1887

Chapter 11 : Cultivation of Marine Symbiotic Microorganisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Cultivation of Marine Symbiotic Microorganisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815509/9781555814069_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555815509/9781555814069_Chap11-2.gif

Abstract:

This chapter describes the concept of symbiosis in a broad sense. It talks about criteria and methods to demonstrate that an organism is symbiotic, and presents general strategies for the cultivation of marine symbiotic microorganisms. Symbiotic microorganisms do not fit easily into Koch’s postulates because the resulting observable fitness of the host is usually less obvious than acute disease. Cultivation of symbiotic microbes that produce medically relevant secondary metabolites might also allow the production of these metabolites by sustainable and economical fermentative technologies as opposed to collection of marine organisms from the environment. Knowledge that soil contains large amounts of humic substrates leads to increased cultivation of soil microorganisms. Addition of cAMP and acyl-homoserine lactone signaling molecules known to be present in some cells growing as colonies, improves the cultivation of marine bacteria. A first approach for the cultivation of aerobic heterotrophic marine symbionts is to use one-half strength Marine Broth 2216 supplemented with one-half strength natural or artificial sea-water, with 1.5% agar added when required. The critical factors of this approach are (i) surface sterilization and aseptic dissection and handling of symbiotic tissue to remove transient and/or opportunistic symbionts, (ii) dilution and plating to extinction to eliminate competition and or antagonism among strains, and (iii) patience and close examination for colonies and microcolonies that grow on the plates. The ability to cultivate marine symbiotic microorganisms is a great advantage for the study of the symbiotic microorganism and the natural products it might produce.

Citation: Ciche T. 2008. Cultivation of Marine Symbiotic Microorganisms, p 193-204. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch11

Key Concept Ranking

Microbial Ecology
0.47716054
Toxin Coregulated Pilus
0.45673054
Transmission Electron Microscopy
0.4124688
0.47716054
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815509.ch11
1. Beja, O.,, L. Aravind,, E. V. Koonin,, M. T. Suzuki,, A. Hadd,, L. P. Nguyen,, S. B. Jovanovich,, C. M. Gates,, R. A. Feldman,, J. L. Spudich,, E. N. Spudich, and, E. F. DeLong. 2000. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:19021906.
2. Boetius, A.,, K. Ravenschlag,, C. J. Schubert,, D. Rickert,, F. Widdel,, A. Gieseke,, R. Amann,, B. B. Jørgensen,, U. Witte, and, O. Pfannkuche. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623626.
3. Bruns, A.,, H. Cypionka, and, J. Overmann. 2002. Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl. Environ. Microbiol. 68:39783987.
4. Brussow, H.,, C. Canchaya, and, W.-D. Hardt. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68:560602.
5. Cary, S. C.,, W. Warren,, E. Anderson, and, S. J. Giovannoni. 1993. Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Mol. Mar. Biol. Biotechnol. 2:5162.
6. Cavanaugh, C. M. 1985. Symbiosis of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Bull. Biol. Soc. Wash. 6:373388.
7. Cavanaugh, C. M. 1994. Microbial symbiosis: patterns of diversity in the marine environment. Am. Zool. 34:7989.
8. Cavanaugh, C. M.,, S. L. Gardiner,, M. L. Jones,, H. W. Jannasch, and, J. B. Waterbury. 1981. Procaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340342.
9. Cavanaugh, C. M.,, Z. P. McKiness,, I. R. G. Newton, and, F. J. Stewart. 2006. Marine chemosynthetic symbioses, p. 475–507. In M. Dworkin,, S. Falkow,, E. Rosenberg, and, K.-H. Schleifer (ed.), The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd ed., vol. 1. Springer, New York, NY.
10. Ciche, T. A.,, and S. K. Goffredi. 2007. General methods to investigate microbial symbioses, p. 394–419. In C. A. Reddy,, T. J. Beveridge,, J. A. Breznak,, G. A. Marzluf,, T. M. Schmidt, and, L. R. Snyder (ed.), Methods for General and Molecular Microbiology. ASM Press, Washington, DC.
11. Connon, S. A.,, and S. J. Giovannoni. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68:38783885.
12. Currie, C. R.,, J. A. Scott,, R. C. Summerbell, and, D. Malloch. 1999. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701704.
13. Davidson, S. K.,, S. W. Allen,, G. E. Lim,, C. M. Anderson, and, M. G. Haygood. 2001. Evidence for the biosynthesis of bryostatins by the bacterial symbiont “Candidatus Endobugula sertula” of the bryozoan Bugula neritina. Appl. Environ. Microbiol. 67:45314537.
14. de Bary, A. 1879. Die Erscheinung der Symbiose. Trubner, Strasburg, Germany.
15. Desbruyères, D.,, F. Gaill,, L. Laubier, and, Y. Fouquet. 1985. Polychaetous annelids from hydrothermal vent ecosystems: an ecological overview. Bull. Biol. Soc. Wash. 6:103116.
16. Distel, D. L.,, W. Morrill,, N. MacLaren-Toussaint,, D. Franks, and, J. Waterbury. 2002. Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int. J. Syst. Evol. Microbiol. 52:22612269.
17. Eilers, H.,, J. Pernthaler,, J. Peplies,, F. O. Glöckner,, G. Gerdts, and, R. Amann. 2001. Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Appl. Environ. Microbiol. 67:51345142.
18. Enticknap, J. J.,, M. Kelly,, O. Peraud, and, R. T. Hill. 2006. Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl. Environ. Microbiol. 72:37243732.
19. Faruque, S. M.,, and J. J. Mekalanos. 2003. Pathogenicity islands and phages in Vibrio cholerae evolution. Trends Microbiol. 11:505510.
20. Felbeck, H.,, J. J. Childress, and, G. N. Somero. 1981. Calvin-Benson cycle and sulfide oxidation enzymes in animals from sulfide-rich habitats. Nature 293:291293.
21. Fieseler, L.,, U. Hentschel,, L. Grozdanov,, A. Schirmer,, G. Wen,, M. Platzer,, S. Hrvatin,, D. Butzke,, K. Zimmermann, and, J. Piel. 2007. Widespread occurrence and genomic context of unusually small polyketide synthase genes in microbial consortia associated with marine sponges. Appl. Environ. Microbiol. 73:21442155.
22. Fredericks, D.,, and D. Relman. 1996. Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin. Microbiol. Rev. 9:1833.
23. Gilbert, M. T. P.,, L. P. Tomsho,, S. Rendulic,, M. Packard,, D. I. Drautz,, A. Sher,, A. Tikhonov,, L. Dalen,, T. Kuznetsova,, P. Kosintsev,, P. F. Campos,, T. Higham,, M. J. Collins,, A. S. Wilson,, F. Shidlovskiy,, B. Buigues,, P. G. P. Ericson,, M. Germonpre,, A. Gotherstrom,, P. Iacumin,, V. Nikolaev,, M. Nowak-Kemp,, E. Willerslev,, J. R. Knight,, G. P. Irzyk,, C. S. Perbost,, K. M. Fredrikson,, T. T. Harkins,, S. Sheridan,, W. Miller, and, S. C. Schuster. 2007. Whole-genome shotgun sequencing of mitochondria from ancient hair shafts. Science 317:19271930.
24. Gillespie, D. E.,, S. F. Brady,, A. D. Bettermann,, N. P. Cianciotto,, M. R. Liles,, M. R. Rondon,, J. Clardy,, R. M. Goodman, and, J. Handelsman. 2002. Isolation of antibiotics turbomycin a and B from a metagenomic library of soil microbial DNA. Appl. Environ. Microbiol. 68:43014306.
25. Gil-Turnes, M. S.,, M. E. Hay, and, W. Fenical. 1989. Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246:116118.
26. Haddad, A.,, F. Camacho,, P. Durand, and, S. C. Cary. 1995. Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. Appl. Environ. Microbiol. 61:16791687.
27. Haygood, M. G.,, and D. H. Cohn. 1986. Luciferase genes cloned from the unculturable luminous bacteroid symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi. Gene 45:203209.
28. Haygood, M. G.,, and S. K. Davidson. 1997. Small-subunit rRNA genes and in situ hybridization with oligonucleotides specific for the bacterial symbionts in the larvae of the bryozoan Bugula neritina and proposal of “Candidatus Endobugula sertula.” Appl. Environ. Microbiol. 63:46124616.
29. Haygood, M. G.,, and D. L. Distel. 1993. Bioluminescent symbionts of flashlight fishes and deep-sea anglerfishes form unique lineages related to the genus Vibrio. Nature 363:154156.
30. Hentschel, U.,, and M. Steinert. 2001. Symbiosis and pathogenesis: common themes, different outcomes. Trends Microbiol. 9:585.
31. Huber, H.,, M. J. Hohn,, R. Rachel,, T. Fuchs,, V. C. Wimmer, and, K. O. Stetter. 2002. A new phylum of archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:6367.
32. Jones, B. W.,, and M. K. Nishiguchi. 2004. Counter-illumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 144:11511155.
33. Kaeberlein, T.,, K. Lewis, and, S. S. Epstein. 2002. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:11271129.
34. Kaufman, M. R.,, Y. Ikeda,, C. Patton,, G. van Dykhuizen, and, D. Epel. 1998. Bacterial symbionts colonize the accessory nidamental gland of the squid Loligo opalescens via horizontal transmission. Biol. Bull. 194:3643.
35. Lechene, C. P.,, Y. Luyten,, G. McMahon, and, D. L. Distel. 2007. Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 317:15631566.
36. Lee, K.-H.,, and E. G. Ruby. 1994. Effects of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl. Environ. Microbiol. 60:15651571.
37. Lilburn, T. G.,, K. S. Kim,, N. E. Ostrom,, K. R. Byzek,, J. R. Leadbetter, and, J. A. Breznak. 2001. Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:24952498.
38. Lopanik, N.,, N. Lindquist, and, N. Targett. 2004. Potent cytotoxins produced by a microbial symbiont protect host larvae from predation. Oecologia 139:131e139.
39. Margulis, L. 1970. Origin of Eukaryotic Cells; Evidence and Research Implications for a Theory of the Origin and Evolution of Microbial, Plant, and Animal Cells on the Precambrian Earth. Yale University Press, New Haven, CT.
40. McFall-Ngai, M. J.,, and M. K. Montgomery. 1990. The anatomy and morphology of the adult bacterial light organ of Euprymna scolopes Berry (Cephalopoda: Sepiolidae). Biol. Bull. 179:33339.
41. McFall-Ngai, M. J.,, and E. G. Ruby. 2000. Developmental biology in marine invertebrate symbioses. Curr. Opin. Microbiol. 3:603607.
42. Nyholm, S. V.,, and M. J. McFall-Ngai. 2004. The winnowing: establishing the squid Vibrio-symbiosis. Nature Rev. Microbiol. 2:632-642.
43. Orphan, V. J.,, C. H. House,, K.- U. Hinrichs,, K. D. McKeegan, and, E. F. DeLong. 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484487.
44. Ott, J. 1995. Sulfide symbioses in shallow sands, p. 143–147. In A. Eleftheriou,, A. Ansell, and, C. Smith (ed.), Biology and Ecology of Shallow Coastal Waters. Olsen & Olsen, Fredensborg, Denmark.
45. Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276:734740.
46. Paper, W.,, U. Jahn,, M. J. Hohn,, M. Kronner,, D. J. Nather,, T. Burghardt,, R. Rachel,, K. O. Stetter, and, H. Huber. 2007. Ignicoccus hospitalis sp. nov., the host of “Nanoarchaeum equitans. Int. J. Syst. Evol. Microbiol. 57:803808.
47. Patel, A.,, R. T. Noble,, J. A. Steele,, M. S. Schwalbach,, I. Hewson, and, J. A. Fuhrman. 2007. Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat. Protoc. 2:269276.
48. Pichon, D.,, V. Gaia,, M. Norman, and, R. Boucher-Rodoni. 2005. Phylogenetic diversity of epibiotic bacteria in the accessory nidamental glands of squids (Cephalopoda: Loliginidae and Idiosepiidae). Mar. Biol. 147:13231332.
49. Piel, J. 2006. Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr. Med. Chem. 13:3950.
50. Piel, J.,, D. Hui,, G. Wen,, D. Butzke,, M. Platzer,, N. Fusetani, and, S. Matsunaga. 2004. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl. Acad. Sci. USA 101:1622216227.
51. Polz, M. F.,, and C. M. Cavanaugh. 1995. Dominance of one bacterial phylotype at a mid-Atlantic ridge hydrothermal vent site. Proc. Natl. Acad. Sci. USA 92:72327236.
52. Polz, M. F.,, D. L. Distel,, B. Zarda,, R. Amann,, H. Felbeck,, J. A. Ott, and, C. M. Cavanaugh. 1994. Phylogenetic analysis of a highly specific association between ectosymbiotic, sulfur-oxidizing bacteria and a marine nematode. Appl. Environ. Microbiol. 60:44614467.
53. Popham, J. D.,, and M. R. Dickson. 1973. Bacterial associations in the teredo Bankia australis (Lamellibranchia: Mollusca). Mar. Biol. 19:338340.
54. Rappé, M. S.,, S. A. Connon,, K. L. Vergin, and, S. J. Giovannoni. 2002. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630633.
55. Ruby, E. G. 1996. Lessons from a cooperative, bacterial-animal association: The Vibrio fischeri-Euprymna scolopes light organ symbiosis. Ann. Rev. Microbiol. 50:591624.
56. Ruby, E. G.,, M. Urbanowski,, J. Campbell,, A. Dunn,, M. Faini,, R. Gunsalus,, P. Lostroh,, C. Lupp,, J. McCann,, D. Millikan,, A. Schaefer,, E. Stabb,, A. Stevens,, K. Visick,, C. Whistler, and, E. P. Greenberg. 2005. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl. Acad. Sci. USA 102:3004-3009.
57. Sharp, K. H.,, B. Eam,, D. J. Faulkner, and, M. G. Haygood. 2007. Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl. Environ. Microbiol. 73:622629.
58. Sipe, A. R.,, A. E. Wilbur, and, S. C. Cary. 2000. Bacterial symbiont transmission in the wood-boring shipworm Bankia setacea (Bivalvia: Teredinidae). Appl. Environ. Microbiol. 66:16851691.
59. Stevenson, B. S.,, S. A. Eichorst,, J. T. Wertz,, T. M. Schmidt, and, J. A. Breznak. 2004. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70:47484755.
60. Sudek, S.,, N. B. Lopanik,, L. E. Waggoner,, M. Hildebrand,, C. Anderson,, H. Liu,, A. Patel,, D. H. Sherman, and, M. G. Haygood. 2007. Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula,” the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J. Nat. Prod. 70:6774.
61. Van Dover, C. L.,, B. Fry,, J. F. Grassle,, S. Humphris, and, P. A. Rona. 1988. Feeding biology of the shrimp Rimicaris exoculata at hydrothermal vents on the mid-Atlantic ridge. Mar. Biol. 98:209216.
62. Walder, M. K.,, and J. J. Mekalanos. 1996. Lysogenic conversion by a filamentous bacteriophage encoding cholera toxin. Science 272:19101914.
63. Waterbury, J. B.,, C. B. Calloway, and, R. D. Turner. 1983. A cellulolytic-nitrogen fixing bacterium cultured from the gland of Deshayes in shipworms (Bivalvia: Teredinidae). Science 221:14011403.
64. Waters, E.,, M. J. Hohn,, I. Ahel,, D. E. Graham,, M. D. Adams,, M. Barnstead,, K. Y. Beeson,, L. Bibbs,, R. Bolanos,, M. Keller,, K. Kretz,, X. Lin,, E. Mathur,, J. Ni,, M. Podar,, T. Richardson,, G. G. Sutton,, M. Simon,, D. Soll,, K. O. Stetter,, J. M. Short, and, M. Noordewier. 2003. The genome of Nanoarchaeum equitans:insights into early archaeal evolution and derived parasitism. Proc. Natl. Acad. Sci. USA 100:1298412988.
65. Zengler, K.,, G. Toledo,, M. Rappé,, J. Elkins,, E. J. Mathur,, J. M. Short, and, M. Keller. 2002. Cultivating the uncultured. Proc. Natl. Acad. Sci. USA 99:1568115686.
66. Zengler, K.,, M. Walcher,, G. Clark,, I. Haller,, G. Toledo,, T. Holland,, E. J. Mathur,, G. Woodnutt,, J. M. Short, and, M. Keller. 2005. High-throughput cultivation of microorganisms using microcapsules. Methods Enzymol. 397:124430.

Tables

Generic image for table
TABLE 1

Examples of marine microbial symbioses

Citation: Ciche T. 2008. Cultivation of Marine Symbiotic Microorganisms, p 193-204. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error