Chapter 10 : Protein-Folding Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Protein-Folding Systems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap10-2.gif


This chapter describes the known members of archaeal protein-folding pathways, including not only the heat-shock-regulated members, but also the non-heat-shock-regulated protein chaperones. The major chaperone classes, heat shock protein (Hsp) 100 and Hsp90/Hsp83, are absent from the genomes of the hyperthermophilic archaea, although they are present in several mesophilic and thermophilic archaea. In archaea, with one exception, prefoldins are hexamers consisting of two α-subunits and four β-subunits, which act as generalized holding chaperones. The holding-and-release mechanism of the archaeal prefoldins has recently been elucidated. The archaeal group II chaperonins form toroidal double rings with an eightor ninefold symmetry, consisting of homologous subunits. The subunit composition of the chaperonin complexes in several archaea changes with growth temperature. The known properties, arrest and ATPase activity, and structural characteristics of archaeal chaperonins are provided in this chapter. The helical protrusion is strictly conserved among group II chaperonins. The existing evidence indicates that asymmetric and symmetric molecules are present in the functional ATPase cycle of archaeal group II chaperonins. The coexistence of both groups of chaperonins in the same cytosol in the Methanosarcina species provides a useful model system for studying the differential substrate specificities of the group I and II chaperonins, and for elucidating how newly synthesized proteins are sorted from the ribosome to the appropriate chaperonin for folding.

Citation: Orbb F, Izuka R, Yohda M. 2007. Protein-Folding Systems, p 209-223. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Structure of the prefoldin from M. thermautotrophicus. The globular body and coiled coils extensions in the “jellyfish” model form an adjustable cage that accommodates and binds proteins by a clamp mechanism (59). Reproduced from Nature Reviews Microbiology (53) with permission of the publisher.

Citation: Orbb F, Izuka R, Yohda M. 2007. Protein-Folding Systems, p 209-223. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Effect of chaperones sHsp and Hsp60 on the thermostability of Taq DNA polymerase in the presence of P. furiosus molecular chaperones. (A) Inactivation of Taq polymerase in the presence of individual subunits of sHsp (Δ), Hsp60 (□), Hsp60-Mg2+-ATP (▪), sHsp and HSP60 (◊), and sHsp and Hsp60-Mg2+-ATP (♦). The controls are reactions without the addition of chaperones (◦) and with the addition of Mg2+ and ATP (•). (B) Inactivation of Taq polymerase in the presence of individual subunits of prefoldin, prefoldin α (Δ) and β (▲), prefoldin complex (?), Hsp60 (□), Hsp60-Mg2+-ATP (▪), prefoldin and HSP60 (◊), and prefoldin and Hsp60-Mg2+-ATP (♦). The controls are reactions without the addition of chaperones (◦) and with the addition of Mg2+ and ATP (•). Reproduced from Biotechnology and Bioengineering (52) with permission of the publisher.

Citation: Orbb F, Izuka R, Yohda M. 2007. Protein-Folding Systems, p 209-223. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Schematic model for the reaction mechanism of archaeal group II chaperonins. See text for details. A, I, and E refer to the apical, intermediate, and equatorial domains, respectively. H represents the helical protrusion. Reproduced from Journal of Biological Chemistry (104) with permission of the publisher.

Citation: Orbb F, Izuka R, Yohda M. 2007. Protein-Folding Systems, p 209-223. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Andra, S.,, G. Frey,, M. Nitsch,, W. Baumeister, and, K. O. Stetter. 1996. Purification and structural characterization of the thermosome from the hyperthermophilic archaeum Methanopyrus kandleri. FEBS Lett. 379:127131.
2. Archibald, J. M.,, J. M. Logsdon, and, W. F. Doolittle. 1999. Recurrent paralogy in the evolution of archaeal chaperonins. Curr. Biol. 9:10531056.
3. Benaroudj, N.,, P. Zwickl,, E. Seemuller,, W. Baumeister, and, A. L. Goldberg. 2003. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell 11:6978.
4. Besche, H. T.,, N. Tamura, and, P. F. Zwickl. 2004. Mutational analysis of conserved AAA+ residues in the archaeal Lon protease from Thermoplasma acidophilum. FEBS Lett. 574:161166.
5. Bigotti, M. G., and, A. R. Clarke. 2005. Cooperativity in the thermosome.. J. Mol. Biol. 348:1326.
6. Blochl, E.,, R. Rachel,, S. Burggraf,, D. Hafenbradl,, H. W. Jannasch, and, K. O. Stetter. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1:1421.
7. Boonyaratanakornkit, B. B.,, A. J. Simpson,, T. A. Whitehead,, C. M. Fraser,, N. M. El-Sayed, and, D. S. Clark. 2005. Transcriptional profiling of the hyperthermophilic methanarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock. Environ. Microbiol. 7:789797.
8. Braig, K. 1998. Chaperonins. Curr. Opin. Struct. Biol. 8:159165.
9. Bukau, B., and, A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92:351366.
10. Burston, S. G., and, A. R. Clarke. 1995. Molecular chaperones: physical and mechanistic properties. Essays Biocbem. 29:125136.
11. Cavicchioli, R. 2006. Cold-adapted archaea. Nat. Rev. Microbiol. 4:331343.
12. Deppenmeier, U.,, A. Johann,, T. Hartsch,, R. Merkl,, R. A. Schmitz,, R. Martinez-Arias,, A. Henne,, A. Wiezer,, S. Baumer,, C. Jacobi,, H. Bruggemann,, T. Lienard,, A. Christmann,, M. Bomeke,, S. Steckel,, A. Bhattacharyya,, A. Lykidis,, R. Overbeek,, H. P. Klenk,, R. P. Gunsalus,, H. J. Fritz, and, G. Gottschalk. 2002. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J. Mol. Microbiol. Biotechnol. 4:453461.
13. Ditzel, L.,, J. Lowe,, D. Stock,, K. O. Stetter,, H. Huber,, R. Huber, and, S. Steinbacher. 1998. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93:125138.
14. Eichler, J. 2003. Facing extremes: archaeal surface-layer (glyco)proteins. Microbiology 149:33473351.
15. Elcock, A. 1998. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J. Mol. Biol. 284:489502.
16. Elcock, A. H. 2001. Prediction of functionally important residues based solely on the computed energetics of protein structure. J. Mol. Biol. 312:885896.
17. Emmerhoff, O. J.,, H. P. Klenk, and, N. K. Birkeland. 1998. Characterization and sequence comparison of temperature-regulated chaperonins from the hyperthermophilic archaeon Archaeoglobus fulgidus. Gene 215:431438.
18. Furutani, M.,, T. Iida,, T. Yoshida, and, T. Maruyama. 1998. Group II chaperonin in a thermophilic methanogen, Methanococcus thermolithotrophicus. Chaperone activity and filament-forming ability. J. Biol. Chem. 273:2839928407.
19. Futterer O. A. A.,, H. Liesegang,, G. Gottschalk,, C. Schleper,, B. Schepers,, C. Dock,, G. Antranikian, and, W. Liebl. 2004. Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc. Natl. Acad. Sci. USA 101:90919096.
20. Gabriel, J. L., and, P. L.-G. Chong. 2000. Molecular modeling of archaebacterial bipolar tetraether lipid membranes. Chem. Phys. Lipids 105:193200.
21. Galagan, J. E.,, C. Nusbaum,, A. Roy,, M. G. Endrizzi,, P. Macdonald,, W. FitzHugh,, S. Calvo,, R. Engels,, S. Smirnov,, D. Atnoor,, A. Brown,, N. Allen,, J. Naylor,, N. Stange-Thomann,, K. DeArellano,, R. Johnson,, L. Linton,, P. McEwan,, K. McKernan,, J. Talamas,, A. Tirrell,, W. Ye,, A. Zimmer,, R. D. Barber,, I. Cann,, D. E. Graham,, D. A. Grahame,, A. M. Guss,, R. Hedderich,, C. Ingram-Smith,, H. C. Kuettner,, J. A. Krzycki,, J. A. Leigh,, W. Li,, J. Liu,, B. Mukhopadhyay,, J. N. Reeve,, K. Smith,, T. A. Springer,, L. A. Umayam,, O. White,, R. H. White,, E. Conway De Macario,, J. G. Ferry,, K. F. Jarrell,, H. Jing,, A. J. Macario,, I. Paulsen,, M. Pritchett,, K. R. Sowers,, R. V. Swanson,, S. H. Zinder,, E. Lander,, W. W. Metcalf, and, B. Birren. 2002. The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res. 12:532542.
22. Goodchild A. R. M.,, N. F. Saunders,, M. Guilhaus, and, R. Cavicchioli. 2005. Cold adaptation of the Antarctic archaeon, Methanococcoides burtonii assessed by proteomics using ICAT. J. Proteome Res. 4:473480.
23. Guagliardi, A.,, L. Cerchia,, S. Bartolucci, and, M. Rossi. 1994. The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro. Protein Sci. 3:14361443.
24. Guagliardi, A.,, L. Cerchia, and, M. Rossi. 1995. Prevention of in vitro protein thermal aggregation by the Sulfolobus solfataricus chaperonin. Evidence for nonequivalent binding surfaces on the chaperonin molecule. J. Biol. Chem. 270:2812628132.
25. Gutsche, I.,, L. O. Essen, and, W. Baumeister. 1999. Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. J. Mol. Biol. 293:295312.
26. Haney, P. J.,, J. H. Badger,, G. L. Buldak,, C. I. Reich,, C. R. Woese, and, G. J. Olsen. 1999. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc. Natl. Acad. Sci. USA 96:35783583.
27. Hartl, F. U., and, M. Hayer-Hartl. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:18521858.
28. Horwitz, J. 1992. Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 89:1044910453.
29. Iizuka, R.,, S. So,, T. Inobe,, T. Yoshida,, T. Zako,, K. Kuwajima, and, M. Yohda. 2004. Role of the helical protrusion in the conformational change and molecular chaperone activity of the archaeal group II chaperonin. J. Biol. Chem. 279:1883418839.
30. Iizuka, R.,, T. Yoshida,, N. Ishii,, T. Zako,, K. Takahashi,, K. Maki,, T. Inobe,, K. Kuwajima, and, M. Yohda. 2005. Characterization of archeal group II chaperonin-ADP-metal fluoride complexes: implications that group II chaperonins operate as a “two-stroke engine. J. Biol. Chem. 280:4037540383.
31. Iizuka, R.,, T. Yoshida,, Y. Shomura,, K. Miki,, T. Maruyama,, M. Odaka, and, M. Yohda. 2003. ATP binding is critical for the conformational change from an open to closed state in archaeal group II chaperonin. J. Biol. Chem. 278:4495944965.
32. Izumi, M.,, S. Fujiwara,, M. Takagi,, K. Fukui, and, T. Imanaka. 2001. Two kinds of archaeal chaperonin with different temperature dependency from a hyperthermophile. Biochem. Biophys. Res. Commun. 280:581587.
33. Izumi, M.,, S. Fujiwara,, M. Takagi,, S. Kanaya, and, T. Imanaka. 1999. Isolation and characterization of a second subunit of molecular chaperonin from Pyrococcus kodakaraensis KOD1: analysis of an ATPase-deficient mutant enzyme. Appl. Environ. Microbiol. 65:18011805.
34. Jacob, U.,, M. Gaestel,, E. Katrin, and, J. Buchner. 1993. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268:15171520.
35. Jeffries, T. W., and, Y.-S. Jin. 2000. Ethanol and thermotoler-ance in the bioconversion of xylose by yeasts. Adv. Appl. Microbiol. 47:221268.
36. Kagawa, H. K.,, J. Osipiuk,, N. Maltsev,, R. Overbeek,, E. Quaite-Randall,, A. Joachimiak, and, J. D. Trent. 1995. The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae. J. Mol. Biol. 253:712725.
37. Kagawa, H. K.,, T. Yaoi,, L. Brocchieri,, R. A. McMillan,, T. Alton, and, J. D. Trent. 2003. The composition, structure and stability of a group II chaperonin are temperature regulated in a hyperthermophilic archaeon. Mol. Microbiol. 48:143156.
38. Kashefi, K. L., and, D. R. Lovley. 2003. Extending the upper temperature limit for life. Science 301:934.
39. Kawarabayasi, Y.,, Y. Hino,, H. Horikawa,, S. Yamazaki,, Y. Haikawa,, K. Jinno,, M. Takahashi,, M. Sekine,, S. Baba,, A. Ankai,, H. Kosugi,, A. Hosoyama,, S. Fukui,, Y. Nagai,, K. Nishijima,, H. Nakazawa,, M. Takamiya,, S. Masuda,, T. Funahashi,, T. Tanaka,, Y. Kudoh,, J. Yamazaki,, N. Kushida,, A. Oguchi,, K. Aoki,, K. Kubota,, Y. Nakamura,, N. Nomura,, Y. Sako, and, H. Kikuchi. 1999. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 6:83101.
40. Kawashima, T.,, Y. Yamamoto,, H. Aramaki,, T. Nunoshiba,, T. Kawamoto,, K. Watanabe,, M. Yamazaki,, K. Kanehori,, N. Amano,, Y. Ohya,, K. Makino, and, M. Suzuki. 1999. Determination of the complete genomic DNA sequence of Thermoplasma volcanium GSS1. Proc. Jpn. Acad. 75:213218.
41. Kim, D. R.,, I. Lee,, S. C. Ha, and, K. K. Kim. 2003. Activation mechanism of HSP16.5 from Methanococcus jannaschii. Biochem. Biophys. Res. Commun. 307:991998.
42. Kim, K. K.,, R. Kim, and, S. H. Kim. 1998. Crystal structure of a small heat-shock protein. Nature 394:595599.
43. Kim, R.,, K. K. Kim,, H. Yokota, and, S. H. Kim. 1998. Small heat shock protein of Methanococcus jannaschii, a hyper-thermophile. Proc. Natl. Acad. Sci. USA 95:91299133.
44. Klumpp, M., and, W. Baumeister. 1998. The thermosome: archetype of group II chaperonins. FEBS Lett. 430:7377.
45. Klunker, D.,, B. Haas,, A. Hirtreiter,, L. Figueiredo,, D. J. Naylor,, G. Pfeifer,, V. Muller,, U. Deppenmeier,, G. Gottschalk,, F. U. Hartl, and, M. Hayer-Hartl. 2003. Coexistence of group I and group II chaperonins in the archaeon Methanosarcina mazei. J. Biol. Chem. 278:3325633267.
46. Knapp, S.,, I. Schmidt-Krey,, H. Hebert,, T. Bergman,, H. Jornvall, and, R. Ladenstein. 1994. The molecular chaperonin TF55 from the Thermophilic archaeon Sulfolobus solfataricus. A biochemical and structural characterization. J. Mol. Biol. 242:397407.
47. Kowalski, J. M.,, R. M. Kelly,, J. Konisky,, D. S. Clark, and, K. D. Wittrup. 1998. Purification and functional characterization of a chaperone from Methanococcus jannaschii. Syst. Appl. Microbiol. 21:173178.
48. Kraulis, P. 1991. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24:946.
49. Kusmierczyk, A. R., and, J. Martin. 2001. Chaperonins— keeping a lid on folding proteins. FEBS Lett. 505:343347.
50. Kusmierczyk, A. R., and, J. Martin. 2003. Nucleotide-dependent protein folding in the type II chaperonin from the mesophilic archaeon Methanococcus maripaludis. Biochem. J. 371:669673.
51. Laksanalamai, P.,, D. L. Maeder, and, F. T. Robb. 2001. Regulation and mechanism of action of the small heat shock protein from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 183:51985202.
52. Laksanalamai, P.,, A. R. Pavlov,, A. I. Slesarev, and, F. T. Robb. 2006. Stabilization of Taq DNA polymerase at high temperature by protein folding pathways from a hyperthermophilic archaeon, Pyrococcus furiosus. Biotechnol. Bioeng. 93:15.
53. Laksanalamai, P.,, T. A. Whitehead, and, F. T. Robb. 2004. Minimal protein-folding systems in hyperthermophilic archaea. Nat. Rev. Microbiol. 2:315324.
54. Large, A. T.,, E. Kovacs, and, P. A. Lund. 2002. Properties of the chaperonin complex from the halophilic archaeon Haloferax volcanii. FEBS Lett. 532:309312.
55. Lenzen, C. U.,, D. Steinmann,, S. W. Whiteheart, and, W. I. Weis. 1998. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94:525536.
56. Leroux, M. R.,, M. Fandrich,, D. Klunker,, K. Siegers,, A. N. Lupas,, J. R. Brown,, E. Schiebel,, C. M. Dobson, and, F. U. Hartl. 1999. MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J. 18:67306743.
57. Lindquist, S. 1992. Heat-shock proteins and stress tolerance in microorganisms. Curr. Opin. Genet. Dev. 2:748755.
58. Lund, P. A.,, A. T. Large, and, G. Kapatai. 2003. The chaperonins: perspectives from the Archaea. Biochem. Soc. Trans. 31:681685.
59. Lundin, V. F.,, P. C. Stirling,, J. Gomez-Reino,, J. C. Mwenifumbo,, J. M. Obst,, J. M. Valpuesta, and, M. R. Leroux. 2004. Molecular clamp mechanism of substrate binding by hydrophobic coiled-coil residues of the archaeal chaperone prefoldin. Proc. Natl. Acad. Sci. USA 101:43674372.
60. Macario, A. J., and, E. Conway De Macario. 2001. The molecular chaperone system and other anti-stress mechanisms in archaea. Front. Biosci. 6:D262D283.
61. Macario, E.,, D. L. Maeder, and, A. J. L. Macario. 2003. Breaking the mould: Archaea with all four chaperoning systems. Biochem. Biophys. Res. Commun. 301:811812.
62. Maeder, D. L.,, A. J. Macario, and, E. C. de Macario. 2005. Novel chaperonins in a prokaryote. J. Mol. Evol. 60:409416.
63. Marco, S.,, D. Urena,, J. L. Carrascosa,, T. Waldmann,, J. Peters,, R. Hegerl,, G. Pfeifer,, H. Sack-Kongehl, and, W. Baumeister. 1994. The molecular chaperone TF55. Assessment of symmetry. FEBS Lett. 341:152155.
64. Meyer, A. S.,, J. R. Gillespie,, D. Walther,, I. S. Millet,, S. Doniach,, J. Frydman. 2003. Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 113:369381.
65. Miller, E. J.,, A. S. Meyer, and, J. Frydman. 2006. Modeling of possible subunit arrangements in the eukaryotic chaperonin TRiC. Protein Sci. 15:14221526.
66. Minuth, T.,, G. Frey,, P. Lindner,, R. Rachel,, K. O. Stetter, and, R. Jaenicke. 1998. Recombinant homo- and hetero-oligomers of an ultrastable chaperonin from the archaeon Pyrodictium occultum show chaperone activity in vitro. Eur. J. Biochem. 258:837845.
67. Minuth, T.,, M. Henn,, K. Rutkat,, S. Andra,, G. Frey,, R. Rachel,, K. O. Stetter, and, R. Jaenicke. 1999. The recombinant thermosome from the hyperthermophilic archaeon Methanopyrus kandleri: in vitro analysis of its chaperone activity. Biol. Chem. 380:5562.
68. Muchowski, P. J.,, L. G. Hays,, J. R. Yates III, and, J. I. Clark. 1999. ATP and the core “alpha-Crystallin” domain of the small heat-shock protein alphaB-crystallin. J. Biol. Chem. 274:3019030195.
69. Nakamura, N.,, H. Taguchi,, N. Ishii,, M. Yoshida,, M. Suzuki,, I. Endo,, K. Miura, and, M. Yohda. 1997. Purification and molecular cloning of the group II chaperonin from the acidothermophilic archaeon, Sulfolobus sp. strain 7. Biochem. Bio-phys. Res. Commun. 236:727732.
70. Ng, W. V.,, S. P. Kennedy,, G. G. Mahairas,, B. Berquist,, M. Pan,, H. D. Shukla,, S. R. Lasky,, N. Baliga,, V. Thorsson,, J. Sbrogna,, S. Swartzell,, D. Weir,, J. Hall,, T. A. Dahl,, R. Welti,, Y. A. Goo,, B. Leithauser,, K. Keller,, R. Cruz,, M. J. Danson,, D. W. Hough,, D. G. Maddocks,, P. E. Jablonski,, M. P. Krebs,, C. M. Angevine,, H. Dale,, T. A. Isenbarger,, R. F. Peck,, M. Pohlschrod,, J. L. Spudich,, K.-H. Jung,, M. Alam,, T. Freitas,, S. Hou,, C. J. Daniels,, P. P. Dennis,, A. D. Omer,, H. Ebhardt,, T. M. Lowe,, P. Liang,, M. Riley,, L. Hood, and, S. DasSarma. 2000. Genome sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sci. USA 97:1217612181.
71. Nitsch, M.,, M. Klummp,, A. Lupas, and, W. Baumeister. 1997. The thermosome: alternating alpha and beta-subunits within the chaperonin of the archaeon Thermoplasma acidophilum. J. Mol. Biol. 267:142149.
72. Okochi, M.,, H. Matsuzaki,, T. Nomura,, N. Ishii, and, M. Yohda. 2005. Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Extremophiles 9:127134.
73. Oren, A. 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28:5663.
74. Pak, M., and, S. Wickner. 1997. Mechanism of protein remodeling by ClpA chaperone. Proc. Natl. Acad. Sci. USA 94:4901496.
75. Phipps, B. M.,, A. Hoffmann,, K. O. Stetter, and, W. Baumeister. 1991. A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J. 10:17111722.
76. Reimann, B.,, J. Bradsher,, J. Franke,, E. Hartmann,, M. Wiedmann,, S. Prehn, and, B. Wiedmann. 1999. Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast 15:397407.
77. Reuter, C. J.,, S. J. Kaczowka, and, J. A. Maupin-Furlow. 2004. Differential regulation of the PanA and PanB proteasome-activating nucleotidase and 20S proteasomal proteins of the haloarchaeon Haloferax volcanii. J. Bacteriol. 186:77637772.
78. Robb, F. T.. 2003. Chapter 10, Genomics of thermophiles. In C. M. Fraser,, T. D. Read, and, K. F. Nelson (ed.), Microbial Genomics. Humana Press, Totowa, N.J.
79. Robb, F. T.,, D. L. Maeder,, J. R. Brown,, J. DiRuggiero,, M. D. Stump,, R. K. Yeh,, R. B. Weiss, and, D. M. Dunn. 2001. Genomic sequence of hyperthermophile, Pyrococcus furiosus: Implications for physiology and enzymology. Methods Enzymol. 330:134157.
80. Robb, F. T., and, D. L. Maeder. 1998. Novel evolutionary histories and adaptive features of proteins from hyperthermophiles. Curr. Opin. Biotechnol. 9:288291.
81. Rohlin, L.,, J. D. Trent,, K. Salmon,, U. Kim,, R. P. Gunsalus, and, J. C. Liao. 2005. Heat shock response of Archaeoglobus fulgidus. J. Bacteriol. 187:60466057.
82. Roy, S. K.,, T. Hiyama, and, H. Nakamoto. 1999. Purification and characterization of the 16-kDa heat-shock-responsive protein from the thermophilic cyanobacterium Synechococcus vulcanus, which is an alpha-crystallin-related, small heat shock protein. Eur. J. Biochem. 262:406416.
83. Ruepp, A.,, B. Rockel,, I. Gutsche,, W. Baumeister, and, A. N. Lupas. 2001. The chaperones of the archaeon Thermoplasma acidophilum. J. Struct. Biol. 135:126138.
84. Shashidharamurthy, R.,, H. A. Koteiche,, J. Dong, and, H. S. Mchaourab. 2005. Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J. Biol. Chem. 280:52815289.
85. Shockley, K.,, D. E. Ward,, S. R. Chhabra,, S. B. Conners,, C. I. Montero, and, R. M. Kelly. 2003. Heat shock response by the hyperthermophilic archaeon Pyrococcus furiosus. Appl. Environ. Microbiol. 69:23652371.
86. Siegert, R.,, M. R. Leroux,, C. Scheufler,, F. U. Hartl, and, I. Moarefi. 2000. Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103:621632.
87. Sigler, P. B.. 1995. Unliganded GroEL at 2.8 A: structure and functional implications. Philos. Trans. R. Soc. Lond. B Biol. Sci. 348:113119.
88. Smith, D. R.,, L. A. Doucette-Stamm,, C. Deloughery,, H.-M. Lee,, J. Dubois,, T. Aldredge,, R. Bashirzadeh,, D. Blakely,, R. Cook,, K. Gilbert,, D. Harrison,, L. Hoang,, P. Keagle,, W. Lumm,, B. Pothier,, D. Qiu,, R. Spadafora,, R. Vicare,, Y. Wang,, J. Wierzbowski,, R. Gibson,, N. Jiwani,, A. Caruso,, D. Bush,, H. Safer,, D. Patwell,, S. Prabhakar,, S. McDougall,, G. Shimer,, A. Goyal,, S. Pietrovski,, G. M. Church,, C. J. Daniels,, J.-I. Mao,, P. Rice,, J. Nolling, and, J. N. Reeve. 1997. Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J. Bacteriol. 179:71357155.
89. Spreter, T.,, M. Pech, and, B. Beatrix. 2005. The crystal structure of archaeal nascent polypeptide-associated complex (NAC) reveals a unique fold and the presence of a ubiquitin-associated domain. J. Biol. Chem. 280:1584915854.
90. Squires, C. L.,, S. Pedersen,, B. M. Ross, and, C. Squires. 1991. ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol. 173:42544262.
91. Stirling, P. C.,, V. F. Lundin, and, M. R. Leroux. 2003. Getting a grip on non-native proteins. EMBO Rep. 4:565570.
92. Trent, J. D.,, M. Gabrielsen,, B. Jensen,, J. Neuhard, and, J. Olsen. 1994. Acquired thermotolerance and heat shock proteins in thermophiles from the three phylogenetic domains. J. Bacteriol. 176:61486152.
93. Trent, J. D.,, E. Nimmesgern,, J. S. Wall,, F. U. Hartl, and, A. L. Horwich. 1991. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354:490493.
94. Usui, K.,, T. Yoshida,, T. Maruyama, and, M. Yohda. 2001. Small heat shock protein of a hyperthermophilic archaeum, Thermococcus sp. strain KS-1, exists as a spherical 24 mer and its expression is highly induced under heat-stress conditions. J. Biosci. Bioeng. 92:161166.
95. van Montfort, R. L.,, E. Basha,, K. L. Friedrich,, C. Slingsby, and, E. Vierling. 2001. Crystal structure and assembly of a eukary-otic small heat shock protein. Nat. Struct. Biol. 8:10251030.
96. Vetriani, C.,, D. L. Maeder,, N. Tolliday,, K.-S. Yip,, T. J. Stillman,, K. L. Britton,, D. Rice,, H. H. Klump, and, F. T. Robb. 1998. Protein thermostability above 100°C: A key role for ionic interactions. Proc. Natl. Acad. Sci. USA 95:1230012305.
97. Vierke, G.,, A. Engelmann,, C. Hebbeln, and, M. Thomm. 2003. A novel archaeal transcriptional regulator of heat shock response. J. Biol. Chem. 278:1826.
98. Waldmann, T.,, A. Lupas,, J. Kellermann,, J. Peters, and, W. Baumeister. 1995. Primary structure of the thermosome from Thermoplasma acidophilum. Biol. Chem. Hoppe Seyler 376:119126.
99. Waters, E.,, M. J. Hohn,, I. Ahel,, D. E. Graham,, M. D. Adams,, M. Barnstead,, K. Y. Beeson,, L. Bibbs,, R. Bolanos,, M. Keller,, K. Kretz,, X. Lin,, E. Mathur,, J. Ni,, M. Podar,, T. Richardson,, G. G. Sutton,, M. Simon,, D. Soll,, K. O. Stetter,, J. M. Short, and, M. Noordewier. 2003. The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc. Natl. Acad. Sci. USA 100:1298412988.
100. Wickner, S.,, S. Gottesman,, D. Skowyra,, J. Hoskins,, K. McKenney, and, M. R. Maurizi. 1994. A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc. Natl. Acad. Sci. USA 91:1221812222.
101. Yan, Z.,, S. Fujiwara,, K. Kohda,, M. Takagi, and, T. Imanaka. 1997. In vitro stabilization and in vivo solubilization of foreign proteins by the beta subunit of a chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1. Appl. Environ. Microbiol. 63:785789.
102. Yoshida, T.,, A. Ideno,, S. Hiyamuta,, M. Yohda, and, T. Maruyama. 2001. Natural chaperonin of the hyperthermophilic archaeum, Thermococcus strain KS-1: a hetero-oligomeric chaperonin with variable subunit composition. Mol. Microbiol. 39:14061413.
103. Yoshida, T.,, A. Ideno,, R. Suzuki,, M. Yohda, and, T. Maruyama. 2002. Two kinds of archaeal group II chaperonin subunits with different thermostability in Thermococcus strain KS-1. Mol. Microbiol. 44:761769.
104. Yoshida, T.,, R. Kawaguchi, and, T. Maruyama. 2002. Nucleotide specificity of an archaeal group II chaperonin from Thermococcus strain KS-1 with reference to the ATP-dependent protein folding cycle. FEBS Lett. 514:269274.
105. Yoshida, T.,, R. Kawaguchi,, H. Taguchi,, M. Yoshida,, T. Yasunaga,, T. Wakabayashi,, M. Yohda, and, T. Maruyama. 2002. Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin. J. Mol. Biol. 315:7385.
106. Yoshida, T.,, M. Yohda,, T. Iida,, T. Maruyama,, H. Taguchi,, K. Yazaki,, T. Ohta,, M. Odaka,, I. Endo, and, Y. Kagawa. 1997. Structural and functional characterization of homo-oligomeric complexes of alpha and beta chaperonin subunits from the hyperthermophilic archaeum Thermococcus strain KS-1. J. Mol. Biol. 273:635645.
107. Zako, T.,, R. Iizuka,, M. Okochi,, T. Nomura,, T. Ueno,, H. Tadakuma,, M. Yohda, and, T. Funatsu. 2005. Facilitated release of substrate protein from prefoldin by chaperonin. FEBS Lett. 579:37183724.


Generic image for table
Table 1.

Occurrence of different classes of HSPs in the three domains

Citation: Orbb F, Izuka R, Yohda M. 2007. Protein-Folding Systems, p 209-223. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch10
Generic image for table
Table 2.

Archaeal chaperonin: number of subunits encoded per genome

Citation: Orbb F, Izuka R, Yohda M. 2007. Protein-Folding Systems, p 209-223. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch10
Generic image for table
Table 3.

Structural and functional characteristics of archaeal group II chaperonins

Citation: Orbb F, Izuka R, Yohda M. 2007. Protein-Folding Systems, p 209-223. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error