1887

Chapter 13 : Microbial Cell Individuality

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Microbial Cell Individuality, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815509/9781555814069_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555815509/9781555814069_Chap13-2.gif

Abstract:

This chapter focuses on heterogeneity phenomena among single-celled organisms. It has generally been considered that phenotypic heterogeneity provides a dynamic source of diversity in addition to that derived from genotypic changes such as genome rearrangements and mutation (i.e., genotypic heterogeneity). Recent studies highlighted in this chapter have substantiated this view. This chapter addresses examples of cell-individualized phenotypes in which the benefits of heterogeneity to population fitness can be readily envisaged. Moreover, the most recent studies have risen to the challenge of demonstrating fitness benefits of heterogeneity experimentally, and these studies are discussed in this chapter. The chapter integrates recent studies to describe the molecular bases and consequences of heterogeneity for several of the key phenotypes characterized by variability in clonal microbial populations. Much of the recent focus of research relevant to the field of cell individuality has been to uncover the drivers of diversity operating at the molecular level, in particular the contributions of stochasticity or noise to the processes of gene transcription and translation. The chapter presents a study which describes that the heterogeneity-specific advantage was particularly striking considering that it was prevalent in mutant populations that are conventionally considered to be disadvantaged. Recent research efforts in the area of phenotypic heterogeneity have served to advance significantly the understanding of its nature. The potential benefits of this form of heterogeneity to microbial cell populations are now widely acknowledged and have recently been demonstrated experimentally.

Citation: Avery S. 2008. Microbial Cell Individuality, p 223-243. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch13

Key Concept Ranking

Gene Expression
0.6011084
UV-Induced DNA Damage
0.47774246
Chemicals
0.43936524
Base Excision Repair
0.42707282
0.6011084
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Hierarchy of timescales over which key drivers of cellular heterogeneity operate. Temporal information on the stability of heterogeneous phenotypes is generally lacking. However, the timescales of such stability (e.g., for how long is a particular phenotype maintained by individual cells?) can facilitate prediction of the source of the heterogeneity. The figure is intended to reflect the hierarchical nature of the timescales involved. The timescale values indicated are approximations and are generally organism and condition dependent. Note that while epigenetically regulated phenotypes may be sustained over many generations of cells, it could be stochastic events operating at the opposite end of the timescale that may with time trigger a switch spontaneously to an alternative epigenetic state. Adapted from with permission.

Citation: Avery S. 2008. Microbial Cell Individuality, p 223-243. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Cell cycle-dependent copper resistance in S. requires Sod1p. Wild-type (A) and (B) cells were exposed to Cu(NO) for 10 min at concentrations that gave ~50% killing. With the aid of fluorescent viability dyes ( ), cells were sorted into Cu-resistant and -sensitive subpopulations. Unsorted cells (left panels) and the sorted subpopulations (right panels) were then stained for DNA content and reanalyzed with flow cytometry. Data were analyzed using SIMfit software to fit individual 1C (first peak) and 2C (second peak) DNA content plots. Cu-resistant and -sensitive wild-type subpopulations had markedly different cell cycle (1C and 2C DNA) distributions, whereas those of the subpopulations were similar. Adapted from with permission.

Citation: Avery S. 2008. Microbial Cell Individuality, p 223-243. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Release of phenotypic heterogeneity and enhanced survival under extreme stress in specific yeast mutants. Wild-type (○) or mutant (●) cultures of plated onto YPD supplemented or not with either Ni(NO), Cu(NO), menadione, or paraquat, as indicated, or buffered to the specified pH values. Viability (colony formation) was determined after several days” incubation at 30°C, and converted to percentages by reference to growth in unsupplemented control medium. The gradients of the slopes reflect the degree of heterogeneity ( ). Data are shown for the deletion strains 3Δ, 1Δ, and 1Δ, as indicated. The points represent means from three replicate determinations. Typical results from one of at least two independent experiments are shown. Adapted from with permission.

Citation: Avery S. 2008. Microbial Cell Individuality, p 223-243. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Lytic or lysogenic pathways in bacteriophage lambda. The figure summarizes some of the principal regulatory inputs that determine the “decision”’by bacteriophage lambda whether to take the lytic (replication and release) or lysogenic (integration into host DNA) life cycle pathways. Please see the main text for accompanying explanation. Adapted from with permission.

Citation: Avery S. 2008. Microbial Cell Individuality, p 223-243. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815509.ch13
1. Aertsen, A., and, C. W. Michiels. 2005. Diversify or die:generation of diversity in response to stress. Crit. Rev. Microbiol. 31:6978.
2. Aguilaniu, H.,, L. Gustafsson,, M. Rigoulet, and, T. Nystrom. 2003. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299:17511753.
3. Andrews, B. W.,, T. M. Yi, and, P. A. Iglesias. 2006. Optimal noise filtering in the chemotactic response of Escherichia coli. PLOS Comput. Biol. 2:14071418.
4. Arkin, A.,, J. Ross, and, H. H. McAdams. 1998. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149:16331648.
5. Attfield, P. V.,, H. Y. Choi,, D. A. Veal, and, P. J. L. Bell. 2001. Heterogeneity of stress gene expression and stress resistance among individual cells of Saccharomyces cerevisiae. Mol. Microbiol. 40:10001008.
6. Avery, S. V. 2001. Metal toxicity in yeasts and the role of oxidative stress. Adv. Appl. Microbiol. 49:111142.
7. Avery, S. V. 2005. Cell individuality: the bistability of competence development. Trends Microbiol. 13:459462.
8. Avery, S. V. 2006. Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol. 4:577587.
9. Avery, S. V.,, S. Malkapuram,, C. Mateus, and, K. S. Babb. 2000. Cu/Zn superoxide dismutase is required for oxytetracycline resistance of Saccharomyces cerevisiae. J. Bacteriol. 182:7680.
10. Baek, K.,, S. Svenningsen,, H. Eisen,, K. Sneppen, and, S. Brown. 2003. Single-cell analysis of lambda immunity regulation. J. Mol. Biol. 334:363372.
11. Balaban, N. Q.,, J. Merrin,, R. Chait,, L. Kowalik, and, S. Leibler. 2004. Bacterial persistence as a phenotypic switch. Science 305:16221625.
12. Banuett, F.,, M. A. Hoyt,, L. McFarlane,, H. Echols, and, I. Herskowitz. 1986. hflB, a new Escherichia coli locus regulating lysogeny and the level of bacteriophage lambda cII protein. J. Mol. Biol. 187:213224.
13. Barak, R.,, and M. Eisenbach. 2004. Co-regulation of acetylation and phosphorylation of CheY, a response regulator in chemotaxis of Escherichia coli. J. Mol. Biol. 342:375381.
14. Bar-Even, A.,, J. Paulsson,, N. Maheshri,, M. Carmi,, E. O’Shea,, Y. Pilpel, and, N. Barkai. 2006. Noise in protein expression scales with natural protein abundance. Nature Genet. 38:636643.
15. Becskei, A.,, B. Seraphin, and, L. Serrano. 2001. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J. 20:25282535.
16. Bergman, A.,, and M. L. Siegal. 2003. Evolutionary capacitance as a general feature of complex gene networks. Nature 424:549552.
17. Bishop, A. L.,, F. A. Rab,, E. R. Sumner, and, S. V. Avery. 2007. Phenotypic heterogeneity can enhance rare-cell survival in “stress-sensitive” yeast populations. Mol. Microbiol. 63:507520.
18. Blake, W. J.,, G. Balazsi,, M. A. Kohanski,, F. J. Isaacs,, K. F. Murphy,, Y. Kuang,, C. R. Cantor,, D. R. Walt, and, J. J. Collins. 2006. Phenotypic consequences of promoter-mediated transcriptional noise. Mol. Cell 24:853865.
19. Blake, W. J.,, M. Kaern,, C. R. Cantor, and, J. J. Collins. 2003. Noise in eukaryotic gene expression. Nature 422:633637.
20. Booth, I. R. 2002. Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 78:1930.
21. Brehm-Stecher, B. F.,, and E. A. Johnson. 2004. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68:538559.
22. Brockert, P. J.,, S. A. Lachke,, T. Srikantha,, C. Pujol,, R. Galask, and, D. R. Soll. Phenotypic switching and mating type switching of Candida glabrata at sites of colonization. Infect. Immun. 71:71097118.
23. Chernoff, Y. O.,, A. P. Galkin,, E. Lewitin,, T. A. Chernova,, G. P. Newnam, and, S. M. Belenkiy. 2000. Evolutionary conservation of prionforming abilities of the yeast Sup35 protein. Mol. Microbiol. 35:865876.
24. Cluzel, P.,, M. Surette, and, S. Leibler. 2003. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287:16521655.
25. Colman-Lerner, A.,, A. Gordon,, E. Serra,, T. Chin,, O. Resnekov,, D. Endy,, C. G. Pesce, and, R. Brent. 2005. Regulated cell-to-cell variation in a cell-fate decision system. Nature 437:699706.
26. Cowen, L. E.,, and S. Lindquist. 2005. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309:21852189.
27. Davey, H. M.,, and D. B. Kell. 1996. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Rev. 60:641696.
28. Desnues, B.,, C. Cuny,, G. Gregori,, S. Dukan,, H. Aguilaniu, and, T. Nystrom. 2003. Differential oxidative damage and expression of stress defence regulons in culturable and non-culturable Escherichia coli cells. EMBO Rep. 4:400404.
29. Dhar, N.,, and J. D. McKinney. 2007. Microbial phenotypic heterogeneity and antibiotic tolerance. Curr. Opin. Microbiol. 10:3038.
30. Dodd, I. B.,, K. E. Shearwin, and, J. B. Egan. 2005. Revisited gene regulation in bacteriophage lambda. Curr. Opin. Genet. Devel. 15:145152.
31. Drakulic, T.,, M. D. Temple,, R. Guido,, S. Jarolim,, M. Breitenbach,, P. V. Attfield, and, I. W. Dawes. 2005. Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 5:12151228.
32. Dreesen, O.,, B. B. Li, and, G. A. M. Cross. 2007. Telomere structure and function in trypanosomes: a proposal. Nat. Rev. Microbiol. 5:7075.
33. Dubnau, D.,, and R. Losick. 2006. Bistability in bacteria. Mol. Microbiol. 61:564572.
34. Eaglestone, S. S.,, B. S. Cox, and, M. F. Tuite. 1999. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J. 18:19741981.
35. Elowitz, M. B.,, A. J. Levine,, E. D. Siggia, and, P. S. Swain. 2002. Stochastic gene expression in a single cell. Science 297:11831186.
36. Ferrell, J. E., Jr. 2002. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14:140148.
37. Flattery-O’Brien, J. A.,, and I. W. Dawes. 1998. Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. J. Biol. Chem. 273:85618571.
38. Folkmanis, A.,, W. Maltzman,, P. Mellon,, A. Skalka, and, H. Echols. 1977. The essential role of the cro gene in lytic development by bacteriophage lambda. Virology 81:352362.
39. Fraser, H. B.,, A. E. Hirsh,, G. Giaever,, J. Kumm, and, M. B. Eisen. 2004. Noise minimization in eukaryotic gene expression. PLoS Biol. 2:834838.
40. Fujita, M., and, R. Losick. 2005. Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Devel. 19:22362244.
41. Golding, I.,, J. Paulsson,, S. M. Zawilski, and, E. C. Cox. 2005. Real-time kinetics of gene activity in individual bacteria. Cell 123:10251036.
42. Gonzalez-Pastor, J. E.,, E. C. Hobbs, and, R. Losick. 2003. Cannibalism by sporulating bacteria. Science 301:510513.
43. Hallett, B. 2001. Playing Dr. Jekyll and Mr. Hyde: combined mechanisms of phase variation in bacteria. Curr. Opin. Microbiol. 4:570581.
44. Halme, A.,, S. Bumgarner,, C. Styles, and, G. R. Fink. 2004. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116:405415.
45. Harrison, J. J.,, R. J. Turner, and, H. Ceri. 2005. Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ. Microbiol. 7:981994.
46. Henderson, I. R.,, P. Owen, and, J. P. Nataro. 1999. Molecular switches—the ON and OFF of bacterial phase variation. Mol. Microbiol. 33:919932.
47. Hernday, A. D.,, B. A. Braaten, and, D. A. Low. 2003. The mechanism by which DNA adenine methylase and papl activate the pap epigenetic switch. Mol. Cell 12:947957.
48. Hernday, A.,, B. Braaten, and, D. Low. 2004a. The intricate workings of a bacterial epigenetic switch. Adv. Exp. Med. Biol. 547:8389.
49. Hernday, A. D.,, B. A. Braaten,, G. Broitman-Maduro,, P. Engelberts, and, D. A. Low. 2004b. Regulation of the Pap epigenetic switch by CpxAR: phosphorylated CpxR inhibits transition to the phase ON state by competition with Lrp. Mol. Cell 16:537-547.
50. Holmstrom, K.,, T. Tolker-Nielsen, and, S. Molin. 1999. Physiological states of individual Salmonella typhimurium cells monitored by in situ reverse transcription-PCR. J. Bacteriol. 181:17331738.
51. Horn, D., and, J. D. Barry. 2005. The central roles of telomeres and subtelomeres in antigenic variation in African trypanosomes. Chrom. Res. 13:525533.
52. Howlett, N. G., and, S. V. Avery. 1999. Flow cytometric investigation of heterogeneous copper sensitivity in asynchronously-grown Saccharomyces cerevisiae. FEMS Microbiol. Lett. 176:379386.
53. Huang, B.,, H. K. Wu,, D. Bhaya,, A. Grossman,, S. Granier,, B. K. Kobilka, and, R. N. Zare. 2007. Counting low-copy number proteins in a single cell. Science 315:8184.
54. Isaacs, F. J.,, J. Hasty,, C. R. Cantor, and, J. J. Collins. 2003. Prediction and measurement of an autoregulatory genetic module. Proc. Natl. Acad. Sci. USA 100:77147719.
55. Jacquet, M.,, G. Renault,, S. Lallet,, J. De Mey, and, A. Goldbeter. 2003. Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae. J. Cell Biol. 161:497505.
56. Kaern, M.,, T. C. Elston,, W. J. Blake, and, J. J. Collins. 2005. Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6:451464. (Comprehensive review on mechanisms of stochastic gene expression.)
57. Kale, S. P.,, and S. M. Jazwinski. 1996. Differential response to UV stress and DNA damage during the yeast replicative life span. Dev. Genet. 18:154160.
58. Kearns, D. B.,, and R. Losick. 2005. Cell population heterogeneity during growth of Bacillus subtilis. Genes Devel. 19:30833094.
59. Keren, I.,, D. Shah,, A. Spoering,, N. Kaldalu, and, K. Lewis. 2004. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186:81728180.
60. Klar, A. J. S.,, T. Srikantha, and, D. R. Soll. 2001. A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans. Genetics 158:919924.
61. Klevecz, R. R.,, J. Bolen,, G. Forrest, and, D. B. Murray. 2004. A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc. Natl. Acad. Sci. USA 101:12001205.
62. Knobloch, J. K. M.,, S. Jager,, J. Huck,, M. A. Horstkotte, and, D. Mack. 2005. mecA is not involved in the σB-dependent switch of the expression phenotype of methicillin resistance in Staphylococcus epidermidis. Antimicrob. Agents Chemother. 49:12161219.
63. Kollmann, M.,, L. Lovdok,, K. Bartholome,, J. Timmer, and, V. Sourjik. 2005. Design principles of a bacterial signalling network. Nature 438:504507.
64. Korch, S. B.,, T. A. Henderson, and, T. M. Hill. 2003. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol. Microbiol. 50:11991213.
65. Korobkova, E.,, T. Emonet,, J. M. G. Vilar,, T. S. Shimizu, and, P. Cluzel. 2004. From molecular noise to behavioural variability in a single bacterium. Nature 428:574578.
66. Kussell, E.,, R. Kishony,, N. Q. Balaban, and, S. Leibler. 2005. Bacterial persistence:a model of survival in changing environments. Genetics 169:18071814.
67. Kussell, E.,, and S. Leibler. 2005. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309:20752078.
68. Leisner, M.,, K. Stingl,, J. O. Radler, and, B. Maier. 2007. Basal expression rate of comK sets a “switching-window” into the K-state of Bacillus subtilis. Mol. Microbiol. 63:18061816.
69. Leroy, C.,, C. Mann, and, M. C. Marsolier. 2001. Silent repair accounts for cell cycle specificity in the signaling of oxidative DNA lesions. EMBO J. 20:28962906.
70. Levin, M. D. 2003. Noise in gene expression as the source of non-genetic individuality in the chemo-tactic response of Escherichia coli. FEBS Lett. 550:135138.
71. Levin, M. D.,, C. J. Morton-Firth,, W. N. Abouhamad,, R. B. Bourret, and, D. Bray. 1998. Origins of individual swimming behavior in bacteria. Biophys. J. 74:175181.
72. Levina, N.,, S. Totemeyer,, N. R. Stokes,, P. Louis,, M. A. Jones, and, I. R. Booth. 1999. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18:17301737.
73. Lewis, K. 2005. Persister cells and the riddle of biofilm survival. Biochemistry (Mosc.) 70:267274.
74. Lewis, K. 2007. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5:4856.
75. Lockhart, S. R.,, C. Pujol,, K. J. Daniels,, M. G. Miller,, A. D. Johnson,, M. A. Pfaller, and, D. R. Soll. 2002. In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162:737745.
76. Maamar, H.,, and D. Dubnau. 2005. Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol. Microbiol. 56:615624.
77. Marcello, L.,, and J. D. Barry. 2007. From silent genes to noisy populations—dialogue between the genotype and phenotypes of antigenic variation. J. Eukaryot. Microbiol. 54:1417.
78. Marr, K. A.,, C. N. Lyons,, T. Rustad,, R. A. Bowden, and, T. C. White. 1998. Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR. Antimicrob. Agents Chemother. 42:2584-2589.
79. Marty, A. J.,, J. K. Thompson,, M. F. Duffy,, T. S. Voss,, A. F. Cowman, and, B. S. Crabb. 2006. Evidence that Plasmodium falciparum chromosome end clusters are cross-linked by protein and are the sites of both virulence gene silencing and activation. Mol. Microbiol. 62:7283.
80. McCool, J. D.,, E. Long,, J. F. Petrosino,, H. A. Sandler,, S. M. Rosenberg, and, S. J. Sandler. 2004. Measurement of SOS expression in individual Escherichia coli K-12 cells using fluorescence microscopy. Mol. Microbiol. 53:13431357.
81. Miller, M G.,, and A. D. Johnson. 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110:293302.
82. Mondon, P.,, R. Petter,, G. Amalfitano,, R. Luzzati,, E. Concia,, I. Polacheck, and, K. J. Kwon-Chung. 1999. Heteroresistance to fluconazole and voriconazole in Cryptococcus neoformans. Antimicrob. Agents Chemother. 43:18561861.
83. Moyed, H. S.,, and K. P. Bertrand. 1983. HIPA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155:768775.
84. Murray, D. B.,, M. Beckmann, and, H. Kitano. 2007. Regulation of yeast oscillatory dynamics. Proc. Natl. Acad. Sci. USA 104:22412246.
85. Newman, J. R. S.,, S. Ghaemmaghami,, J. Ihmels,, D. K. Breslow,, M. Noble,, J. L. DeRisi, and, J. S. Weissman. 2006. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441:840846.
86. Odds, F. C. 1997. Switch of phenotype as an escape mechanism of the intruder. Mycoses 40:912.
87. Ozbudak, E. M.,, M. Thattai,, I. Kurtser,, A. D. Grossman, and, A. van Oudenaarden. 2002. Regulation of noise in the expression of a single gene. Nat. Genet. 31:6973.
88. Paliwal, S.,, P. A. Iglesias,, K. Campbell,, Z. Hilioti,, A. Groisman, and, A. Levchenko. 2007. MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature 446:4651.
89. Pays, E. 2005. Regulation of antigen gene expression in Trypanosoma brucei. Trends Parasitol. 21:517520.
90. Perez-Martin, J.,, J. A. Uria, and, A. D. Johnson. 1999. Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J. 18: 25802592.
91. Plesset, J.,, J. R. Ludwig,, B. S. Cox, and, C. S. McLaughlin. 1987. Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae. J. Bacteriol. 169:779784.
92. Ralph, S. A.,, and A. Scherf. 2005. The epigenetic control of antigenic variation in Plasmodium falciparum. Curr. Opin. Microbiol. 8:434440.
93. Raser, J. M.,, and E. K. O’Shea. 2004. Control of stochasticity in eukaryotic gene expression. Science 304:18111814.
94. Rinder, H. 2001. Hetero-resistance: an underrecognised confounder in diagnosis and therapy? J. Med. Microbiol. 50:10181020.
95. Rosenfeld, N.,, J. W. Young,, U. Alon,, P. S. Swain, and, M. B. Elowitz. 2005. Gene regulation at the single-cell level. Science 307:19621965.
96. Rutherford, S. L.,, and S. Lindquist. 1998. Hsp90 as a capacitor for morphological evolution. Nature 396:336342.
97. Sagi, Y.,, S. Khan, and, M. Eisenbach. 2003. Binding of the chemotaxis response regulator CheY to the isolated, intact switch complex of the bacterial flagellar motor—lack of cooperativity. J. Biol. Chem. 278:2586725871.
98. Shi, W. Y.,, and D. R. Zusman. 1993. Fatal attraction. Nature 366:414415.
99. Siegele, D. A.,, and J. C. Hu. 1997. Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc. Natl. Acad. Sci. USA 94:81688172.
100. Slutsky, B.,, J. Buffo, and, D. R. Soll. 1985. High-frequency switching of colony morphology in Candida albicans. Science 230:666669.
101. Slutsky, B.,, M. Staebell,, J. Anderson,, L. Risen,, M. Pfaller, and, D. R. Soll. 1987. White-opaque transition—a 2nd high-frequency switching-system in Candida albicans. J. Bacteriol. 169:189197.
102. Smith, M. C.,, E. R. Sumner, and, S. V. Avery. 2007. Glutathione and Gts 1p drive beneficial variability in the cadmium resistances of individual yeast cells. Mol. Microbiol. 66:699712.
103. Smits, W. K.,, C. C. Eschevins,, K. A. Susanna,, S. Bron,, O. P. Kuipers, and, L. W. Hamoen. 2005. Stripping Bacillus: ComK auto-stimulation is responsible for the bistable response in competence development. Mol. Microbiol. 56:604614.
104. Smits, W. K.,, O. P. Kuipers, and, J.-W. Veening. 2006. Phenotypic variation in bacteria: the role of feedback regulation. Nat. Rev. Microbiol. 4:259271.
105. Soll, D. R. 2004. Mating-type locus homozygosis, phenotypic switching and mating: a unique sequence of dependencies in Candida albicans. Bioessays 26:1020.
106. Spoering, A. L.,, and K. Lewis. 2001. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 183:67466751.
107. Spudich, J. L.,, and D. E. Koshland. 1976. Non-genetic individuality–chance in single cell. Nature 262:467471.
108. Srikantha, T.,, A. R. Borneman,, K. J. Daniels,, C. Pujol,, W. Wu,, M. R. Seringhaus,, M. Gerstein,, S. Yi,, M. Snyder, and, D. R. Soll. 2006. TOS9 regulates white-opaque switching in Candida albicans. Eukaryot. Cell 5:1674-1687.
109. Srikantha, T.,, L. Tsai,, K. Daniels,, A. J. S. Klar, and, D. R. Soll. 2001. The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J. Bacteriol. 183:46144625.
110. Srikantha, T.,, R. Zhao,, K. Daniels,, J. Radke, and, D. R. Soll. 2005. Phenotypic switching in Candida glabrata accompanied by changes in expression of genes with deduced functions in copper detoxification and stress. Euk. Cell 4:14341445.
111. Steels, H.,, S. A. James,, I. N. Roberts, and, M. Stratford. 2000. Sorbic acid resistance: the inoculum effect. Yeast 16:11731183.
112. Süel, G. M.,, J. Garcia-Ojalvo,, L. M. Liberman, and, M. B. Elowitz. 2006. An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440:545550.
113. Sufya, N.,, D. G. Allison, and, P. Gilbert. 2003. Clonal variation in maximum specific growth rate and susceptibility towards antimicrobials. J. Appl. Microbiol. 95:12611267.
114. Sumner, E. R., and, S. V. Avery. 2002. Phenotypic heterogeneity: differential stress resistance among individual cells of the yeast Saccharomyces cerevisiae. Microbiology 148:345351.
115. Sumner, E. R.,, A. M. Avery,, J. E. Houghton,, R. A. Robins, and, S. V. Avery. 2003. Cell cycle- and age-dependent activation of Sod1p drives the formation of stress-resistant cell subpopulations within clonal yeast cultures. Mol. Microbiol. 50:857870.
116. Sumner, E. R.,, A. Shanmuganathan,, T. C. Sideri,, S. A. Willetts,, J. E. Houghton, and, S. V. Avery. 2005. Oxidative protein damage causes chromium toxicity in yeast. Microbiology 151:19391948.
117. Thattai, M.,, and A. van Oudenaarden. 2004. Stochastic gene expression in fluctuating environments. Genetics 167:523530.
118. Tolker-Nielsen, T.,, K. Holmstrom,, L. Boe, and, S. Molin. 1998. Non-genetic population heterogeneity studied by in situ polymerase chain reaction. Mol. Microbiol. 27:10991105.
119. Tonozuka, H.,, J. Q. Wang,, K. Mitsui,, T. Saito,, Y. Hamada, and, K. Tsurugi. 2001. Analysis of the upstream regulatory region of the GTS1 gene required for its oscillatory expression. J. Biochem. 130:589595.
120. Touati, D. 2002. Investigating phenotypes resulting from a lack of superoxide dismutase in bacterial null mutants. Methods Enzymol. 349:145154.
121. True, H. L.,, I. Berlin, and, S. L. Lindquist. 2004. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431:184187.
122. True, H. L.,, and S. L. Lindquist. 2000. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407:477483.
123. Tsong, A. E.,, M. G. Miller,, R. M. Raisner, and, A. D. Johnson. 2003. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115:389399.
124. Tu, B. P.,, A. Kudlicki,, M. Rowicka, and, S. L. McKnight. 2005. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310:11521158.
125. van der Woude, M. W.,, and A. J. Baumler. 2004. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev. 17:581611.
126. Veening, J. W.,, L. W. Hamoen, and, O. P. Kuipers. 2005. Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol. Microbiol. 56:14811494.
127. Veening, J. W.,, W. K. Smits,, L. W. Hamoen, and, O. P. Kuipers. 2006. Single cell analysis of gene expression patterns of competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media. J. Appl. Microbiol. 101:531541.
128. Verstrepen, K. J.,, and F. M. Klis. 2006. Flocculation, adhesion and biofilm formation in yeasts. Mol. Microbiol. 60:515.
129. Vinck, A.,, M. Terlou,, W. R. Pestman,, E. P. Martens,, A. F. Ram,, C. A. M. J. J. van den Hondel, and, H. A. B. Wosten. 2005. Hyphal differentiation in the exploring mycelium of Aspergillus niger. Mol. Microbiol. 58:693699.
130. Viswanathan, G. M.,, S. V. Buldyrev,, S. Havlin,, M. G. E. da Luz,, E. P. Raposo, and, H. E. Stanley. 1999. Optimizing the success of random searches. Nature 401:911914.
131. Volfson, D.,, J. Marciniak,, W. J. Blake,, N. Ostroff,, L. S. Tsimring., and, J. Hasty. 2006. Origins of extrinsic variability in eukaryotic gene expression. Nature 439:861864.
132. Voss, T. S.,, J. Healer,, A. J. Marty,, M. F. Duffy,, J. K. Thompson,, J. G. Beeson,, J. C. Reeder,, B. S. Crabb, and, A. F. Cowman. 2006. A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria. Nature 439:10041008.
133. Wadhams, G. H.,, and J. P. Armitage. 2004. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5:10241037.
134. Wallace, M. A.,, S. Bailey,, J M. Fukuto,, J. S. Valentine, and, E. B. Gralla. 2005. Induction of phenotypes resembling CuZn-superoxide dismutase deletion in wild-type yeast cells:an in vivo assay for the role of superoxide in the toxicity of redox-cycling compounds. Chem. Res. Toxicol. 18:12791286.
135. Wang, J. Q.,, W. D. Liu,, T. Uno,, H. Tonozuka,, K. Mitsui, and, K. Tsurugi. 2000. Cellular stress responses oscillate in synchronization with the ultradian oscillation of energy metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 189:913.
136. Wiuff, C.,, R. M. Zappala,, R. R. Regoes,, K. N. Garner,, F. Baquero, and, B. R. Levin. 2005. Phenotypic tolerance: antibiotic enrichment of noninherited resistance in bacterial populations. Antimicrob. Agents Chemother. 49:14831494.
137. Wolfson, J. S.,, D. C. Hooper,, G. L. McHugh,, M. A. Bozza, and, M. N. Swartz. 1990. Mutants of Escherichia-coli K-12 exhibiting reduced killing by both quinolone and beta-lactam antimicrobial agents. Antimicrob. Agents Chemother. 34:19381943.
138. Wu, W.,, C. Pujol,, S. R. Lockhart, and, D. R. Soll. 2005. Chromosome loss followed by duplication is the major mechanism of spontaneous mating-type locus homozygosis in Candida albicans. Genetics 169:1311-1327.
139. Zordan, R. E.,, D. J. Galgoczy, and, A. D. Johnson. 2006. Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc. Natl. Acad. Sci. USA 103:1280712812.

Tables

Generic image for table
TABLE 1

Major heterogeneously expressed microbial phenotypes and the relevant drivers of heterogeneity

Citation: Avery S. 2008. Microbial Cell Individuality, p 223-243. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error