Chapter 15 : Antibiotic Resistance and Fitness of Enteric Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Antibiotic Resistance and Fitness of Enteric Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815479/9781555814052_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555815479/9781555814052_Chap15-2.gif


This chapter discusses how antimicrobial resistance impacts bacterial fitness and how bacteria adapt to restore fitness in the absence of antibiotic selection pressure. This topic has been studied for many different bacterial pathogens, but in the chapter the authors have reviewed information only on food-borne bacteria, with a particular emphasis on , , and . Mutation-mediated antibiotic resistance often occurs in genes encoding products that are involved in vital cellular processes (e.g., DNA gyrase and 23S rRNA), and the resistance-conferring mutations often affect the normal physiological functions of the products, leading to reduced growth rates. Bacterial resistance to actinonin is usually mediated by mutations in the gene, encoding methionyl-tRNA formyltransferase, or the gene, encoding an enzyme involved in the production of 10-formyl-H-folate. Gene amplification (increased copy number) is also involved in the evolutionary process of fitness restoration. In order to effectively control the persistence and transmission of antimicrobial resistance in food-borne bacteria, we must have a better understanding of if and how antibiotic resistance affects bacterial adaptation and evolution and, in particular, how antibiotic-resistant bacteria interact with their environments and animal hosts in the absence of selection pressure.

Citation: Zhang Q, Andersson D. 2009. Antibiotic Resistance and Fitness of Enteric Pathogens, p 285-296. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch15

Key Concept Ranking

Mobile Genetic Elements
Cell Wall Biosynthesis
DNA Topoisomerase IV
Pulsed-Field Gel Electrophoresis
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Adam, E.,, M. R. Volkert, and, M. Blot. 1998. Cytochrome c biogenesis is involved in the transposon Tn5-mediated bleomycin resistance and the associated fitness effect in Escherichia coli. Mol. Microbiol. 28:1524.
2. Andersson, D. I. 2003. Persistence of antibiotic resistant bacteria. Curr. Opin. Microbiol. 6:452456.
3. Andersson, D. I. 2006. The biological cost of mutational antibiotic resistance: any practical conclusions? Curr. Opin. Microbiol. 9:461465.
4. Andersson, D. I., and, B. R. Levin. 1999. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2:489493.
5. Angulo, F. J.,, V. N. Nargund, and, T. C. Chiller. 2004. Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance. J. Vet. Med. Ser. B 51:374379.
6. Bagel, S.,, V. Hullen,, B. Wiedemann, and, P. Heisig. 1999. Impact of gyrA and parC mutations on quinolone resistance, doubling time, and supercoiling degree of Escherichia coli. Antimicrob. Agents Chemother. 43:868875.
7. Barnard, F. M., and, A. Maxwell. 2001. Interaction between DNA gyrase and quinolones: effects of alanine mutations at GyrA subunit residues Ser83 and Asp87. Antimicrob. Agents Chemother. 45:19942000.
8. Bjorkman, J., and, D. I. Andersson. 2000. The cost of antibiotic resistance from a bacterial perspective. Drug Resist. Updates 3:237245.
9. Bjorkman, J.,, D. Hughes, and, D. I. Andersson. 1998. Virulence of antibiotic-resistant Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 95:39493953.
10. Bjorkman, J.,, I. Nagaev,, O. G. Berg,, D. Hughes, and, D. I. Andersson. 2000. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287:14791482.
11. Bjorkman, J.,, P. Samuelsson,, D. I. Andersson, and, D. Hughes. 1999. Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium. Mol. Microbiol. 31:5358.
12. Blot, M.,, B. Hauer, and, G. Monnet. 1994. The Tn5 bleomycin resistance gene confers improved survival and growth advantage on Escherichia coli. Mol. Gen. Genet. 242:595601.
13. Blot, M.,, J. Heitman, and, W. Arber. 1993. Tn5-mediated bleomycin resistance in Escherichia coli requires the expression of host genes. Mol. Microbiol. 8:10171024.
14. Blot, M.,, J. Meyer, and, W. Arber. 1991. Bleomycin-resistance gene derived from the transposon Tn5 confers selective advantage to Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 88:91129116.
15. Bouma, J. E., and, R. E. Lenski. 1988. Evolution of a bacteria/plasmid association. Nature 335:351352.
16. Champoux, J. J. 2001. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70:369413.
17. Cui, S.,, B. Ge,, J. Zheng, and, J. Meng. 2005. Prevalence and antimicrobial resistance of Campylobacter spp. and Salmonella serovars in organic chickens from Maryland retail stores. Appl. Environ. Microbiol. 71:41084111.
18. Dahlberg, C., and, L. Chao. 2003. Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. Genetics 165:16411649.
19. Dionisio, F.,, I. C. Conceicao,, A. C. Marques,, L. Fernandes, and, I. Gordo. 2005. The evolution of a conjugative plasmid and its ability to increase bacterial fitness. Biol. Lett. 1:250252.
20. Enne, V. I.,, P. M. Bennett,, D. M. Livermore, and, L. M. Hall. 2004. Enhancement of host fitness by the sul2-coding plasmid p9123 in the absence of selective pressure. J. Antimicrob. Chemother. 53:958963.
21. Enne, V. I.,, A. A. Delsol,, G. R. Davis,, S. L. Hayward,, J. M. Roe, and, P. M. Bennett. 2005. Assessment of the fitness impacts on Escherichia coli of acquisition of antibiotic resistance genes encoded by different types of genetic element. J. Antimicrob. Chemother. 56:544551.
22. Enne, V. I.,, A. A. Delsol,, J. M. Roe, and, P. M. Bennett. 2004. Rifampicin resistance and its fitness cost in Enterococcus faecium. J. Antimicrob. Chemother. 53:203207.
23. Enne, V. I.,, D. M. Livermore,, P. Stephens, and, L. M. Hall. 2001. Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 357:13251328.
24. Gillespie, S. H.,, L. L. Voelker, and, A. Dickens. 2002. Evolutionary barriers to quinolone resistance in Streptococcus pneumoniae. Microb. Drug Resist. 8:7984.
25. Giraud, E.,, A. Brisabois,, J. L. Martel, and, E. Chaslus-Dancla. 1999. Comparative studies of mutations in animal isolates and experimental in vitro- and in vivo-selected mutants of Salmonella spp. suggest a counterselection of highly fluoroquinolone-resistant strains in the field. Antimicrob. Agents Chemother. 43:21312137.
26. Giraud, E.,, A. Cloeckaert,, S. Baucheron,, C. Mouline, and, E. Chaslus-Dancla. 2003. Fitness cost of fluoroquinolone resistance in Salmonella enterica serovar Typhimurium. J. Med. Microbiol. 52:697703.
27. Griggs, D. J.,, M. M. Johnson,, J. A. Frost,, T. Humphrey,, F. Jorgensen, and, L. J. Piddock. 2005. Incidence and mechanism of ciprofloxacin resistance in Campylobacter spp. isolated from commercial poultry flocks in the United Kingdom before, during, and after fluoroquinolone treatment. Antimicrob. Agents Chemother. 49:699707.
28. Gustafsson, I.,, O. Cars, and, D. I. Andersson. 2003. Fitness of antibiotic resistant Staphylococcus epidermidis assessed by competition on the skin of human volunteers. J. Antimicrob. Chemother. 52:258263.
29. Han, J.,, Y.-W. Barton, and, Q. Zhang. 2005. Resistance-conferring gyrA mutations in fluoroquinolone-resistant Campylobacter affect the supercoiling activity of gyrase, p. 92. Abstr. Conf. Res. Workers Anim. Dis. Conference of Research Workers in Animal Disease, St. Louis, MO, 3 to 6 December 2005.
30. Hossain, A.,, M. D. Reisbig, and, N. D. Hanson. 2004. Plasmid-encoded functions compensate for the biological cost of AmpC overexpression in a clinical isolate of Salmonella typhimurium. J. Antimicrob. Chemother. 53:964970.
31. Johanson, U.,, A. Aevarsson,, A. Liljas, and, D. Hughes. 1996. The dynamic structure of EFG studied by fusidic acid resistance and internal revertants. J. Mol. Biol. 258:420432.
32. Kanai, K.,, K. Shibayama,, S. Suzuki,, J. Wachino, and, Y. Arakawa. 2004. Growth competition of macrolide-resistant and -susceptible Helicobacter pylori strains. Microbiol. Immunol. 48:977980.
33. Khachatryan, A. R.,, D. D. Hancock,, T. E. Besser, and, D. R. Call. 2004. Role of calf-adapted Escherichia coli in maintenance of antimicrobial drug resistance in dairy calves. Appl. Environ. Microbiol. 70:752757.
34. Khachatryan, A. R.,, D. D. Hancock,, T. E. Besser, and, D. R. Call. 2006. Antimicrobial drug resistance genes do not convey a secondary fitness advantage to calf-adapted Escherichia coli. Appl. Environ. Microbiol. 72:443448.
35. Komp, L. P.,, L. L. Marcusson,, D. Sandvang,, N. Frimodt-Moller, and, D. Hughes. 2005. Biological cost of single and multiple norfloxacin resistance mutations in Escherichia coli implicated in urinary tract infections. Antimicrob. Agents Chemother. 49:23432351.
36. Kugelberg, E.,, S. Lofmark,, B. Wretlind, and, D. I. Andersson. 2005. Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 55:2230.
37. Kumagai, T.,, T. Nakano,, M. Maruyama,, H. Mochizuki, and, M. Sugiyama. 1999. Characterization of the bleomycin resistance determinant encoded on the transposon Tn5. FEBS Lett. 442:3438.
38. Lee, S. W., and, G. Edlin. 1985. Expression of tetracycline resistance in pBR322 derivatives reduces the reproductive fitness of plasmid-containing Escherichia coli. Gene 39:173180.
39. Lenski, R. E.,, S. C. Simpson, and, T. T. Nguyen. 1994. Genetic analysis of a plasmid-encoded, host genotype-specific enhancement of bacterial fitness. J. Bacteriol. 176:31403147.
40. Levin, B. R.,, V. Perrot, and, N. Walker. 2000. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 154:985997.
41. Levy, S. B. 1997. Antibiotic resistance: an ecological imbalance. Ciba Found. Symp. 207:19.
42. Levy, S. B., and, B. Marshall. 2004. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10:S122S129.
43. Luangtongkum, T.,, T. Y. Morishita,, A. J. Ison,, S. Huang,, P. F. McDermott, and, Q. Zhang. 2006. Effect of conventional and organic production practices on the prevalence and antimicrobial resistance of Campylobacter spp. in poultry. Appl. Environ. Microbiol. 72:36003607.
44. Luo, N.,, S. Pereira,, O. Sahin,, J. Lin,, S. Huang,, L. Michel, and, Q. Zhang. 2005. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc. Natl. Acad. Sci. USA 102:541546.
45. Luo, N.,, O. Sahin,, J. Lin,, L. O. Michel, and, Q. Zhang. 2003. In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob. Agents Chemother. 47:390394.
46. MacKenzie, A. A.,, D. G. Allard,, E. Perez, and, S. Hathaway. 2004. Food systems and the changing patterns of foodborne zoonoses. Rev. Sci. Tech. 23:677684.
47. Macvanin, M.,, J. Bjorkman,, S. Eriksson,, M. Rhen,, D. I. Andersson, and, D. Hughes. 2003. Fusidic acid-resistant mutants of Salmonella enterica serovar Typhimurium with low fitness in vivo are defective in RpoS induction. Antimicrob. Agents Chemother. 47:37433749.
48. Macvanin, M.,, U. Johanson,, M. Ehrenberg, and, D. Hughes. 2000. Fusidic acid-resistant EFG perturbs the accumulation of ppGpp. Mol. Microbiol. 37:98107.
49. Maisnier-Patin, S.,, O. G. Berg,, L. Liljas, and, D. I. Andersson. 2002. Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol. Microbiol. 46:355366.
50. Marciano, D. C.,, O. Y. Karkouti, and, T. Palzkill. 2007. A fitness cost associated with the antibiotic resistance enzyme SME-1 β-lactamase. Genetics 176:23812392.
51. McDermott, P. F.,, S. M. Bodeis,, L. L. English,, D. G. White,, R. D. Walker,, S. Zhao,, S. Simjee, and, D. D. Wagner. 2002. Ciprofloxacin resistance in Campylobacter jejuni evolves rapidly in chickens treated with fluoroquinolones. J. Infect. Dis. 185:837840.
52. Mead, P. S.,, L. Slutsker,, V. Dietz,, L. F. McCaig,, J. S. Bresee,, C. Shapiro,, P. M. Griffin, and, R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5:607625.
53. Menzel, R., and, M. Gellert. 1983. Regulation of the genes for E. coli DNA gyrase: homeostatic control of DNA supercoiling. Cell 34:105113.
54. Menzel, R., and, M. Gellert. 1987. Modulation of transcription by DNA supercoiling: a deletion analysis of the Escherichia coli gyrA and gyrB promoters. Proc. Natl. Acad. Sci. USA 84:41854189.
55. Morosini, M. I.,, J. A. Ayala,, F. Baquero,, J. L. Martinez, and, J. Blazquez. 2000. Biological cost of AmpC production for Salmonella enterica serotype Typhimurium. Antimicrob. Agents Chemother. 44:31373143.
56. Nagaev, I.,, J. Bjorkman,, D. I. Andersson, and, D. Hughes. 2001. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol. Microbiol. 40:433439.
57. Nguyen, T. N.,, Q. G. Phan,, L. P. Duong,, K. P. Bertrand, and, R. E. Lenski. 1989. Effects of carriage and expression of the Tn10 tetracycline-resistance operon on the fitness of Escherichia coli K12. Mol. Biol. Evol. 6:213225.
58. Nilsson, A. I.,, A. Zorzet,, A. Kanth,, S. Dahlstrom,, O. G. Berg, and, D. I. Andersson. 2006. Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. Proc. Natl. Acad. Sci. USA 103:69766981.
59. Normark, B. H., and, S. Normark. 2002. Evolution and spread of antibiotic resistance. J. Intern. Med. 252:91106.
60. Oh, T. J., and, I. G. Kim. 1999. The expression of Escherichia coli SOS genes recA and uvrA is inducible by polyamines. Biochem. Biophys. Res. Commun. 264:584589.
61. Paulander, W.,, S. Maisnier-Patin, and, D. I. Andersson. 2007. Multiple mechanisms to ameliorate the fitness burden of mupirocin resistance in Salmonella typhimurium. Mol. Microbiol. 64:10381048.
62. Payot, S.,, J. M. Bolla,, D. Corcoran,, S. Fanning,, F. Megraud, and, Q. Zhang. 2006. Mechanisms of fluoroquinolone and macrolide resistance in Campylobacter spp. Microbes Infect. 8:19671971.
63. Petersen, L., and, A. Wedderkopp. 2001. Evidence that certain clones of Campylobacter jejuni persist during successive broiler flock rotations. Appl. Environ. Microbiol. 67:27392745.
64. Price, L. B.,, E. Johnson,, R. Vailes, and, E. Silbergeld. 2005. Fluoroquinolone-resistant Campylobacter isolates from conventional and antibiotic-free chicken products. Environ. Health Perspect. 113:557560.
65. Price, L. B.,, L. G. Lackey,, R. Vailes, and, E. Silbergeld. 2007. The persistence of fluoroquinolone-resistant Campylobacter in poultry production. Environ. Health Perspect. 115:10351039.
66. Rautelin, H., and, M. L. Hanninen. 2000. Campylobacters: the most common bacterial enteropathogens in the Nordic countries. Ann. Med. 32:440445.
67. Ray, K. A.,, L. D. Warnick,, R. M. Mitchell,, J. B. Kaneene,, P. L. Ruegg,, S. J. Wells,, C. P. Fossler,, L. W. Halbert, and, K. May. 2006. Antimicrobial susceptibility of Salmonella from organic and conventional dairy farms. J. Dairy Sci. 89:20382050.
68. Reynolds, M. G. 2000. Compensatory evolution in rifampin-resistant Escherichia coli. Genetics 156:14711481.
69. Sander, P.,, B. Springer,, T. Prammananan,, A. Sturmfels,, M. Kappler,, M. Pletschette, and, E. C. Bottger. 2002. Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob. Agents Chemother. 46:12041211.
70. Sato, K.,, P. C. Bartlett,, J. B. Kaneene, and, F. P. Downes. 2004. Comparison of prevalence and antimicrobial susceptibilities of Campylobacter spp. isolates from organic and conventional dairy herds in Wisconsin. Appl. Environ. Microbiol. 70:14421447.
71. Schrag, S. J., and, V. Perrot. 1996. Reducing antibiotic resistance. Nature 381:120121.
72. Schrag, S. J.,, V. Perrot, and, B. R. Levin. 1997. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. Biol. Sci. 264:12871291.
73. Smith, H. W., and, M. A. Lovell. 1981. Escherichia coli resistant to tetracyclines and to other antibiotics in the faeces of U.K. chickens and pigs in 1980. J. Hyg. 87:477483.
74. Steck, T. R.,, R. J. Franco,, J. Y. Wang, and, K. Drlica. 1993. Topoisomerase mutations affect the relative abundance of many Escherichia coli proteins. Mol. Microbiol. 10:473481.
75. Teuber, M. 1999. Spread of antibiotic resistance with food-borne pathogens. Cell. Mol. Life Sci. 56:755763.
76. Urios, A.,, G. Herrera,, V. Aleixandre, and, M. Blanco. 1990. Expression of the recA gene is reduced in Escherichia coli topoisomerase I mutants. Mutat. Res. 243:267272.
77. van den Bogaard, A. E., and, E. E. Stobberingh. 1999. Antibiotic usage in animals: impact on bacterial resistance and public health. Drugs 58:589607.
78. Wang, H. H.,, M. Manuzon,, M. Lehman,, K. Wan,, H. Luo,, T. E. Wittum,, A. Yousef, and, L. O. Bakaletz. 2006. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. FEMS Microbiol. Lett. 254:226231.
79. Wegener, H. C. 2003. Antibiotics in animal feed and their role in resistance development. Curr. Opin. Microbiol. 6:439445.
80. Wegener, H. C. 2003. Ending the use of antimicrobial growth promoters is making a difference. ASM News 69:443448.
81. Wegener, H. C.,, F. M. Aarestrup,, P. Gerner-Smidt, and, F. Bager. 1999. Transfer of antibiotic resistant bacteria from animals to man. Acta Vet. Scand. Suppl. 92:5157.
82. Yates, C. M.,, D. J. Shaw,, A. J. Roe,, M. E. Woolhouse, and, S. G. Amyes. 2006. Enhancement of bacterial competitive fitness by apramycin resistance plasmids from nonpathogenic Escherichia coli. Biol. Lett. 2:463465.
83. Zhang, Q.,, J. Lin, and, S. Pereira. 2003. Fluoroquinolone-resistant Campylobacter in animal reservoirs: dynamics of development, resistance mechanisms and ecological fitness. Anim. Health Res. Rev. 4:6371.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error