1887

Chapter 14 : Nanomechanical Methods To Study Single Cells

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Nanomechanical Methods To Study Single Cells, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815509/9781555814069_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555815509/9781555814069_Chap14-2.gif

Abstract:

In recent years, many novel techniques based on scanning probe microscopies have been developed that have myriad applications in studying cells. This chapter introduces scanning probe microscopy and related techniques that can have application in high-resolution imaging of cells and real-time monitoring of multiple cellular components in a multimodal fashion. The techniques described are scanning probe microscopy, atomic force microscope (AFM), cantilever-based spectroscopy, and cantilever-based sensing. These techniques can be effectively extended to sensing, physiological studies, and diagnostics in biological and microbiological analyses. These truly interdisciplinary developments have immense potential to transcend academic and industrial barriers, and are expected to allow significant advancements in nanoscale studies in biological systems. Future probes may be envisioned to be hybrid and multifunctional such that reproducible and robust data may be collected on a large number of biological samples.

Citation: Desikan R, Tetard L, Passian A, Datar R, Thundat T. 2008. Nanomechanical Methods To Study Single Cells, p 245-265. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch14

Key Concept Ranking

Scanning Probe Microscopy
1.1022587
Electron Microscopy
0.74650335
Scanning Probe Microscopes
0.73385876
Atomic Force Microscopy
0.6773175
Light Microscopy
0.66199344
1.1022587
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic of an atomic force microscope.

Citation: Desikan R, Tetard L, Passian A, Datar R, Thundat T. 2008. Nanomechanical Methods To Study Single Cells, p 245-265. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Atomic resolution images on a mica surface.

Citation: Desikan R, Tetard L, Passian A, Datar R, Thundat T. 2008. Nanomechanical Methods To Study Single Cells, p 245-265. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Image of double-stranded DNA adsorbed on a mica surface ( ).

Citation: Desikan R, Tetard L, Passian A, Datar R, Thundat T. 2008. Nanomechanical Methods To Study Single Cells, p 245-265. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

AFM (contact-mode) images of erythrocytes from mice. Blood samples were diluted in phosphate-buffered saline, centrifuged onto freshly cleaved mica by using a cytospin, and fixed with methanol.

Citation: Desikan R, Tetard L, Passian A, Datar R, Thundat T. 2008. Nanomechanical Methods To Study Single Cells, p 245-265. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

AFM image of a macrophage from mouse lungs. Cells were centrifuged onto freshly cleaved mica by using a cytospin and fixed with methanol.

Citation: Desikan R, Tetard L, Passian A, Datar R, Thundat T. 2008. Nanomechanical Methods To Study Single Cells, p 245-265. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Cantilever deflection in an AFM due to contact with a surface. (i) The system is in equilibrium; (ii) the tip is in contact with the sample and the cantilever is compressed; and (iii) the force due to the extended cantilever equals the adhesive force, and it snaps back into the equilibrium position. ΔZu is the vertical displacement.

Citation: Desikan R, Tetard L, Passian A, Datar R, Thundat T. 2008. Nanomechanical Methods To Study Single Cells, p 245-265. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Deflections of two cantilevers coated with (BA) and (BC) when exposed to infrared light. The deflection response as a function of infrared wavelength resembles infrared absorption spectra of the adsorbed material ( ).

Citation: Desikan R, Tetard L, Passian A, Datar R, Thundat T. 2008. Nanomechanical Methods To Study Single Cells, p 245-265. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Desikan R, Tetard L, Passian A, Datar R, Thundat T. 2008. Nanomechanical Methods To Study Single Cells, p 245-265. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Desikan R, Tetard L, Passian A, Datar R, Thundat T. 2008. Nanomechanical Methods To Study Single Cells, p 245-265. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Desikan R, Tetard L, Passian A, Datar R, Thundat T. 2008. Nanomechanical Methods To Study Single Cells, p 245-265. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

A cartoon of cantilever bending caused by binding of target molecules to immobilized probe molecules present on the surface of the cantilever. The probes are immobilized only on one side, and target binding induces a differential stress on the cantilever.

Citation: Desikan R, Tetard L, Passian A, Datar R, Thundat T. 2008. Nanomechanical Methods To Study Single Cells, p 245-265. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Cantilever deflection as a function of exposure to tularemia in solution. Cantilever with immobilized antibodies shows bending due to antibody-antigen interaction. The small deflection observed with uncoated cantilever is due to changes in ionic concentration of the solution.

Citation: Desikan R, Tetard L, Passian A, Datar R, Thundat T. 2008. Nanomechanical Methods To Study Single Cells, p 245-265. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

Surface stress (proportional to cantilever bending) observed on a cantilever as a function of time during thiolated ssDNA immobilization on the cantilever surface.

Citation: Desikan R, Tetard L, Passian A, Datar R, Thundat T. 2008. Nanomechanical Methods To Study Single Cells, p 245-265. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815509.ch14
1. Abbe, E. 1873. Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch. Mikrosk. Anat. Entwicklung Mech. 9:413468.
2. Ashkin, A.,, J. M. Dziedzic,, J. E. Bjorkholm, and, S. Chu. 1986. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11:288290.
3. Bahatyrova, S.,, R. N. Frese,, C. A. Siebert,, J. D. Olsen,, K. O. Van der Werf,, R. Van Grondelle,, R. A. Niederman,, P. A. Bullough,, C. Otto, and, C. N. Hunter. 2004. The native architecture of a photosynthetic membrane. Nature 430:10581061.
4. Ballantine, D. S.,, R. M. White,, S. J. Martin,, A. J. Ricco,, G. C. Frye,, E. T. Zellers, and, Y. H. Wohltijen. 1996. Acoustic Wave Sensors. Academic Press, London, United Kingdom.
5. Bao, G.,, and S. Suresh. 2003. Cell and molecular mechanics of biological materials. Nat. Mater. 2:715725.
6. Betzig, E.,, A. Lewis,, A. Harootunian,, M. Isaacson, and, E. Kratschmer. 1986. Near field scanning optical microscopy (NSOM): development and biophysical applications. Biophys. J. 49:269279.
7. Binnig, G.,, C. F. Quate, and, C. H. Gerber. 1986. Atomic force microscope. Phys. Rev. Lett. 56:930933.
8. Binnig, G.,, H. Roher,, C. H. Gerber, and, E. Weibel. 1982. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49:5761.
9. Boisen, A.,, J. Thaysen,, H. Jensenius, and, O. Hansen. 2000. Environmental sensors based on micromachined cantilevers with integrated readout. Ultramicroscopy 82:1116.
10. Butt, H. J. 1996. A sensitive method to measure changes in the surface stress of solids. J. Colloid Interface Sci. 179:251260.
11. Butt, H. J.,, E. K. Wolff,, S. A. C. Gould,, B. D. Northern,, C. M. Peterson, and, P. K. Hansma. 1990. Imaging cells with the atomic force microscope. J. Struct. Biol. 105:5461.
12. Cherian, S.,, and T. Thundat. 2002. Determination of adsorption-induced variation in the spring constant of a microcantilever. Appl. Phys. Lett. 80:22192221.
13. Clausen-Schaumann, H.,, M. Seitz,, R. Kraut-bauer, and, H. E. Gaub. 2000. Force spectroscopy with single biomolecules. Curr. Opin. Chem. Biol. 4:524530.
14. Datskos, P. G.,, S. Rajic, and, I. Datskou. 1998. Photoinduced and thermal stress in silicon microcantilevers. Appl. Phys. Lett. 73:23192321.
15. Dufrêne, Y. F. 2001. Application of atomic force microscopy to microbial surfaces:from reconstituted cell surface layers to living. Micron 32:153165.
16. Dufrêne, Y. F.,, C. J. P. Boonaert,, P. A. Gerin,, M. Asther, and, P. G. Rouxhet. 1999. Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium. J. Bacteriol. 181:53505354.
17. Edidin, M. 2001. Near-field scanning optical microscopy, a siren call to biology. Traffic 2:797803.
18. Fotiadis, D.,, S. Scheuring,, S. A. Muller,, A. Engel, and, D. J. Muller. 2002. Imaging and manipulation of biological structures with the AFM. Micron 33:385397.
19. Giambattista, B.,, W. W. McNairy,, C. G. Slough,, A. Johnson,, L. D. Bell,, R. V. Coleman,, J. Schneir,, R. Sonnenfeld,, B. Drake, and, P. Hansma. 1987. Atomic resolution images of solid-liquid interfaces. Proc. Natl. Acad. Sci. USA 84:46714674.
20. Häberle, W.,, J. K. H. Hörber, and, G. Binnig. 1991. Force microscopy on living cells. J. Vac. Sci. Technol. B. 9:12101213.
21. Haeberle, W.,, M. Pantea, and, J. K. H. Hoerber. 2006. Nanometer-scale heat-conductivity measurements on biological samples. Ultramicroscopy 106:678686.
22. Hansen, K. M.,, H. F. Ji,, G. Wu,, R. Datar,, R. Cote,, A. Majumdar, and, T. Thundat. 2001. Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal. Chem. 73:15671571.
23. Hansma, P. K.,, V. B. Elings,, O. Marti, and, C. E. Bracker. 1988. Scanning tunneling microscopy and atomic force microscopy:application to biology and technology. Science 242:209216.
24. Haydon, P. G.,, R. Lartius,, V. Parpura, and, S. P. Marchese-Ragona. 1996. Membrane deformation of living glial cells using atomic force microscopy. J. Microsc. 182:114120.
25. Heinz, W. F.,, and J. H. Hoh. 1999. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Tibtech 17:143150.
26. Heisenberg, W. 1927. Ueber den anschaulichen inhalt der quantentheoretischen kinematik and mechanic. Z. Phys. 43:172198.
27. Hoh, J. H.,, and P. K. Hansma. 1992. Atomic force microscopy for high-resolution imaging in cell biology. Trends Cell. Biol. 2:208213.
28. Horber, J. K. H.,, and M. J. Miles. 2003. Scanning probe evolution in biology. Science 302:10021005.
29. Ji, H. F.,, K. M. Hansen,, Z. Hu, and, T. Thundat. 2001. Detection of pH variation using modified microcantilever sensors. Sens. Actuators B. 72:233238.
30. Ji, H. F.,, X. Yan,, J. Zhang, and, T. Thundat. 2004. Molecular recognition of biowarfare agents using micromechanical sensors. Expert Rev. Mol. Diagn. 4:859866.
31. Kasas, S.,, and A. Ikai. 1995. A method for anchoring round shaped cells for atomic force microscope imaging. Biophys. J. 68:16781680.
32. Kassies, R.,, K. O. Van Der Werf,, A. Lenferink,, C. N. Hunter,, J. D. Olsen,, V. Subramaniam, and, C. Otto. 2005. Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology. J. Microsc. 217:109116.
33. Kulzer, F.,, and M. Orrit. 2004. Single molecule optics. Ann. Rev. Phys. Chem. 55:585611.
34. Lal, R.,, and S. A. John. 1994. Biological applications of atomic force microscopy. Am. J. Physiol. 266:C1C21.
35. Langer, M. G.,, W. Offner,, H. Wittmann,, H. Flosser,, H. Schaar,, W. Haberle,, A. Pralle,, J. P. Ruppersberg, and, J. K. H. Horber. 1997. A scanning force microscopy for simultaneous force and patch-clamp measurements on living cell tissues. Rev. Sci. Instrum. 68:25832590.
36. Lee, G. U.,, D. A. Kidwell, and, R. J. Colton. 1994. Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 10:354361.
37. Liu, T.,, J. Tang,, M. Han, and, L. Jiang. 2003. A novel microgravimetric DNA sensor with high sensitivity. Biochem. Biophys. Res. Commun. 304:98100.
38. Mehta, A.,, S. Cherian,, D. Hedden, and, T. Thundat. 2001. Manipulation and controlled amplification of brownian motion of microcantilever sensors. Appl. Phys. Lett. 78:16371639.
39. Ming, S.,, S. Li, and, V. P. Dravid. 2003. Microcantilever resonance-based DNA detection with nanoparticle probes. Appl. Phys. Lett. 82:35623564.
40. Muralidharan, G.,, A. Mehta,, S. Cherian, and, T. Thundat. 2001. Analysis of amplification of thermal vibrations of a microcantilever. J. Appl. Phys. 89:45874591.
41. Nagao, E.,, and J. A. Dvorak. 1998. An integrated approach to the study of living cells by atomic force microscopy. J. Microsc. 191:819.
42. Pohl, D. W.,, W. Denk, and, M. Lanz. 1984. Optical stethoscopy: image recording with resolution 20. Appl. Phys. Lett. 44:651653.
43. Pralle, A.,, E. L. Florin,, E. H. K. Stelzer, and, J. K. H. Hörber. 2000. Photonic force microscopy: a new tool providing a new method to study membranes at the molecular level. Single Molec. 1:129133.
44. Proksch, R.,, R. Lal,, P. K. Hansma,, D. Morse, and, G. Stucky. 1996. Imaging the internal and external pore structure of membranes in fluid: tapping mode scanning ion conductance microscopy. Biophys. J. 71:21552157.
45. Radmacher, M.,, M. Fritz,, C. M. Kacher,, J. P. Cleveland, and, P. K. Hansma. 1996. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 7:556567.
46. Raiteri, R.,, M. Grattarola,, H. J. Butt, and, P. Skladal. 2001. Micromechanical cantilever-based biosensors. Sens. Actuators B. 79:115126.
47. Ricci, D.,, M. Tedesco, and, M. Grattarola. 1997. Mechanical and morphological properties of living 3T6 cells probed via scanning force microscopy. Microsc. Res. Tech. 36:165171.
48. Rizzuto, R.,, M. Brini,, P. Pizzo,, M. Murgia, and, T. Pozzan. 1995. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr. Biol. 5:635642.
49. Scheuring, S.,, D. J. Müller,, H. Stahlberg,, A. Engel, and, A. Engel. 2002. Sampling the conformational space of membrane protein surfaces with AFM. Eur. Biophys. J. 31:172178.
50. Shekhawat, G.,, S. H. Tark, and, V. P. Dravid. 2006. MOSFET-embedded microcantilevers for measuring deflection in biomolecular sensors. Science 311:15921595.
51. Shekhawat, G. S.,, and V. P. Dravid. 2005. Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 310:8992.
52. Shuttleworth, R. 1950. The surface tension of solids. Proc. Phys. Soc. (London), Ser. A 63:444457.
53. Stelzer, E. H. K. 2002. Light microscopy: beyond the diffraction limit? Nature 417:806807.
54. Stephens, D. J.,, and V. J. Allan. 2003. Light microscopy techniques for live cell imaging. Science 300:8286.
55. Stoney, G. G. 1909. The tension of metallic films deposited by electrolysis. Proc. R. Soc. London Ser. A 82:172175.
56. Synge, E. H. 1928. A suggested method for extending the microscopic resolution into the ultramicroscopic region. Phil. Mag. 6:356362.
57. Thaysen, J.,, R. Marie, and, A. Boisen. 2001. Cantilever-based bio-chemical sensor integrated in a microliquid handling system, p. 401–404. Technical Digest. MEMS: Proc. 14th IEEE International Conference on Micro Electro Mechanical Systems.
58. Thundat, T.,, D. P. Allison,, R. J. Warmack,, M. J. Doktycz,, K. B. Jacobson, and, G. M. Brown. 1993. Atomic force microscopy of single-and double-stranded deoxyribonucleic acid. J. Vac. Sci. Technol. A. 11:824828.
59. Thundat, T.,, P. I. Oden, and, R. J. Warmack. 1997. Chemical, physical, and biological detection using microcantilevers, p. 179–187. Proceedings of the Third International Symposium on Microstructures and Micro-fabricated Systems.
60. Van der Aa, B. C.,, R. M. Michel,, M. Asther,, M. T. Zamora,, P. G. Rouxhet, and, F. Dufrêne. 2001. Stretching cell surface macromolecules by atomic force microscopy. Langmuir 17:31163119.
61. Vesenka, J.,, C. Mosher,, S. Schaus,, L. Ambrosio, and, E. Henderson. 1995. Combining optical and atomic force microscopy for life sciences research. Biotechniques 19:240253.
62. Wang, C. 2004. The principle of micro thermal analysis using atomic force microscope. Thermochimica Acta 423:8997.
63. Wig, A.,, E. T. Arakawa,, A. Passian,, T. L. Ferrell, and, T. Thundat. 2006. Photothermal spectroscopy of Bacillus anthracis and Bacillus cereus with microcantilevers. Sens. Actuators B. 114:206211.
64. Wig, A.,, A. Passian,, E. Arakawa,, T. L. Ferrell, and, T. Thundat. 2004. Optical thin-film interference effects in microcantilevers. J. Appl. Phys. 95:11621165.
65. Wu, G.,, R. H. Datar,, K. M. Hansen,, T. Thundat,, R. J. Cote, and, A. Majumdar. 2001a. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 19:856860.
66. Wu, G.,, H. Ji,, K. M. Hansen,, T. Thundat,, R. Datar,, R. Cote,, M. F. Hagan,, A. K. Chakraborty, and, A. Majumdar. 2001b. Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc. Natl. Acad. Sci. USA 98:15601564.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error