Weese. 2006. Methicillin-resistant Staphylococcus aureus colonization in veterinary personnel. Emerg. Infect. Dis. 12:19331938.
30. Horng, J. S.,, K. M. Polzin, and, L. L. McKay. 1991. Replication and temperature-sensitive maintenance functions of lactose plasmid pSK11L from Lactococcus lactis subsp. cremoris. J. Bacteriol. 173:75737581.
31. Jacobsen, L.,, A. Wilcks,, K. Hammer,, G. Huys,, D. Gevers, and, S. Andersen. 2007. Horizontal transfer of tet (M) and erm (B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiol. Ecol. 59:158166.
32. Jensen, G. B.,, A. Wilcks,, S. S. Petersen,, J. Damgaad,, J. S. Baum, and, L. Andrup. 1995. The genetic basis of the aggregation system in Bacillus thuringiensis subsp. israelensis is located on the large conjugative plasmid pXO16. J. Bacteriol. 177:29142917.
33. Jensen, R. B., and, K. Gerdes. 1995. Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol. Microbiol. 17:205210.
34. Johnsen, P. J.,, J. I. Østerhus,, H. Sletvold,, M. Sørum,, H. Kruse,, K. Nielsen,, G. S. Simonsen, and, A. Sundsfjord. 2005. Persistence of animal and human glycopeptide-resistant enterococci on two Norwegian poultry farms formerly exposed to avoparcin is associated with a widespread plasmid-mediated van A element within a polyclonal Enterococcus faecium population. Appl. Environ. Microbiol. 71:159168.
35. Koike, S.,, I. G. Krapac,, H. D. Oliver,, A. C. Yannarell,, J. C. Chee-Sanford,, R. I. Aminov, and, R. I. Mackie. 2007. Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Appl. Environ. Microbiol. 73:48134823.
36. Kolenbrander, P. E. 1988. Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Annu. Rev. Microbiol. 42:627656.
37. Kolenbrander, P. E. 2000. Oral microbial communities: biofilms, interactions, and genetic systems. Annu. Rev. Microbiol. 54:413437.
38. Kreth, J.,, J. Merritt,, W. Shi, and, F. Qi. 2005. Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol. Microbiol. 57:392404.
39. Lancaster, H.,, D. Ready,, P. Mullany,, D. Spratt,, R. Bedi, and, M. Wilson. 2003. Prevalence and identification of tetracycline-resistant oral bacteria in children not receiving antibiotic therapy. FEMS Microbiol. Lett. 228:99104.
40. Leisner, J. J.,, G. G. Laursen,, H. Prévost,, D. Drider, and, P. Dalgaard. 2007. Carnobacterium: positive and negative effects in the environment and in foods. FEMS Microbiol. Rev. 31:592613.
41. Levy, S. B.,, G. B. FitzGerald, and, A. B. Macone. 1976. Changes in intestinal flora of farm personnel after introduction of a tetracycline-supplemented feed on a farm. N. Engl. J. Med. 295:583588.
42. Levy, S. B., and, B. Marshall. 2004. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10:S122S129.
43. Li, X., and, H. H. Wang. 2008. Abstr. 108th Gen. Meet. Am. Soc. Microbiol., abstr. P-136, p. 513.
44. Li, Y.-H.,, N. Tang,, M. B. Aspiras,, P. C. Y. Lau,, J. H. Lee,, R. P. Ellen, and, D. G. Cvitkovitch. 2002. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184:26992708.
45. Livermore, D. 2004. Can better prescribing turn the tide of resistance? Nat. Rev. Microbiol. 2:7378.
46. Loeffler, A.,, A. K. Boag,, J. Sung,, J. A. Lindsay,, L. Guardabassi,, A. Dalsgaard,, H. Smith,, K. B. Stevens, and, D. H. Lloyd. 2005. Prevalence of methicillin-resistant Staphylococcus aureus among staff and pets in a small animal referral hospital in the UK. J. Antimicrob. Chemother. 56:692697.
47. Luo, H.,, K. Wan, and, H. H. Wang. 2005. High-frequency conjugation system facilitates biofilm formation and pAMβ1 transmission by Lactococcus lactis. Appl. Environ. Microbiol. 71:29702978.
48. Luo, N.,, S. Pereira,, O. Sahin,, J. Lin,, S. Huang,, L. Michel, and, Q. Zhang. 2005. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc. Natl. Acad. Sci. USA 102:541546.
49. Makarova, K.,, A. Slesarev,, Y. Wolf,, A. Sorokin,, B. Mirkin,, E. Koonin,, A. Pavlov,, N. Pavlova,, V. Karamychev,, N. Polouchine,, V. Shakhova,, I. Grigoriev,, Y. Lou,, D. Rohksar,, S. Lucas,, K. Huang,, D. M. Goodstein,, T. Hawkins,, V. Plengvidhya,, D. Welker,, J. Hughes,, Y. Goh,, A. Benson,, K. Baldwin,, J. H. Lee,, I. Díaz-Muñiz,, B. Dosti,, V. Smeianov,, W. Wechter,, R. Barabote,, G. Lorca,, E. Altermann,, R. Barrangou,, B. Ganesan,, Y. Xie,, H. Rawsthorne,, D. Tamir,, C. Parker,, F. Breidt,, J. Broadbent,, R. Hutkins,, D. O’Sullivan,, J. Steele,, G. Unlu,, M. Saier,, T. Klaenhammer,, P. Richardson,, S. Kozyavkin,, B. Weimer, and, D. Mills. 2006. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA 103:1561115616.
50. Mammeri, H.,, F. Eb,, A. Berkani, and, P. Nordmann. 2008. Molecular characterization of AmpC-producing Escherichia coli clinical isolates recovered in a French hospital. J. Antimicrob. Chemother. 61:498503.
51. Manuzon, M. Y.,, S. E. Hanna,, H. Luo,, Z. Yu,, W. J. Harper, and, H. H. Wang. 2007. Quantitative assessment of the tetracycline resistance gene pool in cheese samples by real-time TaqMan PCR. Appl. Environ. Microbiol. 73:16761677.
52. Marsh, E. J.,, H. Luo, and, H. Wang. 2003. A three-tiered approach to differentiate Listeria monocytogenes biofilm-forming abilities. FEMS Microbiol. Lett. 228:203210.
53. Mater, D. D.,, P. Langella,, G. Corthier, and, M. J. Flores. 2008. A probiotic Lactobacillus strain can acquire vancomycin resistance during digestive transit in mice. J. Mol. Microbiol. Biotechnol. 14:123127.
54. Merritt, J.,, J. Kreth,, W. Shi, and, F. Qi. 2005. LuxS controls bacteriocin production in Streptococcus mutans through a novel regulatory component. Mol. Microbiol. 57:960969.
55. Meziane-Cherif, D.,, D. Decré,, E. A. Høiby,, P. Courvalin, and, B. Périchon. 2008. Genetic and biochemical characterization of CAD-1, a chromosomally encoded new class A penicillinase from Carnobacterium divergens. Antimicrob. Agents Chemother. 52:551556.
56. Molin, S., and, T. Tolker-Nielsen. 2003. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr. Opin. Biotechnol. 14:255261.
57. Moritz, E. M., and, P. J. Hergenrother. 2007. Toxin-antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enter-ococci. Proc. Natl. Acad. Sci. USA 104:311316.
58. Nandi, S.,, J. J. Maurer,, C. Hofacre, and, A. O. Summers. 2004. Gram-positive bacteria are a major reservoir of class 1 antibiotic resistance integrons in poultry litter. Proc. Natl. Acad. Sci. USA 101:71187122.
59. Ouoba, L. I.,, V. Lei, and, L. B. Jensen. 2008. Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Int. J. Food Microbiol. 12:217224.
60. Peak, N.,, C. W. Knapp,, R. K. Yang,, M. M. Hanfelt,, M. S. Smith,, D. S. Aga, and, D. W. Graham. 2007. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies. Environ. Microbiol. 9:143151.
61. Perreten, V.,, F. Schwarz,, L. Cresta,, M. Boeglin,, G. Dasen, and, M. Teuber. 1997. Antibiotic resistance spread in food. Nature 389:801802.
62. Ra, R.,, M. M. Beerthuyzen,, W. M. de Vos,, P. E. Saris, and, O. P. Kuipers. 1999. Effects of gene disruptions in the nisin gene cluster of Lactococcus lactis on nisin production and producer immunity. Microbiology 145:12271233.
63. Rauch, P. J. G., and, W. M. de Vos. 1994. Identification and characterization of genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. J. Bacteriol. 176:21652171.
64. Ready, D.,, R. Bedi,, D. A. Spratt,, P. Mullany, and, M. Wilson. 2003. Prevalence, proportions, and identities of antibiotic-resistant bacteria in the oral microflora of healthy children. Microb. Drug Resist. 9:367372.
65. Reisner, A.,, B. M. Höller,, S. Molin, and, E. L. Zechner. 2006. Synergistic effects in mixed Escherichia coli biofilms: conjugative plasmid transfer drives biofilm expansion. J. Bacteriol. 188:35823588.
66. Reisner, A.,, J. A. Haagensen,, M. A. Schembri,, E. L. Zechner, and, S. Molin. 2003. Development and maturation of Escherichia coli K-12 biofilms. Mol. Microbiol. 48:933946.
67. Reniero, R.,, P. Cocconcell,, V. Bottazzi, and, L. Morelli. 1992. High frequency of conjugation in Lactobacillus mediated by an aggregation-promoting factor. J. Gen. Microbiol. 138:763768.
68. Reviriego, C.,, L. Fernández, and, J. M. Rodríguez. 2007. A food-grade system for production of pediocin PA-1 in nisin-producing and non-nisin-producing Lactococcus lactis strains: application to inhibit Listeria growth in a cheese model system. J. Food Prot. 70:25122517.
69. Rickard, A. H.,, P. Gilbert,, N. J. High,, P. E. Kolenbrander, and, P. S. Handley. 2003. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 11:94100.
70. Roberts, M. 1996. Tetracyline resistance determinants: mechanisms of action, regulation of expression, genetic mobility and distribution. FEMS Microbiol. Rev. 19:124.
71. Rodríguez, E.,, J. Tomillo,, M. Nuñez, and, M. Medina. 1997. Combined effect of bacteriocin-producing lactic acid bacteria and lactoperoxidase system activation on Listeria monocytogenes in refrigerated raw milk. J. Appl. Microbiol. 83:389395.
72. Russell, A. D. 1997. Plasmids and bacterial resistance to biocides. J. Appl. Microbiol. 83:155165.
73. Salyers, A. A.,, A. Gupta, and, Y. Wang. 2004. Human intestinal bacteria as reservoir for antibiotic resistance. Trends Microbiol. 12:412416.
74. Sawant, A. A.,, N. V. Hegde,, B. A. Straley,, S. C. Donaldson,, B. C. Love,, S. J. Knabel, and, B. M. Jayarao. 2007. Antimicrobial-resistant enteric bacteria from dairy cattle. Appl. Environ. Microbiol. 73:156163.
75. Scharek, L.,, J. Guth,, M. Filter, and, M. F. Schmidt. 2007. Impact of the probiotic bacteria Enterococcus faecium NCIMB 10415 (SF68) and Bacillus cereus var. toyoi NCIMB 40112 on the development of serum IgG and faecal IgA of sows and their piglets. Arch. Anim. Nutr. 61:223234.
76. Schwarz, F. V.,, V. Perreten, and, M. Teuber. 2001. Sequence of the 50-kb conjugative multiresistance plasmid pRE25 from Enterococcus faecalis RE25. Plasmid 46:170187.
77. Shoemaker, N. B.,, K. Vlamakis,, K. Hayes. and, A. A. Salyers. 2001. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl. Environ. Microbiol. 67:561568.
78. Siezen, R. J.,, B. Renckens,, I. van Swam,, S. Peters,, R. van Kranenburg,, M. Kleerebezem, and, W. M. de Vos. 2005. Complete sequences of four plasmids of Lactococcus lactis subsp. cremoris SK11 reveal extensive adaptation to the dairy environment. Appl. Environ. Microbiol. 71:83718382.
79. Simjee, S.,, D. G. White,, P. F. McDermott,, D. D. Wagner,, M. J. Zervos,, S. M. Donabedian,, L. L. English,, J. R. Hayes, and, R. D. Walker. 2002. Characterization of Tn1546 in vancomycin-resistant Enterococcus faecium isolated from canine urinary tract infections: evidence of gene exchange between human and animal enterococci. J. Clin. Microbiol. 40:46594665.
80. Smith, M. S.,, R. K. Yang,, C. W. Knapp,, Y. Niu,, N. Peak,, M. M. Hanfelt,, J. C. Galland, and, D. W. Graham. 2004. Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR. Appl. Environ. Microbiol. 70:73727377.
81. Sørum, M.,, P. J. Johnsen,, B. Aasnes,, T. Rosvoll,, H. Kruse,, A. Sundsfjord, and, G. S. Simonsen. 2006. Prevalence, persistence, and molecular characterization of glycopeptide-resistant enterococci in Norwegian poultry and poultry farmers 3 to 8 years after the ban on avoparcin. Appl. Environ. Microbiol. 72:516521.
82. Stein, T.,, S. Heinzmann,, I. Solovieva, and, K. D. Entian. 2003. Function of Lactococcus lactis nisin immunity genes nis I and nis FEG after coordinated expression in the surrogate host Bacillus subtilis. J. Biol. Chem. 278:8994.
83. Stine, O. C.,, J. A. Johnson,, A. Keefer-Norris,, K. L. Perry,, J. Tigno,, S. Qaiyumi,, M. S. Stine, and, J. G. Morris, Jr. 2007. Widespread distribution of tetracycline resistance genes in a confined animal feeding facility. Int. J. Antimicrob. Agents 29:348352.
84. Thompson, C. J., and, G. S. Gray. 1983. Nucleotide sequence of a streptomycete aminoglycoside phosphotransferase gene and its relationship to phosphotransferases encoded by resistance plasmids. Proc. Natl. Acad. Sci. USA 80:51905194.
85. Villedieu, A.,, M. L. Diaz-Torres,, A. P. Roberts,, N. Hunt,, R. McNab,, D. A. Spratt,, M. Wilson, and, P. Mullany. 2004. Genetic basis of erythromycin resistance in oral bacteria. Antimicrob. Agents Chemother. 48:22982301.
86. Wang, H. H.,, M. Manuzon,, M. Lehman,, K. Wan,, H. Luo,, T. E. Wittum,, A. Yousef, and, L. O. Bakaletz. 2006. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. FEMS Microbiol. Lett. 254:226231. (Erratum, 255:328.)
87. Zhang, Q.,, O. Sahin,, P. F. McDermott, and, S. Payot. 2006. Fitness of antimicrobial-resistant Campylobacter and Salmonella. Microbes Infect. 8:19721978.
88. Zhao, C.,, B. Ge,, J. De Villena,, R. Sudler,, E. Yeh,, S. Zhao,, D. G. White,, D. Wagner, and, J. Meng. 2001. Prevalence of Campylobacter spp., Escherichia coli, and Salmonella serovars in retail chicken, turkey, pork, and beef from the Greater Washington, D.C., area. Appl. Environ. Microbiol. 67:54315436.
89. Zielenkiewicz, U., and, P. Ceglowski. 2005. The toxin-antitoxin system of the streptococcal plasmid pSM19035. J. Bacteriol. 187:60946105.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error