Chapter 3 : DNA Replication and Cell Cycle

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

DNA Replication and Cell Cycle, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap03-2.gif


This chapter describes the recent advances that have been made in understanding the biochemical players that facilitate the complex macromolecular process that mediates faithful replication of archaeal chromosomes. The current state of knowledge of the machineries that drive the archaeal cell cycle is discussed. In bacteria, the functional single-stranded DNA-binding proteins (SSBs) is a homotetramer that wraps 65 nucleotides. Pol α, Pol δ, and Pol ε are the major replicative polymerases, with Pol δ acting on the lagging strand and both acting on the leading strand of DNA replication. Sliding clamps are well known for their role in DNA replication, but they also interact with factors involved in other cellular processes, such as DNA repair and recombination, and cell cycle regulators. While an ever-growing body of data has yielded considerable insight into the form and function of the archaeal DNA replication machinery, much less is known about the details of the archaeal cell cycle and its control. Indeed, what little is known appears to be suggesting that diverse mechanisms may be employed to regulate chromosome copy number, to coordinate DNA replication and cell division, and even to mediate the process of cell division itself. Researchers examined nucleoid distribution during the cell cycle, and the results suggested that chromosome segregation was concomitant with DNA replication, as was proposed for , in a mode akin to that employed by bacteria.

Citation: Lao-Sirieix S, Marsh V, Bell S. 2007. DNA Replication and Cell Cycle, p 93-109. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch3

Key Concept Ranking

Family C DNA Polymerase
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Cartoon of the steps involved in DNA replication. Panels A to E describe the assembly of replication fork components at an origin of replication. SSB has been omitted for visual clarity. Panels F and G show detail at a single replication fork.

Citation: Lao-Sirieix S, Marsh V, Bell S. 2007. DNA Replication and Cell Cycle, p 93-109. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Sequence conservation of ORM and mini-ORB (m-ORB) elements at archaeal origins of replication. These serve as binding sites for orthologs of the Cdc6-1 protein. The arrows indicate an imperfect inverted repeat found in the elements. Sso, ; Halo, NRC1; Pab, ).

Citation: Lao-Sirieix S, Marsh V, Bell S. 2007. DNA Replication and Cell Cycle, p 93-109. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Domain organization of an MCM monomer. The crystal structure of the N-terminal region of has been solved. This region forms a double hexamer; for simplicity, only one hexamer is shown. The DNA-binding fj-hair-pin structures are indicated. HTH, helix-turn-helix domain. Modified from ( ) with permission of the publishers.

Citation: Lao-Sirieix S, Marsh V, Bell S. 2007. DNA Replication and Cell Cycle, p 93-109. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Models for the mechanism of DNA unwinding by the MCM helicase. (A) Single hexamer of MCM translocating along single-stranded DNA in a 3to 5direction with the C-terminal AAA domain leading. As it translocates, it unzips DNA ahead of it. A similar situation is shown in B, the difference being that the displaced strand is passed out through an exit channel in the MCM hexamer. An implication of this model is that the motor domain of MCM would bind to double-stranded DNA and the N-terminal domains would bind to single-stranded DNA. (C) A cutaway model of a double hexamer of MCM, with only two of the subunits of each hexamer shown. In this model, the two hexamers are held together by the N-terminal domains, and rather than hexamers moving on DNA, DNA is pumped into the central cavity of the double hexamer. Single-stranded loops of DNA are generated, and these are extruded from the body of the enzyme.

Citation: Lao-Sirieix S, Marsh V, Bell S. 2007. DNA Replication and Cell Cycle, p 93-109. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Crystal structure of the heterodimeric core primase of . The two subunits are indicated, as are the catalytic aspartate residues. As the regulatory subunit is spatially removed from the catalytic site, it is proposed that this subunit exerts its effect by modulating primer length (see reference ).

Citation: Lao-Sirieix S, Marsh V, Bell S. 2007. DNA Replication and Cell Cycle, p 93-109. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Model for loading of the PCNA clamp by RF-C. Binding of ATP by RF-C permits formation of the RF-C-PCNA complex. This leads to PCNA opening, presumably by repositioning of the RF-C subunits. DNA is loaded and the clamp resealed. None of these steps require ATP hydrolysis. ATP hydrolysis is, however, required for the next stage, recruitment of DNA polymerase (DNA pol) and release of RF-C.

Citation: Lao-Sirieix S, Marsh V, Bell S. 2007. DNA Replication and Cell Cycle, p 93-109. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

A model for the interplay between origin activity and transcriptional regulation of and genes. The model postulates that upon binding to the origins adjacent to their own genes, Cdc6-1 and/or Cdc6-3 exert negative regulation of their own expression. It is further proposed that the gene becomes active at late S phase. This could conceivably be by Cdc6-1 and/or Cdc6-3 activating expression (not shown). In G2, remaining Cdc6-1 and Cdc6-3 protein levels decay and Cdc6-2 levels rise. Cdc6-2 could act as an activator of and and as repressor of its own expression, thereby reducing its own levels, elevating Cdc6-1 and Cdc6-3, and preparing cells for another round of replication following division.

Citation: Lao-Sirieix S, Marsh V, Bell S. 2007. DNA Replication and Cell Cycle, p 93-109. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Augustin, M. A.,, R. Huber, and, J. T. Kaiser. 2001. Crystal structure of a DNA-dependent RNA polymerase (DNA primase). Nat. Struct. Biol. 8:5761.
2. Baker, T. A.,, B. E. Funnell, and, A. Kornberg. 1987. Helicase action of Dnab protein during replication from the Es-cherichia coli chromosomal origin in vitro. J. Biol. Chem. 262:68776885.
3. Bell, S. D.,, C. H. Botting,, B. N. Wardleworth,, S. P. Jackson, and, M. F. White. 2002. The interaction of Alba, a conserved archaeal, chromatin protein, with Sir2 and its regulation by acetylation. Science 296:148151.
4. Bell, S. P., and, A. Dutta. 2002. DNA replication in eukaryotic cells. Ann. Rev. Biochem. 71:333374.
5. Bernander, R. 2000. Chromosome replication, nucleoid segregation and cell division in Archaea. Trends Microbiol. 8:278283.
6. Bernander, R., and, A. Poplawski. 1997. Cell cycle characteristics of thermophilic archaea. J. Bacteriol. 179:49634969.
7. Berquist, B. R., and, S. DasSarma. 2003. An archaeal chromosomal autonomously replicating sequence element from an extreme halophile, Halobacterium sp. strain NRC-1. J. Bacteriol. 185:59595966.
8. Bochkarev, A., and, E. Bochkareva. 2004. From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr. Opin. Struct. Biol. 14:3642.
9. Bochkarev, A.,, E. Bochkareva,, L. Frappier, and, A. M. Edwards. 1999. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single- stranded DNA binding. EMBO J. 18:44984504.
10. Bocquier, A. A.,, L. D. Liu,, I. K. O. Cann,, K. Komori,, D. Kohda, and, Y. Ishino. 2001. Archaeal primase: bridging the gap between RNA and DNA polymerases. Curr. Biol. 11:452456.
11. Bowman, G. D.,, M. OʹDonnell, and, J. Kuriyan. 2004. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 429:724730.
12. Bramhill, D., and, A. Kornberg. 1988. A model for initiation at origins of DNA-replication. Cell 54:915918.
13. Brill, S. J., and, B. Stillman. 1991. Replication factor-a from Saccharomyces cerevisiae is encoded by 3 essential genes co-ordinately expressed at S-ohase. Genes Dev. 5:15891600.
14. Cann, I. K.,, S. Ishino,, N. Nomura,, Y. Sako, and, Y. Ishino. 1999. Two family B DNA polymerases from Aeropyrum pernix, an aerobic hyperthermophilic crenarchaeote. J. Bacteriol. 181:59845892.
15. Cann, I. K.,, K. Komori,, H. Toh,, S. Kanai, and, Y. Ishino. 1998. A heterodimeric DNA polymerase: evidence that members of Euryarchaeota possess a distinct DNA polymerase. Proc. Natl. Acad. Sci. USA 95:1425014255.
16. Cann, I. K. O.,, S. Ishino,, I. Hayashi,, K. Komori,, H. Toh,, K. Morikawa, and, Y. Ishino. 1999. Functional interactions of a homolog of proliferating cell nuclear antigen with DNA polymerases in Archaea. J. Bacteriol. 181:65916599.
17. Cann, I. K. O.,, S. Ishino,, M. Yuasa,, H. Daiyasu,, H. Toh, and, Y. Ishino. 2001. Biochemical analysis of replication factor C from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 183:26142623.
18. Capaldi, S. A., and, J. M. Berger. 2004. Biochemical characterization of Cdc6/Orc1 binding to the replication origin of the euryarchaeon Methanothermobacter thermoautotrophicus. Nucleic Acids Res. 32:48214832.
19. Carpentieri, F.,, M. De Felice,, M. De Falco,, M. Rossi, and, F. M. Pisani. 2002. Physical and functional interaction between the mini-chromosome maintenance-like DNA helicase and the single-stranded DNA binding protein from the crenarchaeon Sulfolobus solfataricus. J. Biol. Chem. 277:1211812127.
20. Chapados, B. R.,, D. J. Hosfield,, S. Han,, J. Z. Qiu,, B. Yelent,, B. H. Shen, and, J. A. Tainer. 2004. Structural basis for FEN-1 substrate specificity and PCNA- mediated activation in DNA replication and repair. Cell 116:3950.
21. Chen, Y. J.,, X. O. Yu,, R. Kasiviswanathan,, J. H. Shin,, Z. Kelman, and, E. H. Egelman. 2005. Structural polymorphism of Methanothermobacter thermautotrophicus MCM. J. Mol. Biol. 346:389394.
22. Chong, J. P. J.,, M. K. Hayashi,, M. N. Simon,, R. M. Xu, and, B. Stillman. 2000. A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc. Natl. Acad. Sci. USA 97:15301535.
23. Connolly, B. A.,, M. J. Fogg,, G. Shuttleworth, and, B. T. Wilson. 2003. Uracil recognition by archaeal family B DNA polymerases. Biochem. Soc. Trans. 31:699702.
24. Cullmann, G.,, K. Fien,, R. Kobayashi, and, B. Stillman. 1995. Characterization of the 5 Replication Factor-C Genes of Saccharomyces cerevisiae. Mol. Cell. Biol. 15:46614671.
25. Daimon, K.,, Y. Kawarabayasi,, H. Kikuchi,, Y. Sako, and, Y. Ishino. 2002. Three proliferating cell nuclear antigen-like proteins found in the hyperthermophilic archaeon Aeropyrum pernix: Interactions with the two DNA polymerases. J. Bacteriol. 184:687694.
26. Davey, M. J.,, L. H. Fang,, P. Mclnerney,, R. E. Georgescu, and, M. OʹDonnell. 2002. The DnaC helicase loader is a dual ATP/ADP switch protein. EMBO J. 21:31483159.
27. Davey, M. J.,, D. Jeruzalmi,, J. Kuriyan, and, M. OʹDonnell. 2002. Motors and switches: AAA+ machines within the replisome. Nat. Rev. Mol. Cell. Biol. 3:826835.
28. De Falco, M.,, A. Fusco,, M. De Felice,, M. Rossi, and, F. M. Pisani. 2004. The DNA primase of Sulfolobus solfataricus is activated by substrates containing a thymine-rich bubble and has a 3ʹ-terminal nucleotidyl-transferase activity. Nucleic. Acids Res. 32:52235230.
29. Delia, M.,, P. L. Palmbos,, H. M. Tseng,, L. M. Tonkin,, J. M. Daley,, L. M. Topper,, R. S. Pitcher,, A. E. Tomkinson,, T. E. Wilson, and, A. J. Doherty. 2004. Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science 306:683685.
30. Dervyn, E.,, C. Suski,, R. Daniel,, C. Bruand,, J. Chapuis,, J. Errington,, L. Janniere, and, S. D. Ehrlich. 2001. Two essential DNA polymerases at the bacterial replication fork. Science 294:17161719.
31. Dionne, I.,, R. K. Nookala,, S. P. Jackson,, D. A. J., and, S. D. Bell. 2003. A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol. Cell 11:275282.
32. Dionne, I.,, N. P. Robinson,, A. T. McGeoch,, V. L. Marsh,, A. Reddish, and, S. D. Bell. 2003. DNA replication in the hyperthermophilic archaeon Sulfolobus solfataricus. Biochem. Soc. Trans. 31(Pt 3):674676.
33. Fang, L. H.,, M. J. Davey, and, M. OʹDonnell. 1999. Replisome assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin. Mol. Cell 4:541553.
34. Fletcher, R. J.,, B. E. Bishop,, R. P. Leon,, R. A. Sclafani,, C. M. Ogata, and, X. S. Chen. 2003. The structure and function of MCM from archaeal M. thermoautotrophicum. Nat. Struct. Biol. 10:160167.
35. Fogg, M. J.,, L. H. Pearl, and, B. A. Connolly. 2002. Structural basis for uracil recognition by archaeal family B DNA polymerases. Nat. Struct. Biol. 9:922927.
36. Frick, D. N., and, C. C. Richardson. 2001. DNA primases. Annu. Rev. Biochem. 70:3980.
37. Fukui, T.,, K. Yamauchi,, T. Muroya,, M. Akiyama,, H. Maki,, A. Sugino, and, S. Waga. 2004. Distinct roles of DNA polymerases delta and epsilon at the replication fork in Xenopus egg extracts. Genes Cells 9:179191.
38. Funnell, B. E.,, T. A. Baker, and, A. Kornberg. 1987. In vitro assembly of a prepriming complex at the origin of the Escherichia coli chromosome. J. Biol. Chem. 262:1032710334.
39. Gai, D. H.,, R. Zhao,, D. W. Li,, C. V. Finkielstein, and, X. S. Chen. 2004. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 119:4760.
40. Gomes, X. V., and, P. M. J. Burgers. 2001. ATP utilization by yeast replication factor C I. ATP-mediated interaction with DNA and with proliferating cell nuclear antigen. J. Biol. Chem. 276:3476834775.
41. Gomes, X. V.,, S. L. G. Schmidt, and, P. M. J. Burgers. 2001. ATP utilization by yeast replication factor C II. Multiple stepwise ATP binding events are required to load proliferating cell nuclear antigen onto primed DNA. J. Biol. Chem. 276:3477634783.
42. Grainge, I.,, S. Scaife, and, D. Wigley. 2003. Biochemical analysis of components of the pre-replication complex of Archaeoglobus fulgidus. Nucleic Acids. Res. 31:48884898.
43. Haseltine, C. A., and, S. C. Kowalczykowski. 2002. A distinctive single-stranded DNA-binding protein from the archaeon Sulfolobus solfataricus. Mol. Microbiol. 43:15051515.
44. Henneke, G.,, D. Flament,, U. Hubscher,, J. Querellou, and, J. P. Raffin. 2005. The hyperthermophilic euryarchaeota Pyrococcus abyssi likely requires the two DNA polymerases D and B for DNA replication. J. Mol. Biol. 350:5364.
45. Henneke, G.,, Y. Gueguen,, D. Flament,, P. Azam,, J. Querellou,, J. Dietrich,, U. Hubscher, and, J. P. Raffin. 2002. Replication factor C from the hyperthermophilic archaeon Pyrococcus abyssi does not need ATP hydrolysis for clamp- loading and contains a functionally conserved RFC PCNA-binding domain. J. Mol. Biol. 323:795810.
46. Henneke, G.,, J. P. Raffin,, E. Ferrari,, Z. O. Jonsson,, J. Dietrich, and, U. Hubscher. 2000. The PCNA from Thermococcus fumicolans functionally interacts with DNA polymerase delta. Biochem. Biophys. Res. Commun. 276:600606.
47. Herrmann, U., and, J. Soppa. 2002. Cell cycle-dependent expression of an essential SMC-like protein and dynamic chromosome localization in the archaeon Halobacterium salinarum. Mol. Microbiol. 46:395409.
48. Hjort, K., and, R. Bernander. 2001. Cell cycle regulation in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius. Mol. Microbiol. 40:225234.
49. Hubscher, U.,, G. Maga, and, S. Spadari. 2002. Eukaryotic DNA polymerases. Annu. Rev. Biochem. 71:133163.
50. Ito, N.,, O. Nureki,, M. Shirouzu,, S. Yokoyama, and, F. Hanaoka. 2003. Crystal structure of the Pyrococcus horikoshii DNA primase-UTP complex: implications for the mechanism of primer synthesis. Genes Cells 8:913923.
51. Iyer, L. M.,, E. V. Koonin,, D. D. Leipe, and, L. Aravind. 2005. Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. Nucleic Acids. Res. 33:38753896.
52. Iyer, L. M.,, D. D. Leipe,, E. V. Koonin, and, L. Aravind. 2004. Evolutionary history and higher order classification of AAA plus ATPases. J. Struct. Biol. 146:1131.
53. Jacob, F.,, S. Brenner, and, F. Kuzin. 1963. On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quant. Biol. 28:329348.
54. Jeruzalmi, D.,, M. OʹDonnell, and, J. Kuriyan. 2002. Clamp loaders and sliding clamps. Curr. Opin. Struct. Biol. 12:217224.
55. Jeruzalmi, D.,, M. OʹDonnell, and, J. Kuriyan. 2001. Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell 106:429441.
56. Jeruzalmi, D.,, M. OʹDonnell, and, J. Kuriyan. 2001. Structural studies of DNA polymerase processivity clamp loading. Mol. Biol. Cell 12:2191.
57. Jeruzalmi, D.,, O. Yurieva,, Y. X. Zhao,, M. Young,, J. Stewart,, M. Hingorani,, M. OʹDonnell, and, J. Kuriyan. 2001. Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E-coli DNA polymerase III. Cell 106:417428.
58. Kelly, T. J.,, P. Simancek, and, G. S. Brush. 1998. Identification and characterization of a single-stranded DNA- binding protein from the archaeon Methanococcus jannaschii. Proc. Natl. Acad. Sci. USA 95:1463414639.
59. Kelman, L. M., and, Z. Kelman. 2003. Archaea: an archetype for replication initiation studies?. Mol. Microbiol. 48:605616.
60. Kelman, Z., and, J. Hurwitz. 1998. Protein-PCNA interactions: a DNA-scanning mechanism?. Trends Biochem. Sci. 23:236238.
61. Kelman, Z., and, J. Hurwitz. 2000. A unique organization of the protein subunits of the DNA polymerase clamp loader in the archaeon Methanobacterium thermoautotrophicum Delta H. Biol. Chem. 275:73277336.
62. Kelman, Z.,, J. K. Lee, and, J. Hurwitz. 1999. The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum Delta H contains DNA helicase activity. Proc. Natl. Acad. Sci. USA 96:1478314788.
63. Kerr, I. D.,, R. I. M. Wadsworth,, L. Cubeddu,, W. Blankenfeldt,, J. H. Naismith, and, M. F. White. 2003. Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus SSB protein. EMBO J. 22:25612570.
64. Komori, K., and, Y. Ishino. 2001. Replication protein A in Pyrococcus furiosus is involved in homologous DNA recombination. J. Biol. Chem. 276:2565425660.
65. Lao-Sirieix, S. H., and, S. D. Bell. 2004. The heterodimeric primase of the hyperthermophilic archaeon Sulfolobus solfataricus possesses DNA and RNA primase, polymerase and 3ʹ-terminal nucleotidyl transferase activities. J. Mol. Biol. 344:12511263.
66. Lao-Sirieix, S. H.,, R. K. Nookala,, P. Roversi,, S. D. Bell, and, L. Pellegrini. 2005. Structure of the heterodimeric core primase. Nat. Struct. Mol. Biol. 12:11371144.
67. Lao-Sirieix, S. H.,, L. Pellegrini, and, S. D. Bell. 2005. The promiscuous primase. Trends Genet. 21:568572.
68. Li, D. W.,, R. Zhao,, W. Lilyestrom,, D. H. Gai,, R. G. Zhang,, J. A. DeCaprio,, E. Fanning,, A. Jochimiak,, G. Szakonyi, and, X. J. S. Chen. 2003. Structure of the replicative helicase of the on-coprotein SV40 large tumour antigen. Nature 423:512518.
69. Lipps, G.,, S. Rother,, C. Hart, and, G. Krauss. 2003. A novel type of replicative enzyme harbouring ATPase, primase and DNA polymerase activity. EMBO J. 22:25162525.
70. Liu, L. D.,, K. Komori,, S. Ishino,, A. A. Bocquier,, I. K. O. Cann,, D. Kohda, and, Y. Ishino. 2001. The archaeal DNA primase—biochemical characterization of the p41-p46 complex from Pyrococcus furiosus. J. Biol. Chem. 276:4548445490.
71. Lundgren, M.,, A. Andersson,, L. M. Chen,, P. Nilsson, and, R. Bernander. 2004. Three replication origins in Sulfolobus species: Synchronous initiation of chromosome replication and asynchronous termination. Proc. Natl. Acad. Sci. USA 101:70467051.
72. Maisnier-Patin, S.,, L. Malandrin,, N. K. Birkeland, and, R. Bernander. 2002. Chromosome replication patterns in the hyperthermophilic euryarchaea Archaeoglobus fulgidus and Methanocaldococcus (Methanococcus) jannaschii. Mol. Microbiol. 45:14431450.
73. Majernik, A. I.,, M. Lundgren,, P. McDermott,, R. Bernander, and, J. P. J. Chong. 2005. DNA content and nucleoid distribution in Methanothermobacter thermautotrophicus. J. Bacteriol. 187:18561858.
74. Malandrin, L.,, H. Huber, and, R. Bernander. 1999. Nucleoid structure and partition in Methanococcus jannaschii: an Archaeon with multiple copies of the chromosome. Genetics 152:13151323.
75. Matsui, E.,, M. Nishio,, H. Yokoyama,, K. Harata,, S. Darnis, and, I. Matsui. 2003. Distinct domain functions regulating de novo DNA synthesis of thermostable DNA primase from hyperthermophile Pyrococcus horikoshii. Biochemistry 42:1496814976.
76. Matsumiya, S.,, Y. Ishino, and, K. Morikawa. 2001. Crystal structure of an archaeal DNA sliding clamp: proliferating cell nuclear antigen from Pyrococcus furiosus. Protein Sci. 10:1723.
77. Matsunaga, F.,, P. Forterre,, Y. Ishino, and, H. Myllykallio. 2001. In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin. Proc. Natl. Acad. Sci. USA 98:1115211157.
78. Matsunaga, F.,, C. Norais,, P. Forterre, and, H. Myllykallio. 2003. Identification of short ʹeukaryoticʹ Okazaki fragments synthesized from a prokaryotic replication origin. EMBO Rep. 4:154158.
79. McGeoch, A. T., and, S. D. Bell. 2005. Eukaryotic/Archaeal primase and MCM proteins encoded in a bacteriophage genome. Cell 120:167168.
80. McGeoch, A. T.,, M. A. Trakselis,, R. A. Laskey, and, S. D. Bell. 2005. Organization of the archaeal MCM complex on DNA and implications for helicase mechanism. Nat. Struct. Mol. Biol. 12:756–762
81. McHenry, C. S. 2003. Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences. Mol. Microbiol. 49:11571165.
82. Mechali, M. 2001. DNA replication origins: from sequence specificity to epigenetics. Nat. Rev. Genet. 2:640645.
83. Messer, W. 2002. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol. Rev. 26:355374.
84. Messer, W.,, F. Blaesing,, D. Jakimowicz,, M. Krause,, J. Majka,, J. Nardmann,, S. Schaper,, H. Seitz,, C. Speck,, C. Weigel,, G. Wegrzyn,, M. Welzeck, and, J. Zakrzewska-Czerwinska. 2001. Bacterial replication initiator DnaA. Rules for DnaA binding and roles of DnaA in origin unwinding and helicase loading. Biochimie 83:512.
85. Miyata, T.,, T. Oyama,, K. Mayanagi,, S. Ishino,, Y. Ishino, and, K. Morikawa. 2004. The clamp-loading complex for processive DNA replication. Nat. Struct. Mol. Biol. 11:632636.
86. Murzin, A. G. 1993. Ob(oligonucleotide oligosaccharide binding)-fold—common structural and functional solution for nonhomologous sequences. EMBO J. 12:861867.
87. Myllykallio, H.,, P. Lopez,, P. Lopez-Garcia,, R. Heilig,, W. Saurin,, Y. Zivanovic,, H. Philippe, and, P. Forterre. 2000. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 288:22122215.
88. Napoli, A.,, A. Valenti,, V. Salerno,, M. Nadal,, F. Garnier,, M. Rossi, and, M. Ciaramella. 2005. Functional interaction of reverse gyrase with single-strand binding protein of the archaeon Sulfolobus. Nucleic Acids Res. 33:564576.
89. Pape, T.,, H. Meka,, S. X. Chen,, G. Vicentini,, M. van Heel, and, S. Onesti. 2003. Hexameric ring structure of the full-length archaeal MCM protein complex. EMBO Rep. 4:10791083.
90. Pisani, F. M.,, M. De Felice,, F. Carpentieri, and, M. Rossi. 2000. Biochemical characterization of a clamp-loader complex homologous to eukaryotic replication factor C from the hyperthermophilic archaeon Sulfolobus solfataricus. J. Mol. Biol. 301:6173.
91. Poplawski, A.,, B. Grabowski,, S. F. Long, and, Z. Kelman. 2001. The zinc finger domain of the archaeal minichromosome maintenance protein is required for helicase activity. J. Biol. Chem. 276:4937149377.
92. Raghunathan, S.,, A. G. Kozlov,, T. M. Lohman, and, G. Waksman. 2000. Structure of the DNA binding domain of E-coli SSB bound to ssDNA. Nat. Struct. Biol. 7:648652.
93. Raghunathan, S.,, C. S. Ricard,, T. M. Lohman, and, G. Waksman. 1997. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-angstrom resolution. Proc. Natl. Acad. Sci. USA 94:66526657.
94. Ramadan, K.,, I. V. Shevelev,, G. Maga, and, U. Hubscher. 2004. De novo DNA synthesis by human DNA polymerase lambda, DNA polymerase mu and terminal deoxyribonucleotidyl transferase. J. Mol. Biol. 339:395404.
95. Robbins, J. B.,, M. C. Murphy,, B. A. White,, R. I. Mackie,, T. Ha, and, I. K. O. Cann. 2004. Functional analysis of multiple single-stranded DNA-binding proteins from Methanosarcina acetivorans and their effects on DNA synthesis by DNA polymerase BI. J. Biol. Chem. 279:63156326.
96. Robinson, N. P., and, S. D. Bell. 2005. Origins of DNA replication in the three domains of life. FEBS J. 272:37573766.
97. Robinson, N. P.,, I. Dionne,, M. Lundgren,, V. L. Marsh,, R. Bernander, and, S. D. Bell. 2004. Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell 116:2538.
98. Sakurai, S.,, K. Kitano,, H. Yamaguchi,, K. Hamada,, K. Okada,, K. Fukuda,, M. Uchida,, E. Ohtsuka,, H. Morioka, and, T. Hakoshima. 2005. Structural basis for recruitment of human flap endonuclease 1 to PCNA. EMBO J. 24:683693.
99. Seybert, A.,, D. J. Scott,, S. Scaife,, M. R. Singleton, and, D. B. Wigley. 2002. Biochemical characterisation of the clamp/ clamp loader proteins from the euryarchaeon Archaeoglobus fulgidus. Nucleic Acids Res. 30:43294338.
100. Seybert, A., and, D. B. Wigley. 2004. Distinct roles for ATP binding and hydrolysis at individual subunits of an archaeal clamp loader. EMBO J. 23:13601371.
101. Shechter, D. F.,, C. Y. Ying, and, J. Gautier. 2000. The intrinsic DNA helicase activity of Methanobacterium thermoautotrophicum Delta H minichromosome maintenance protein. J. Biol. Chem. 275:1504915059.
102. Sherratt, D. J. 2003. Bacterial chromosome dynamics. Science 301:780785.
103. Shin, J. H.,, B. Grabowski,, R. Kasiviswanathan,, S. D. Bell, and, Z. Kelman. 2003. Regulation of minichromosome maintenance helicase activity by Cdc6. J. Biol. Chem. 278:3805938067.
104. Shin, J. H.,, Y. Jiang,, B. Grabowski,, J. Hurwitz, and, Z. Kelman. 2003. Substrate requirements for duplex DNA translocation by the eukaryal and archaeal minichromosome maintenance helicases. J. Biol. Chem. 278:4905349062.
105. Singleton, M. R.,, M. R. Sawaya,, T. Ellenberger, and, D. B. Wigley. 2000. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101:589600.
106. Tenney, D. J.,, A. K. Sheaffer,, W. W. Hurlburt,, M. Bifano, and, R. K. Hamatake. 1995. Sequence-dependent primer synthesis by the Herpes Simplex Virus helicase-primase complex. J. Biol. Chem. 270:91299136.
107. Toth, E. A.,, Y. Li,, M. R. Sawaya,, Y. F. Cheng, and, T. Ellenberger. 2003. The crystal structure of the bifunctional primase-helicase of bacteriophage T7. Mol. Cell 12:11131123.
108. Trakselis, M. A., and, S. D. Bell. 2004. The loader of the rings. Nature 429:708709.
109. Vivona, J. B., and, Z. Kelman. 2003. The diverse spectrum of sliding clamp interacting proteins. FEBS Lett. 546:167172.
110. Wadsworth, R. I. M., and, M. F. White. 2001. Identification and properties of the crenarchaeal single-stranded DNA binding protein from Sulfolobus solfataricus. Nucleic Acids Res. 29:914920.
111. Warbrick, E. 2000. The puzzle of PCNAʹs many partners. Bioessays 22:9971006.
112. Wold, M. S. 1997. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66:6192.
113. Yu, X.,, M. S. VanLoock,, A. Poplawski,, Z. Kelman,, T. Xiang,, B. K. Tye, and, E. A. Egelman. 2002. The Methanobacterium thermoautotrophicum MCM protein can form heptameric rings. EMBO Rep. 3:792797.
114. Zhang, R., and, C. Zhang. 2003. Multiple replication origins of the archaeon Halobacterium species NRC-1. Biochem. Biophys. Res. Commun. 302:728734.


Generic image for table
Table 1.

Identity of the factors that catalyze the various stages of DNA replication described in Fig. 1

Citation: Lao-Sirieix S, Marsh V, Bell S. 2007. DNA Replication and Cell Cycle, p 93-109. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch3
Generic image for table
Table 2.

Composition of SSBs in , , and , highlighting differences in subunit composition and architecture

Citation: Lao-Sirieix S, Marsh V, Bell S. 2007. DNA Replication and Cell Cycle, p 93-109. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error