Chapter 15 : Lipids: Biosynthesis, Function, and Evolution

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Lipids: Biosynthesis, Function, and Evolution, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap15-2.gif


This chapter summarizes the different biosynthetic steps of isoprenoid ether lipid biosynthesis in archaea, describing the underlying enzymatic reactions that have been characterized. The evolution of this lipid biosynthesis apparatus in a variety of archaea is discussed. The effect of the environment on the nature of the lipids present in archaeal cell membranes is scrutinized in an attempt to link structure and function. Similar to other isoprenoids, archaeal lipid side chains are assembled from two universal precursors: isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In archaea, geranylgeranyl diphosphate (GGPP) synthase can elongate DMAPP to obtain both farnesyl diphosphate (FPP) and GGPP, the latter being the isoprenyl forming the side chains of C20-C20 diether lipids. However, similar to the studies on partially saturated side chains, there is little experimental evidence on when these structures are formed during the process of archaeal lipid biosynthesis. The detection of CDP-archaeol synthase and archaetidylserine synthase activities in suggests that the biochemical steps for the addition of polar head groups on archaeal lipid precursors, might proceed in a manner analogous to fatty acid biosynthesis in bacteria. High-performance liquid chromotography (HPLC), in combination with electrospray mass spectrometry (ES-MS) was used to characterize the membrane phospholipids and glycolipids of halophilic archaea and the cold-adapted methanogen .

Citation: Boucher Y. 2007. Lipids: Biosynthesis, Function, and Evolution, p 341-353. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch15
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Basic structure of glycerol diether isoprenoid lipids. The sugars or polar head groups that are frequently attached to the 1 position of the glycerol moiety in archaeal diether lipids are not shown.

Citation: Boucher Y. 2007. Lipids: Biosynthesis, Function, and Evolution, p 341-353. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Basic structure of glycerol tetraether isoprenoid lipids. GDGT (glycerol-diakyl-glycerol tetraether) can display a number of cyclic rings (0 to 8) in its alkyl core. In GTGT (glycerol-triakyl-glycerol tetraether), only two of the four phytanyl side chains from the precursor diether lipids are linked by a C—C bond. Although only the antiparallel configuration is shown for the two glycerols forming the backbone of the tetraether lipids, both isomers are likely to be found in archaeal cells ( ). GDNT (glycerol-dialkyl-nonitol tetraether) versions of most GDGTs, where one of the glycerol moieties is replaced by nonitol, are also found in a variety of archaea. The sugars or polar head groups usually attached to the hydroxy of the glycerol moieties in archaeal lipids are not shown.

Citation: Boucher Y. 2007. Lipids: Biosynthesis, Function, and Evolution, p 341-353. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Pathways for the biosynthesis of archaeal glycerol ether isoprenoid lipids. Boxed “A” beside an enzyme name indicates that the enzyme is found in all archaea, and boxed “S” indicates that the enzyme is found in some archaea.

Citation: Boucher Y. 2007. Lipids: Biosynthesis, Function, and Evolution, p 341-353. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Phylogenetic analysis of the stereospecific enzymes involved in archaeal isoprenoid lipid biosynthesis. (A) Glycerol-1-phosphate dehydrogenase (G1PDH) and related protein families; dehydroquinate synthase (DHQS), L-arabinose isomerase (AraM), glycerol dehydrogenase (GDH), alcohol dehydrogenase (ADH). (B) Geranylgeranylglyceryl phosphate synthase (GGGPS). (C) Digeranylgeranylglyceryl phosphate synthase (DGGGPS) and related protein families; Bacteriochlorophyll/chlorophyll synthase (BchG/ChlG), homogentisic acid geranylgeranyl transferase (HGGT), 1,4-dihydroxy 2-naphtoate octaprenyl-transferase (MenA), heme biosynthesis farnesyltransferase (CyoE/COX10), ubiquinone biosynthetic polyprenyl transferase (UbiA/COQ2). The trees presented are based on maximum likelihood amino acid distances under the minimum evolution model and were obtained using PROTDIST. Bootstrap values represent the consensus of 100 trees obtained from pseudo-replicates of the original dataset. Taxon names of archaea are highlighted in bold.

Citation: Boucher Y. 2007. Lipids: Biosynthesis, Function, and Evolution, p 341-353. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Boucher, Y., and, W. F. Doolittle. 2000. The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol. Microbiol. 37:703716.
2. Boucher, Y.,, H. Huber,, S. L’Haridon,, K. O. Stetter, and, W. F. Doolittle. 2001. Bacterial origin for the isoprenoid biosynthesis enzyme HMG-CoA reductase of the archaeal orders Thermoplasmatales and Archaeoglobales. Mol. Biol. Evol. 18:13781388.
3. Boucher, Y.,, M. Kamekura, and, W. F. Doolittle. 2004. Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol. Microbiol. 52:515527.
4. Campos, N.,, M. Rodriguez-Concepcion,, S. Sauret-Gueto,, F. Gallego,, L. M. Lois, and, A. Boronat. 2001. Escherichia coli engineered to synthesize isopentenyl diphosphate and di-methylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochem. J. 353:5967.
5. Chen, A.,, D. Zhang, and, C. D. Poulter. 1993. (S)-geranylgeranylglyceryl phosphate synthase. Purification and characterization of the first pathway-specific enzyme in archaebacterial membrane lipid biosynthesis. J. Biol. Chem. 268:2170121705.
6. Damste, J. S.,, S. Schouten,, E. C. Hopmans,, A. C. van Duin, and, J. A. Geenevasen. 2002. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J. Lipid Res. 43:16411651.
7. DeLong, E. F.,, L. L. King,, R. Massana,, H. Cittone,, A. Murray,, C. Schleper, and, S. G. Wakeham. 1998. Dibiphytanyl ether lipids in nonthermophilic crenarchaeotes. Appl. Environ. Microbiol. 64:11331138.
8. De Rosa, M., and, A. Gambacorta. 1988. The lipids of Archaebacteria. Prog. Lipid Res. 27:153175.
9. Eguchi, T.,, H. Takyo,, M. Morita,, K. Kakinuma, and, Y. Koga. 2000. Unusual double-bond migration as a plausible key reaction in the biosynthesis of the isoprenoidal membrane lipids of methanogenic archaea. Chem. Commun. 15451546.
10. Elferink, M. G.,, J. G. de Wit,, A. J. Driessen, and, W. N. Kon-ings. 1994. Stability and proton-permeability of liposomes composed of archaeal tetraether lipids. Biochim. Biophys. Acta 1193:247254.
11. Gattinger, A.,, M. Schloter, and, J. C. Munch. 2002. Phospho-lipid etherlipid and phospholipid fatty acid fingerprints in selected euryarchaeotal monocultures for taxonomic profiling. FEMS Microbiol. Lett. 213:133139.
12. Gliozzi, A.,, G. Paoli,, M. De Rosa, and, A. Gambacorta. 1983. Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria. Biochim. Biophys Acta 735:234242.
13. Hafenbradl, D.,, M. Keller, and, K. O. Stetter. 1996. Lipid analysis of Methanopyrus kandleri. FEMS Microbiol. Lett. 136:199202.
14. Hemmi, H.,, K. Shibuya,, Y. Takahashi,, T. Nakayama, and, T. Nishino. 2004. (S)-2,3-Di-O-geranylgeranylglyceryl phosphate synthase from the thermoacidophilic archaeon Sulfolobus sol-fataricus. Molecular cloning and characterization of a membrane-intrinsic prenyltransferase involved in the biosynthesis of archaeal ether-linked membrane lipids. J. Biol. Chem. 279:5019750203.
15. Jahn, U.,, R. Summons,, H. Sturt,, E. Grosjean, and, H. Huber. 2004. Composition of the lipids of Nanoarchaeum equitans and their origin from its host Ignicoccus sp. strain KIN4/I. Arch. Microbiol. 182:404413.
16. Jahnke, L. L.,, W. Eder,, R. Huber,, J. M. Hope,, K. U. Hinrichs,, J. M. Hayes,, D. J. Des Marais,, S. L. Cady, and, R. E. Summons. 2001. Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of Aquificales representatives. Appl. Environ. Microbiol. 67:51795189.
17. Kamekura, M., and, M. Kates. 1999. Structural diversity of membrane lipids in members of the Halobacteriaceae. Biosci. Biotechnol. Biochem. 63:969972.
18. Kaneda, K.,, T. Kuzuyama,, M. Takagi,, Y. Hayakawa, and, H. Seto. 2001. An unusual isopentenyl diphosphate isomerase found in the mevalonate pathway gene cluster from Streptomyces sp. strain CL190. Proc. Natl. Acad. Sci. USA 98:932937.
19. Kaneshiro, S. M., and, D. S. Clark. 1995. Pressure effects on the composition and thermal behaviour of lipids from the deep-sea thermophile Methanococcus jannaschii. J. Bacteriol. 177:36683672.
20. Kates, M. 1992. Archaebacterial lipids: structure, biosynthesis and function. In M. J. Danson,, D. W. Hough, and, G. G. Lunt. (ed.), The Archaebacteria: Biochemistry and Biotechnology. Portland Press, London, United Kingdom.
21. Kates, M., and, N. Kushwaha. 1978. Biochemistry of the lipids of extremely halophilic bacteria, p. 461480. In S. R. Caplan and, M. Ginzburg (ed.), Energetics and Structure of Halophilic Microorganisms. Elsevier, Amsterdam, The Netherlands.
22. Kellog, B., and, C. D. Poulter. 1997. Chain elongation in the isoprenoid biosynthetic pathway. Curr. Opin. Chem. Biol. 1:570578.
23. Koga, Y., and, H. Morii. 2006. Special methods for the analysis of ether lipid structure and metabolism in archaea. Anal. Biochem. 348:114.
24. Koga, Y.,, H. Morii,, A. M. Masayo, and, M. Ohga. 1998. Correlation of polar lipid composition with 16S rRNA phylogeny in Methanogens. Further analysis of lipid component parts. Biosci. Biotechnol. Biochem. 62:230236.
25. Koga, Y.,, M. Nishihara,, H. Morii, and, M. Akagawa-Mat-suhita. 1993. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. Microbiol. Rev. 57:164182.
26. Lange, B. M.,, T. Rujan,, W. Martin, and, R. Croteau. 2000. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. USA 97:131721317.
27. Mangold, H. K., and, F. Paltauf. 1983. Ether Lipids: Biochemical and Biomedical Aspects. Academic Press, New York, N.Y.
28. Matte-Tailliez, O.,, C. Brochier,, P. Forterre, and, H. Philippe. 2002. Archaeal phylogeny based on ribosomal proteins. Mol. Biol. Evol. 19:631639.
29. Morii, H., and, Y. Koga. 2003. CDP-2,3-Di-O-geranylgeranyl-sn-glycerol:L-serine O-archaetidyltransferase (archaetidylserine synthase) in the methanogenic archaeon Methanothermobacter thermautotrophicus. J. Bacteriol. 185:11811189.
30. Morii, H.,, M. Nishihara, and, Y. Koga. 2000. CTP:2,3-di-O-geranylgeranyl-sn-glycero-1-phosphate cytidyltransferase in the methanogenic archaeon Methanothermobacter thermoautotrophicus. J. Biol. Chem. 275:3656836574.
31. Morii, H.,, H. Yagi,, H. Akutsu,, N. Nomura,, Y. Sako, and, Y. Koga. 1999. A novel phosphoglycolipid archaetidyl(glucosyl) inositol with two sesterterpanyl chains from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1. Biochim. Biophys. Acta 1436:426436.
32. Nemoto, N.,, Y. Shida,, H. Shimada,, T. Oshima, and, A. Yam-agishi. 2003. Characterization of the precursor of tetraether lipid biosynthesis in the thermoacidophilic archaeon Thermoplasma acidophilum. Extremophiles 7:235243.
33. Nichols, D. S.,, M. R. Miller,, N. W. Davies,, A. Goodchild,, M. Raftery, and, R. Cavicchioli. 2004. Cold adaptation in the Antarctic Archaeon Methanococcoides burtonii involves membrane lipid unsaturation. J. Bacteriol. 186:85088515.
34. Nishihara, M., and, Y. Koga. 1995. sn-glycerol-1-phosphate de-hydrogenase in Methanobacterium thermoautotrophicum: key enzyme in biosynthesis of the enantiomeric glycerophosphate backbone of ether phospholipids of archaebacteria. J. Biochem. (Tokyo) 117:933935.
35. Nishihara, M.,, H. Morii,, K. Matsuno,, M. Ohga,, K. O. Stetter, and, Y. Koga. 2002. Structural analysis by reductive cleavage with LiAlH4 of an allyl ether choline-phospholipid, archaetidyl-choline, from the hyperthermophilic methanoarchaeon Methanopyrus kandleri. Archaea 1:123131.
36. Nishihara, M.,, T. Yamazaki,, T. Oshima, and, Y. Koga. 1999. sn-glycerol-1-phosphate-forming activities in Archaea: separation of archaeal phospholipid biosynthesis and glycerol catabolism by glycerophosphate enantiomers. J. Bacteriol. 181:13301333.
37. Ohnuma, S.,, K. Hirooka,, C. Ohto, and, T. Nishino. 1997. Conversion from archaeal geranylgeranyl diphosphate synthase to farnesyl diphosphate synthase. Two amino acids before the first aspartate-rich motif solely determine eukaryotic farnesyl diphosphate synthase activity. J. Biol. Chem. 272:51925198.
38. Ohnuma, S.,, K. Hirooka,, N. Tsuruoka,, M. Yano,, C. Ohto,, H. Nakane, and, T. Nishino. 1998. A pathway where polyprenyl diphosphate elongates in prenyltransferase. Insight into a common mechanism of chain length determination of prenyltransferases. J. Biol. Chem. 273:2670526713.
39. Patel, G. B., and, G. D. Sprott. 1999. Archaeabacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. Crit. Rev. Biotechnol. 19:317357.
40. Pearson, A.,, Z. Huang,, A. E. Ingalls,, C. S. Romanek,, J. Wiegel,, K. H. Freeman,, R. H. Smittenberg, and, C. L. Zhang. 2004. Nonmarine crenarchaeol in Nevada hot springs. Appl. Environ. Microbiol. 70:52295237.
41. Qiu, D.,, M. P. Games,, X. Xiao,, D. E. Games, and, T. J. Walton. 2000. Characterisation of membrane phospholipids and gly-colipids from a halophilic archaebacterium by high-performance liquid chromatography/electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 14:15861591.
42. Russell, N. J., and, D. S. Nichols. 1999. Polyunsaturated fatty acids in marine Bacteria-a dogma rewritten. Microbiology 145:767779.
43. Schouten, S.,, E. C. Hopmans,, R. D. Pancost, and, J. S. Damste. 2000. Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proc. Natl. Acad. Sci. USA 97:1442114426.
44. Shimada, H.,, N. Nemoto,, Y. Shida,, T. Oshima, and, A. Yam-agishi. 2002. Complete polar lipid composition of Thermoplasma acidophilum HO-62 determined by high-performance liquid chromatography with evaporative light-scattering detection. J. Bacteriol. 184:556563.
45. Smit, A., and, A. Mushegian. 2000. Biosynthesis of isoprenoids via mevalonate in Archaea: the lost pathway. Genome Res. 10:14681484.
46. Soderberg, T.,, A. Chen, and, C. D. Poulter. 2001. Geranylgeranylglyceryl phosphate synthase. Characterization of the recombinant enzyme from Methanobacterium thermoautotrophicum. Biochemistry 40:1484714854.
47. Sprott, G. D.,, M. Meloche, and, J. C. Richards. 1991. Proportions of diether, macrocyclic diether, amd tetraether lipids in Methanococcus jannaschii grown at different temperatures. J. Bacteriol. 173:39073910.
48. Sugai, A.,, I. Uda,, K. Kon,, S. Ando,, Y. Itoh, and, T. Itoh. 1996. Structural identification of minor phosphoinositol lipids in Sulfolobus acidocaldarius N-8. J. Jpn. Oil Chem. Soc. 45:327333.
49. Tachibana, A.,, Y. Yano,, S. Otani,, N. Nomura,, Y. Sako, and, M. Taniguchi. 2000. Novel prenyltransferase gene encoding farnesylgeranyl diphosphate synthase from a hyperthermophilic archaeon, Aeropyrum pernix. Molecularevolution with alteration in product specificity. Eur. J. Biochem. 267:321328.


Generic image for table
Table 1.

Distribution of lipid biosynthesis enzymes and core lipids in the

Citation: Boucher Y. 2007. Lipids: Biosynthesis, Function, and Evolution, p 341-353. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error