Chapter 19 : Toll-Like Receptors: Novel Molecular Targets for Antiviral Immunotherapy

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Toll-Like Receptors: Novel Molecular Targets for Antiviral Immunotherapy, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815493/9781555814397_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555815493/9781555814397_Chap19-2.gif


This chapter reviews the role of toll-like receptors (TLRs) in innate antiviral responses and in coordinating the antiviral adaptive immune system, and discusses the potential for TLRs as novel molecular targets for antiviral immunomodulatory therapy. A mutation in the Toll gene in that results in defective protein was associated with reduced survival after fungal infection. The chapter discusses TLR recognition of pathogen-associated molecular patterns, TLR signaling pathway, biological outcomes of TLR activation, and TLRs and the pathogenesis of selected viral pathogens. The potential role for TLR-7 and TLR-8 in HSV pathogenesis is highlighted by ongoing research efforts to control herpes simplex virus (HSV) infections with the use of small-molecule TLR-7 and TLR-8 agonists. Many viruses, however, have evolved to develop strategies that block the effector mechanisms induced through TLR signaling pathways. Coronavirus, a contagious viral pathogen that causes the highly fatal severe acute respiratory syndrome (SARS), has an attenuated ability to induce type I interferons (IFNs), which are essential for the efficient control of the infection, because it has developed a TLR evasion mechanism characterized by failure of IRF-3 activation. The chapter describes TLRs as targets for immunomodulation and antiviral therapies. The successful clinical development of imiquimod, the prototype TLR immune response-modifying drug, provides a solid example of the promise and remarkable potential that TLR modulators have in bringing novel antiviral therapeutic strategies in the clinical setting.

Citation: Razonable R, Eid A, Henault M. 2009. Toll-Like Receptors: Novel Molecular Targets for Antiviral Immunotherapy, p 333-346. In LaFemina, Ph. D. R (ed), Antiviral Research. ASM Press, Washington, DC. doi: 10.1128/9781555815493.ch19

Key Concept Ranking

Herpes simplex virus 1
Severe Acute Respiratory Syndrome
West nile virus
Hepatitis C virus
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

TLR signaling pathway. Cell surface-associated TLRs (TLR-1, TLR-2, TLR-4, TLR-5, and TLR-6) recognize lipids and proteins derived from viruses, while endosome-associated TLR-3, TLR-7, TLR-8, and TLR-9 recognize viral nucleic acid structures. Examples of viruses known to signal through these receptors are shown. Upon ligation of these microbial structures, an intracellular signaling cascade is activated that eventually leads to the nuclear translocation of transcription factors such as NF-KB and IRF-3. Abbreviations: TIRAP, TIR-domain-containing adapter protein; TRAF6, tumor necrosis factor-α receptor-associated factor 6; TRAM, TRIF-related adapter molecule; TRIF, TIR-domain-containing adapter protein inducing IFN-β.

Citation: Razonable R, Eid A, Henault M. 2009. Toll-Like Receptors: Novel Molecular Targets for Antiviral Immunotherapy, p 333-346. In LaFemina, Ph. D. R (ed), Antiviral Research. ASM Press, Washington, DC. doi: 10.1128/9781555815493.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Chemical structures of selected TLR-7 and TLR-8 agonists.

Citation: Razonable R, Eid A, Henault M. 2009. Toll-Like Receptors: Novel Molecular Targets for Antiviral Immunotherapy, p 333-346. In LaFemina, Ph. D. R (ed), Antiviral Research. ASM Press, Washington, DC. doi: 10.1128/9781555815493.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Akira, S., and, H. Hemmi. 2003. Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett. 85:8595.
2. Alexopoulou, L.,, A. C. Holt,, R. Medzhitov, and, R. A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732738.
3. Alter, G.,, T. J. Suscovich,, N. Teigen,, A. Meier,, H. Streeck,, C. Brander, and, M. Altfeld. 2007. Single-stranded RNA derived from HIV-1 serves as a potent activator of NK cells. J. Immunol. 178:76587666.
4. Anderson, K. V.,, L. Bokla, and, C. Nusslein-Volhard. 1985. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 42:791798.
5. Anderson, K. V.,, G. Jurgens, and, C. Nusslein-Volhard. 1985. Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42:779789.
6. Aravalli, R. N.,, S. Hu, and, J. R. Lokensgard. 2007. Toll-like receptor 2 signaling is a mediator of apoptosis in herpes simplex virus-infected microglia. J. Neuroinflammation 4:11.
7. Aravalli, R. N.,, S. Hu,, T. N. Rowen,, J. M. Palmquist, and, J. R. Lokensgard. 2005. Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex. J. Immunol. 175:41894193.
8. Barton, G. M. 2007. Viral recognition by Toll-like receptors. Semin. Immunol. 19:3340.
9. Becker, Y. 2005. CpG ODNs treatments of HIV-1 infected patients may cause the decline of transmission in high risk populations—a review, hypothesis and implications. Virus Genes 30:251266.
10. Beignon, A. S.,, K. McKenna,, M. Skoberne,, O. Manches,, I. DaSilva,, D. G. Kavanagh,, M. Larsson,, R. J. Gorelick,, J. D. Lifson, and, N. Bhardwaj. 2005. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J. Clin. Investig. 115:32653275.
11. Bernstein, D. I.,, C. J. Harrison,, M. A. Tomai, and, R. L. Miller. 2001. Daily or weekly therapy with resiquimod (R-848) reduces genital recurrences in herpes simplex virus-infected guinea pigs during and after treatment. J. Infect. Dis. 183:844849.
12. Bieback, K.,, E. Lien,, I. M. Klagge,, E. Avota,, J. Schneider-Schau-lies,, W. P. Duprex,, H. Wagner,, C. J. Kirschning,, V. Ter Meulen, and, S. Schneider-Schaulies. 2002. Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling. J. Virol. 76:87298736.
13. Bochud, P. Y.,, M. Hersberger,, P. Taffe,, M. Bochud,, C. M. Stein,, S. D. Rodrigues,, T. Calandra,, P. Francioli,, A. Telenti,, R. F. Speck, and, A. Aderem. 2007. Polymorphisms in Toll-like receptor 9 influence the clinical course of HIV-1 infection. AIDS 21:441446.
14. Boehme, K. W.,, M. Guerrero, and, T. Compton. 2006. Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J. Immunol. 177:70947102.
15. Bong, A. B.,, B. Bonnekoh,, I. Franke,, M. P. Schon,, J. Ulrich, and, H. Gollnick. 2002. Imiquimod, a topical immune response modifier, in the treatment of cutaneous metastases of malignant melanoma. Dermatology 205:135138.
16. Bowie, A. G., and, I. R. Haga. 2005. The role of Toll-like receptors in the host response to viruses. Mol. Immunol. 42:859867.
17. Cervantes-Barragan, L.,, R. Zust,, F. Weber,, M. Spiegel,, K. S. Lang,, S. Akira,, V. Thiel, and, B. Ludewig. 2007. Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I inter-feron. Blood 109:11311137.
18. Chang, S.,, A. Dolganiuc, and, G. Szabo. 2007. Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins. J. Leukoc. Biol. 82:479487.
19. Chang, W. W.,, I. J. Su,, M. D. Lai,, W. T. Chang,, W. Huang, and, H. Y. Lei. 2005. Toll-like receptor 4 plays an anti-HBV role in a murine model of acute hepatitis B virus expression. World J. Gastroenterol. 11:66316637.
20. Cluff, C. W.,, J. R. Baldridge,, A. G. Stover,, J. T. Evans,, D. A. Johnson,, M. J. Lacy,, V. G. Clawson,, V. M. Yorgensen,, C. L. Johnson,, M. T. Livesay,, R. M. Hershberg, and, D. H. Persing. 2005. Synthetic Toll-like receptor 4 agonists stimulate innate resistance to infectious challenge. Infect. Immun. 73:30443052.
21. Colonna, M. 2007. TLR pathways and IFN-regulatory factors: to each its own. Eur. J. Immunol. 37:306309.
22. Compton, T.,, E. A. Kurt-Jones,, K. W. Boehme,, J. Belko,, E. Latz,, D. T. Golenbock, and, R. W. Finberg. 2003. Human cytomegalo-virus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol. 77:45884596.
23. Cooper, A.,, G. Tal,, O. Lider, and, Y. Shaul. 2005. Cytokine induction by the hepatitis B virus capsid in macrophages is facilitated by membrane heparan sulfate and involves TLR2. J. Immunol. 175:31653176.
24. Cooper, C. L.,, H. L. Davis,, M. L. Morris,, S. M. Efler,, M. A. Adhami,, A. M. Krieg,, D. W. Cameron, and, J. Heathcote. 2004. CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleo-tide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind phase I/II study. J. Clin. Immunol. 24:693701.
25. de Jong, S.,, G. Chikh,, L. Sekirov,, S. Raney,, S. Semple,, S. Klimuk,, N. Yuan,, M. Hope,, P. Cullis, and, Y. Tam. 2007. Encapsulation in liposomal nanoparticles enhances the immunostimulatory, adjuvant and anti-tumor activity of subcutaneously administered CpG ODN. Cancer Immunol. Immunother. 56:12511264.
26. Delale, T.,, A. Paquin,, C. Asselin-Paturel,, M. Dalod,, G. Brizard,, E. E. Bates,, P. Kastner,, S. Chan,, S. Akira,, A. Vicari,, C. A. Biron,, G. Trinchieri, and, F. Briere. 2005. MyD88-dependent and -independent murine cytomegalovirus sensing for IFN-alpha release and initiation of immune responses in vivo. J. Immunol. 175:67236732.
27. Devaraj, S. G.,, N. Wang,, Z. Chen,, M. Tseng,, N. Barretto,, R. Lin,, C. J. Peters,, C. T. Tseng,, S. C. Baker, and, K. Li. 2007. Regulation of IRF-3 dependent innate immunity by the papain-like protease of the severe acute respiratory syndrome coronavirus. J. Biol. Chem. 282:3220832221.
28. Diebold, S. S.,, T. Kaisho,, H. Hemmi,, S. Akira, and, C. Reis e Sousa. 2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:15291531.
29. Dolganiuc, A.,, S. Oak,, K. Kodys,, D. T. Golenbock,, R. W. Finberg,, E. Kurt-Jones, and, G. Szabo. 2004. Hepatitis C core and non-structural 3 proteins trigger TLR2-mediated pathways and inflammatory activation. Gastroenterology 127:15131524.
30. Duesberg, U.,, A. von dem Bussche,, C. Kirschning,, K. Miyake,, T. Sauerbruch, and, U. Spengler. 2002. Cell activation by synthetic lipopeptides of the hepatitis C virus (HCV)-core protein is mediated by toll like receptors (TLRs) 2 and 4. Immunol. Lett. 84:8995.
31. Edelmann, K. H.,, S. Richardson-Burns,, L. Alexopoulou,, K. L. Tyler,, R. A. Flavell, and, M. B. Oldstone. 2004. Does Toll-like receptor 3 play a biological role in virus infections? Virology 322:231238.
32. Eid, A. J.,, R. A. Brown,, C. V. Paya, and, R. R. Razonable. 2007. Association between toll-like receptor polymorphisms and the outcome of liver transplantation for chronic hepatitis C virus. Transplantation 84:511516.
33. Eid, A. J.,, R. A. Brown, and, R. R. Razonable. 2006. Toll-like receptor-2 Arg753Gln polymorphism and herpes virus infections in transplantation. Transplantation 82:13831385.
34. Ferreon, J. C.,, A. C. Ferreon,, K. Li, and, S. M. Lemon. 2005. Molecular determinants of TRIF proteolysis mediated by the hepatitis C virus NS3/4A protease. J. Biol. Chem. 280:2048320492.
35. Finberg, R. W.,, J. P. Wang, and, E. A. Kurt-Jones. 2007. Toll like receptors and viruses. Rev. Med. Virol. 17:3543.
36. Gaudreault, E.,, S. Fiola,, M. Olivier, and, J. Gosselin. 2007. Epstein-Barr virus induces MCP-1 secretion by human monocytes via TLR2. J. Virol. 81:80168024.
37. Gilson, R. J.,, J. L. Shupack,, A. E. Friedman-Kien,, M. A. Conant,, J. N. Weber,, A. T. Nayagam,, R. V. Swann,, D. C. Pietig,, M. H. Smith,, M. L. Owens, et al. 1999. A randomized, controlled, safety study using imiquimod for the topical treatment of anogenital warts in HIV-infected patients. AIDS 13:23972404.
38. Guillot, L.,, R. Le Goffic,, S. Bloch,, N. Escriou,, S. Akira,, M. Chignard, and, M. Si-Tahar. 2005. Involvement of Toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J. Biol. Chem. 280:55715580.
39. Hayashi, F.,, K. D. Smith,, A. Ozinsky,, T. R. Hawn,, E. C. Yi,, D. R. Goodlett,, J. K. Eng,, S. Akira,, D. M. Underhill, and, A. Aderem. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:10991103.
40. Haynes, L. M.,, D. D. Moore,, E. A. Kurt-Jones,, R. W. Finberg,, L. J. Anderson, and, R. A. Tripp. 2001. Involvement of Toll-like receptor 4 in innate immunity to respiratory syncytial virus. J. Virol. 75:1073010737.
41. Heil, F.,, H. Hemmi,, H. Hochrein,, F. Ampenberger,, C. Kirschning,, S. Akira,, G. Lipford,, H. Wagner, and, S. Bauer. 2004. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303:15261529.
42. Hemmi, H.,, O. Takeuchi,, T. Kawai,, T. Kaisho,, S. Sato,, H. Sanjo,, M. Matsumoto,, K. Hoshino,, H. Wagner,, K. Takeda, and, S. Akira. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740745.
43. Hochrein, H.,, B. Schlatter,, M. O’Keeffe,, C. Wagner,, F. Schmitz,, M. Schiemann,, S. Bauer,, M. Suter, and, H. Wagner. 2004. Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proc. Natl. Acad. Sci. USA 101:1141611421.
44. Horsmans, Y.,, T. Berg,, J. P. Desager,, T. Mueller,, E. Schott,, S. P. Fletcher,, K. R. Steffy,, L. A. Bauman,, B. M. Kerr, and, D. R. Aver-ett. 2005. Isatoribine, an agonist of TLR7, reduces plasma virus concentration in chronic hepatitis C infection. Hepatology 42:724731.
45. Isogawa, M.,, M. D. Robek,, Y. Furuichi, and, F. V. Chisari. 2005. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J. Virol. 79:72697272.
46. Kaisho, T., and, S. Akira. 2006. Toll-like receptor function and signaling. J. Allergy Clin. Immunol. 117:979987, 988.
47. Kawai, T., and, S. Akira. 2007. Antiviral signaling through pattern recognition receptors. J. Biochem. (Tokyo) 141:137145.
48. Kawai, T., and, S. Akira. 2006. Innate immune recognition of viral infection. Nat. Immunol. 7:131137.
49. Kijpittayarit, S.,, A. J. Eid,, R. A. Brown,, C. V. Paya, and, R. R. Razonable. 2007. Relationship between Toll-like receptor 2 polymorphism and cytomegalovirus disease after liver transplantation. Clin. Infect. Dis. 44:13151320.
50. Krug, A.,, A. R. French,, W. Barchet,, J. A. Fischer,, A. Dzionek,, J. T. Pingel,, M. M. Orihuela,, S. Akira,, W. M. Yokoyama, and, M. Colonna. 2004. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21:107119.
51. Krug, A.,, G. D. Luker,, W. Barchet,, D. A. Leib,, S. Akira, and, M. Colonna. 2004. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 103:14331437.
52. Kurt-Jones, E. A.,, J. Belko,, C. Yu,, P. E. Newburger,, J. Wang,, M. Chan,, D. M. Knipe, and, R. W. Finberg. 2005. The role of toll-like receptors in herpes simplex infection in neonates. J. Infect. Dis. 191:746748.
53. Kurt-Jones, E. A.,, M. Chan,, S. Zhou,, J. Wang,, G. Reed,, R. Bronson,, M. M. Arnold,, D. M. Knipe, and, R. W. Finberg. 2004. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc. Natl. Acad. Sci. USA 101:13151320.
54. Kurt-Jones, E. A.,, L. Popova,, L. Kwinn,, L. M. Haynes,, L. P. Jones,, R. A. Tripp,, E. E. Walsh,, M. W. Freeman,, D. T. Golenbock,, L. J. Anderson, and, R. W. Finberg. 2000. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1:398401.
55. Lee, J.,, C. C. Wu,, K. J. Lee,, T. H. Chuang,, K. Katakura,, Y. T. Liu,, M. Chan,, R. Tawatao,, M. Chung,, C. Shen,, H. B. Cottam,, M. M. Lai,, E. Raz, and, D. A. Carson. 2006. Activation of anti-hepatitis C virus responses via Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 103:18281833.
56. Le Goffic, R.,, V. Balloy,, M. Lagranderie,, L. Alexopoulou,, N. Escriou,, R. Flavell,, M. Chignard, and, M. Si-Tahar. 2006. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2:e53.
57. Le Goffic, R.,, J. Pothlichet,, D. Vitour,, T. Fujita,, E. Meurs,, M. Chignard, and, M. Si-Tahar. 2007. Cutting edge: influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J. Immunol. 178:33683372.
58. Lemaitre, B.,, E. Nicolas,, L. Michaut,, J. M. Reichhart, and, J. A. Hoffmann. 1996. The dorsoventral regulatory gene cassette spatzle/ Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973983.
59. Li, K.,, E. Foy,, J. C. Ferreon,, M. Nakamura,, A. C. Ferreon,, M. Ikeda,, S. C. Ray,, M. Gale, Jr., and, S. M. Lemon. 2005. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl. Acad. Sci. USA 102:29922997.
60. Lien, E.,, T. J. Sellati,, A. Yoshimura,, T. H. Flo,, G. Rawadi,, R. W. Finberg,, J. D. Carroll,, T. Espevik,, R. R. Ingalls,, J. D. Radolf, and, D. T. Golenbock. 1999. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 274:3341933425.
61. Lund, J. M.,, L. Alexopoulou,, A. Sato,, M. Karow,, N. C. Adams,, N. W. Gale,, A. Iwasaki, and, R. A. Flavell. 2004. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 101:55985603.
62. Ma, R.,, J. L. Du,, J. Huang, and, C. Y. Wu. 2007. Additive effects of CpG ODN and R-848 as adjuvants on augmenting immune responses to HBsAg vaccination. Biochem. Biophys. Res. Commun. 361:537542.
63. Mark, K. E.,, L. Corey,, T. C. Meng,, A. S. Magaret,, M. L. Huang,, S. Selke,, H. B. Slade,, S. K. Tyring,, T. Warren,, S. L. Sacks,, P. Leone,, V. A. Bergland, and, A. Wald. 2007. Topical resiquimod 0.01% gel decreases herpes simplex virus type 2 genital shedding: a randomized, controlled trial. J. Infect. Dis. 195:13241331.
64. Marshall-Clarke, S.,, L. Tasker,, O. Buchatska,, J. Downes,, J. Pennock,, S. Wharton,, P. Borrow, and, D. Z. Wiseman. 2006. Influenza H2 haemagglutinin activates B cells via a MyD88-dependent pathway. Eur. J. Immunol. 36:95106.
65. Matsumoto, M.,, K. Funami,, H. Oshiumi, and, T. Seya. 2004. Toll-like receptor 3: a link between Toll-like receptor, interferon and viruses. Microbiol. Immunol. 48:147154.
66. Medzhitov, R.,, P. Preston-Hurlburt, and, C. A. Janeway, Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394397.
67. Meier, A.,, G. Alter,, N. Frahm,, H. Sidhu,, B. Li,, A. Bagchi,, N. Teigen,, H. Streeck,, H. J. Stellbrink,, J. Hellman,, J. van Lunzen, and, M. Altfeld. 2007. MyD88-dependent immune activation mediated by human immunodeficiency virus type 1-encoded Toll-like receptor ligands. J. Virol. 81:81808191.
68. Naka, K.,, H. Dansako,, N. Kobayashi,, M. Ikeda, and, N. Kato. 2006. Hepatitis C virus NS5B delays cell cycle progression by inducing interferon-beta via Toll-like receptor 3 signaling pathway without replicating viral genomes. Virology 346:348362.
69. O’Neill, L. A.,, K. A. Fitzgerald, and, A. G. Bowie. 2003. The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol. 24:286290.
70. Oxenius, A.,, M. M. Martinic,, H. Hengartner, and, P. Klenerman. 1999. CpG-containing oligonucleotides are efficient adjuvants for induction of protective antiviral immune responses with T-cell peptide vaccines. J. Virol. 73:41204126.
71. Ozinsky, A.,, D. M. Underhill,, J. D. Fontenot,, A. M. Hajjar,, K. D. Smith,, C. B. Wilson,, L. Schroeder, and, A. Aderem. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. USA 97:1376613771.
72. Perry, C. M., and, H. M. Lamb. 1999. Topical imiquimod: a review of its use in genital warts. Drugs 58:375390.
73. Picard, C.,, A. Puel,, M. Bonnet,, C. L. Ku,, J. Bustamante,, K. Yang,, C. Soudais,, S. Dupuis,, J. Feinberg,, C. Fieschi,, C. Elbim,, R. Hitchcock,, D. Lammas,, G. Davies,, A. Al-Ghonaium,, H. Al-Rayes,, S. Al-Jumaah,, S. Al-Hajjar,, I. Z. Al-Mohsen,, H. H. Frayha,, R. Rucker,, T. R. Hawn,, A. Aderem,, H. Tufenkeji,, S. Haraguchi,, N. K. Day,, R. A. Good,, M. A. Gougerot-Pocidalo,, A. Ozinsky, and, J. L. Casanova. 2003. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299:20762079.
74. Pockros, P. J.,, D. Guyader,, H. Patton,, M. J. Tong,, T. Wright,, J. G. McHutchison, and, T. C. Meng. 2007. Oral resiquimod in chronic HCV infection: safety and efficacy in 2 placebo-controlled, double-blind phase II studies. J. Hepatol. 47:174182.
75. Poltorak, A.,, X. He,, I. Smirnova,, M. Y. Liu,, C. Van Huffel,, X. Du,, D. Birdwell,, E. Alejos,, M. Silva,, C. Galanos,, M. Freudenberg,, P. Ricciardi-Castagnoli,, B. Layton, and, B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:20852088.
76. Puthothu, B.,, J. Forster,, A. Heinzmann, and, M. Krueger. 2006. TLR-4 and CD14 polymorphisms in respiratory syncytial virus associated disease. Dis. Markers 22:303308.
77. Qureshi, S. T.,, L. Lariviere,, G. Leveque,, S. Clermont,, K. J. Moore,, P. Gros, and, D. Malo. 1999. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189:615625.
78. Razonable, R. R.,, M. Henault,, L. N. Lee,, C. Laethem,, P. A. Johnston,, H. L. Watson, and, C. V. Paya. 2005. Secretion of proinflammatory cytokines and chemokines during amphotericin B exposure is mediated by coactivation of toll-like receptors 1 and 2. Antimicrob. Agents Chemother. 49:16171621.
79. Razonable, R. R.,, M. Henault, and, C. V. Paya. 2004. The activation of Toll-like receptor 2 by human cytomegalovirus is mediated by the recognition of its envelope glycoprotein, abstr. V-435. Abstr. 44th Intersci. Conf. Antimicrob. Agents Chemother., Washington, DC, October 2004.
80. Razonable, R. R.,, M. Henault, and, C. V. Paya. 2006. Stimulation of toll-like receptor 2 with bleomycin results in cellular activation and secretion of pro-inflammatory cytokines and chemokines. Toxicol. Appl. Pharmacol. 210:181189.
81. Razonable, R. R.,, M. Henault,, H. L. Watson, and, C. V. Paya. 2005. Nystatin induces secretion of interleukin (IL)-1beta, IL-8, and tumor necrosis factor alpha by a toll-like receptor-dependent mechanism. Antimicrob. Agents Chemother. 49:35463549.
82. Rutschmann, S.,, A. Kilinc, and, D. Ferrandon. 2002. Cutting edge: the toll pathway is required for resistance to gram-positive bacterial infections in Drosophila. J. Immunol. 168:15421546.
83. Schacker, T. W.,, M. Conant,, C. Thoming,, T. Stanczak,, Z. Wang, and, M. Smith. 2002. Imiquimod 5-percent cream does not alter the natural history of recurrent herpes genitalis: a phase II, randomized, double-blind, placebo-controlled study. Antimicrob. Agents Chemother. 46:32433248.
84. Schott, E.,, H. Witt,, K. Neumann,, S. Taube,, D. Y. Oh,, E. Schreier,, S. Vierich,, G. Puhl,, A. Bergk,, J. Halangk,, V. Weich,, B. Wieden-mann, and, T. Berg. 2007. A Toll-like receptor 7 single nucleotide polymorphism protects from advanced inflammation and fibrosis in male patients with chronic HCV-infection. J. Hepatol. 47:203211.
85. Sparwasser, T.,, E. S. Koch,, R. M. Vabulas,, K. Heeg,, G. B. Lip-ford,, J. W. Ellwart, and, H. Wagner. 1998. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur. J. Immunol. 28:20452054.
86. Spruance, S. L.,, S. K. Tyring,, M. H. Smith, and, T. C. Meng. 2001. Application of a topical immune response modifier, resiquimod gel, to modify the recurrence rate of recurrent genital herpes: a pilot study. J. Infect. Dis. 184:196200.
87. Syed, T. A.,, J. Goswami,, O. A. Ahmadpour, and, S. A. Ahmad. 1998. Treatment of molluscum contagiosum in males with an analog of imiquimod 1% in cream: a placebo-controlled, double-blind study. J. Dermatol. 25:309313.
88. Szabo, G., and, A. Dolganiuc. 2005. Subversion of plasmacytoid and myeloid dendritic cell functions in chronic HCV infection. Immunobiology 210:237247.
89. Szomolanyi-Tsuda, E.,, X. Liang,, R. M. Welsh,, E. A. Kurt-Jones, and, R. W. Finberg. 2006. Role for TLR2 in NK cell-mediated control of murine cytomegalovirus in vivo. J. Virol. 80:42864291.
90. Tabeta, K.,, P. Georgel,, E. Janssen,, X. Du,, K. Hoebe,, K. Crozat,, S. Mudd,, L. Shamel,, S. Sovath,, J. Goode,, L. Alexopoulou,, R. A. Flavell, and, B. Beutler. 2004. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl. Acad. Sci. USA 101:35163521.
91. Tailor, P.,, T. Tamura, and, K. Ozato. 2006. IRF family proteins and type I interferon induction in dendritic cells. Cell Res. 16:134140.
92. Takeda, K., and, S. Akira. 2005. Toll-like receptors in innate immunity. Int. Immunol. 17:114.
93. Tal, G.,, A. Mandelberg,, I. Dalal,, K. Cesar,, E. Somekh,, A. Tal,, A. Oron,, S. Itskovich,, A. Ballin,, S. Houri,, A. Beigelman,, O. Lider,, G. Rechavi, and, N. Amariglio. 2004. Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J. Infect. Dis. 189:20572063.
94. Thomas, A.,, C. Laxton,, J. Rodman,, N. Myangar,, N. Horscroft, and, T. Parkinson. 2007. Investigating Toll-like receptor agonists for potential to treat hepatitis C virus infection. Antimicrob. Agents Chemother. 51:29692978.
95. Town, T.,, D. Jeng,, L. Alexopoulou,, J. Tan, and, R. A. Flavell. 2006. Microglia recognize double-stranded RNA via TLR3. J. Immunol. 176:38043812.
96. Tulic, M. K.,, R. J. Hurrelbrink,, C. M. Prele,, I. A. Laing,, J. W. Upham,, P. Le Souef,, P. D. Sly, and, P. G. Holt. 2007. TLR4 polymorphisms mediate impaired responses to respiratory syncytial virus and lipopolysaccharide. J. Immunol. 179:132140.
97. Tyring, S. K.,, I. Arany,, M. A. Stanley,, M. A. Tomai,, R. L. Miller,, M. H. Smith,, D. J. McDermott, and, H. B. Slade. 1998. A randomized, controlled, molecular study of condylomata acuminata clearance during treatment with imiquimod. J. Infect. Dis. 178:551555.
98. van Duin, D.,, H. G. Allore,, S. Mohanty,, S. Ginter,, F. K. Newman,, R. B. Belshe,, R. Medzhitov, and, A. C. Shaw. 2007. Prevaccine determination of the expression of costimulatory B7 molecules in activated monocytes predicts influenza vaccine responses in young and older adults. J. Infect. Dis. 195:15901597.
99. Vicari, A. P.,, T. Schmalbach,, J. Lekstrom-Himes,, M. L. Morris,, M. J. Al-Adhami,, C. Laframboise,, P. Leese,, A. M. Krieg,, S. M. Efler, and, H. L. Davis. 2007. Safety, pharmacokinetics and immune effects in normal volunteers of CPG 10101 (ACTILON), an investigational synthetic Toll-like receptor 9 agonist. Antivir. Ther. 12:741751.
100. Wang, J. P.,, E. A. Kurt-Jones,, O. S. Shin,, M. D. Manchak,, M. J. Levin, and, R. W. Finberg. 2005. Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J. Virol. 79:1265812666.
101. Wang, J. P.,, P. Liu,, E. Latz,, D. T. Golenbock,, R. W. Finberg, and, D. H. Libraty. 2006. Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J. Immunol. 177:71147121.
102. Wang, T.,, T. Town,, L. Alexopoulou,, J. F. Anderson,, E. Fikrig, and, R. A. Flavell. 2004. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat. Med. 10:13661373.
103. Weeratna, R. D.,, S. R. Makinen,, M. J. McCluskie, and, H. L. Davis. 2005. TLR agonists as vaccine adjuvants: comparison of CpG ODN and Resiquimod (R-848). Vaccine 23:52635270.
104. Wong, J. P.,, L. P. Nagata,, M. E. Christopher,, A. M. Salazar, and, R. M. Dale. 2005. Prophylaxis of acute respiratory virus infections using nucleic acid-based drugs. Vaccine 23:22662268.
105. Wu, J.,, M. Lu,, Z. Meng,, M. Trippler,, R. Broering,, A. Szczeponek,, F. Krux,, U. Dittmer,, M. Roggendorf,, G. Gerken, and, J. F. Schlaak. 2007. Toll-like receptor-mediated control of HBV replication by nonparenchymal liver cells in mice. Hepatology 46:17691778.
106. Yang, K.,, A. Puel,, S. Zhang,, C. Eidenschenk,, C. L. Ku,, A. Casrouge,, C. Picard,, H. von Bernuth,, B. Senechal,, S. Plan-coulaine,, S. Al-Hajjar,, A. Al-Ghonaium,, L. Marodi,, D. Davidson,, D. Speert,, C. Roifman,, B. Z. Garty,, A. Ozinsky,, F. J. Barrat,, R. L. Coffman,, R. L. Miller,, X. Li,, P. Lebon,, C. Rodriguez-Gallego,, H. Chapel,, F. Geissmann,, E. Jouanguy, and, J. L. Casanova. 2005. Human TLR-7-, -8-, and -9-mediated induction of IFN-alpha/beta and -lambda is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity 23:465478.
107. Zambon, R. A.,, M. Nandakumar,, V. N. Vakharia, and, L. P. Wu. 2005. The Toll pathway is important for an antiviral response in Drosophila. Proc. Natl. Acad. Sci. USA 102:72577262.
108. Zhang, S. Y.,, E. Jouanguy,, S. Ugolini,, A. Smahi,, G. Elain,, P. Romero,, D. Segal,, V. Sancho-Shimizu,, L. Lorenzo,, A. Puel,, C. Picard,, A. Chapgier,, S. Plancoulaine,, M. Titeux,, C. Cognet,, H. von Bernuth,, C. L. Ku,, A. Casrouge,, X. X. Zhang,, L. Barreiro,, J. Leonard,, C. Hamilton,, P. Lebon,, B. Heron,, L. Vallee,, L. Quintana-Murci,, A. Hovnanian,, F. Rozenberg,, E. Vivier,, F. Geissmann,, M. Tardieu,, L. Abel, and, J. L. Casanova. 2007. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317:15221527.


Generic image for table
Table 1.

TLRs and selected ligands TLR

Citation: Razonable R, Eid A, Henault M. 2009. Toll-Like Receptors: Novel Molecular Targets for Antiviral Immunotherapy, p 333-346. In LaFemina, Ph. D. R (ed), Antiviral Research. ASM Press, Washington, DC. doi: 10.1128/9781555815493.ch19
Generic image for table
Table 2.

Selected TLR agonists in preclinical and clinical stages of development for the treatment of virus infections

Citation: Razonable R, Eid A, Henault M. 2009. Toll-Like Receptors: Novel Molecular Targets for Antiviral Immunotherapy, p 333-346. In LaFemina, Ph. D. R (ed), Antiviral Research. ASM Press, Washington, DC. doi: 10.1128/9781555815493.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error