Chapter 16 : Solute Transport

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Solute Transport, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap16-2.gif


This chapter discusses solute transport in . The fluidity and permeability properties of the lipid membranes are mainly determined by their lipid composition. The archaeal lipid chain contains isoprenoid units where every fourth carbon atom is linked to a methyl group. Most of the archaeal phytanyl chains are fully saturated isoprenoids. ATP-binding cassettes (ABC) transporters have a typical modular domain structure which usually comprises two integral membrane proteins that form the permease domain, and two cytoplasm-located ATPases which drive the transport of the substrate by the hydrolysis of ATP. In a report on secondary transporters in archaea, a lactose transporter was identified in by functionally complementing a mutant strain that was unable to grow on lactose. The distinction between the carbohydrate uptake transporters (CUT) and di/oligopeptide classes of ATP-binding cassettes (ABC) transporters is also evident for the protein-domain organization of the binding proteins. Members of the CUT class of binding proteins from contain type IV pilinlike signal peptides and do not contain secretory signal peptides. A general feature of bacteria and archaea is that they are equipped with defense systems against toxic compounds from the environment. This protection mechanism involves multiple drug transport systems that extrude toxic compounds from the cell. In general, the drug transport systems belong to the class of secondary transporters or ABC transporters.

Citation: Albers S, Konings W, Driessen A. 2007. Solute Transport, p 354-368. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch16
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Classes of transporters. (A) Channels and different modes of secondary transporters. (B) ABC transporters and the PTS system. Integral membrane subunits of transporters (filled); cytoplasmic or extracellular subunits (open oval); transported substrate (open circle). The names of the subunits of the PTS system refer to the mannitol transporter of .

Citation: Albers S, Konings W, Driessen A. 2007. Solute Transport, p 354-368. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Channel structures. The calcium-gated K-channel, MthK of and the secondary transport structure of the glutamate transporter, Glt of are shown. The orientation of both transporters in the membrane is depicted. The membrane-inserted part of MthK is relatively small, in comparison with the large complex of cytoplasmically located RCK domains. The structure of Glt shows the large cavity directed toward the extracellular side where the substrate is bound.

Citation: Albers S, Konings W, Driessen A. 2007. Solute Transport, p 354-368. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Mode of anchoring of archaeal substrate-binding proteins and their domain structure. (A) Archaeal substrate-binding proteins are either bound to the membrane by a fatty acid modification of their N terminus or a hydrophobic domain at the C or N terminus. (B) Domain organization of substrate-binding proteins. N, N terminus; C, C terminus; SS, signal sequence; ST-linker, serine/threonine-rich amino acid stretch; filled circle, substrate of binding protein.

Citation: Albers S, Konings W, Driessen A. 2007. Solute Transport, p 354-368. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Structure of the ATP-binding subunit, GlcV, of the glucose ABC transporter The ATP-binding domain contains all the necessary residues for ATP hydrolysis. Bound ATP is shown in the structure (ball model). The function of the C-terminal domain is unknown.

Citation: Albers S, Konings W, Driessen A. 2007. Solute Transport, p 354-368. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Albers, S. V., and, A. J. Driessen. 2005. Analysis of ATPases of putative secretion operons in the thermoacidophilic archaeon Sulfolobus solfataricus. Microbiology 151:763773.
2. Albers, S. V.,, M. G. Elferink,, R. L. Charlebois,, C. W. Sensen,, A. J. Driessen, and, W. N. Konings. 1999. Glucose transport in the extremely thermoacidophilic Sulfolobus sol-fataricus involves a high-affinity membrane-integrated binding protein. J. Bacteriol. 181:42854291.
3. Albers, S. V.,, M. Jonuscheit,, S. Dinkelaker,, T. Urich,, A. Kletzin,, R. Tampe,, A. J. M. Driessen, and, C. Schleper. 2006. Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus sol-fataricus. Appl. Environ. Microbiol. 72:102111.
4. Albers, S. V.,, S. M. Koning,, W. N. Konings, and, A. J. Driessen. 2004. Insights into ABC transport in archaea. J. Bioenerg. Biomembr. 36:515.
5. Albers, S. V.,, W. N. Konings, and, A. J. M. Driessen. 1999. A unique short signal sequence in membrane anchored proteins of Archaea. Mol. Microbiol. 31:15951596.
6. Albers, S. V.,, Z. Szabó, and, A. J. Driessen. 2003. Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J. Bacteriol. 185:39183925.
7. Bardy, S. L., and, K. F. Jarrell. 2002. FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. FEMS Microbiol. Lett. 208:5359.
8. Bardy, S. L.,, S. Y. Ng,, D. S. Carnegie, and, K. F. Jarrell. 2005. Site-directed mutagenesis analysis of amino acids critical for activity of the type I signal peptidase of the archaeon Methanococcus voltae. J. Bacteriol. 187:11881191.
9. Bartolucci, S.,, M. Rossi, and, R. Cannio. 2003. Characterization and functional complementation of a nonlethal deletion in the chromosome of a beta-glycosidase mutant of Sulfolobus sol-fataricus. J. Bacteriol. 185:39483957.
10. Boos, W., and, H. Shuman. 1998. Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol. Mol. Biol. Rev. 62:204229.
11. Chanda, B.,, O. Kwame Asamoah,, R. Blunck,, B. Roux, and, F. Bezanilla. 2005. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436:852856.
12. Chen, J.,, G. Lu,, J. Lin,, A. L. Davidson, and, F. A. Quiocho. 2003. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol. Cell 12:651661.
13. Chen, L.,, K. Brugger,, M. Skovgaard,, P. Redder,, Q. She,, E. Torarinsson,, B. Greve,, M. Awayez,, A. Zibat,, H. P. Klenk, and, R. A. Garrett. 2005. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J. Bacteriol. 187:49924999.
14. Chhabra, S. R.,, K. R. Shockley,, S. B. Conners,, K. L. Scott,, R. D. Wolfinger, and, R. M. Kelly. 2003. Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima. J. Biol. Chem. 278:75407552.
15. Damsté, J. S.,, S. Schouten,, E. C. Hopmans,, A. C. van Duin, and, J. A. Geenevasen. 2002. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J. Lipid Res. 43:16411651.
16. Dassa, E., and, M. Hofnung. 1985. Sequence of gene malG in E. coli K12: homologies between integral membrane components from binding protein-dependent transport systems. EMBO J. 4:22872293.
17. De Rosa, M., and, A. Gambacorta. 1988. The lipids of archaebacteria. Prog. Lipid Res. 27:153175.
18. De Rosa, M.,, A. Trincone,, B. Nicolaus, and, A. Gambacorta. 1991. Archaebacteria: lipids, membrane structures, and adaptations to environmental stresses, p. 6187. In G. di Prisco (ed.), Life under Extreme Conditions. Springer-Verlag, Berlin, Germany.
19. Diederichs, K.,, J. Diez,, G. Greller,, C. Muller,, J. Breed,, C. Schnell,, C. Vonrhein,, W. Boos, and, W. Welte. 2000. Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. EMBO J. 19:59515961.
20. Diez, J.,, K. Diederichs,, G. Greller,, R. Horlacher,, W. Boos, and, W. Welte. 2001. The crystal structure of a liganded tre-halose/maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis at 1.85 Å. J. Mol. Biol. 305:905915.
21. Edmonds, B. W., and, H. Luecke. 2004. Atomic resolution structures and the mechanism of ion pumping in bacteriorhodopsin. Front. Biosci. 9:15561566.
22. Elferink, M. G. L.,, S.-V. Albers,, W. N. Konings, and, A. J. M. Driessen. 2001. Sugar transport in Sulfolobus sol-fataricus is mediated by two families of binding protein-dependent ABC transporters. Mol. Microbiol. 39:14941503.
23. Elferink, M. G. L.,, J. G. De Wit,, R. Demel,, A. J. M. Driessen, and, W. N. Konings. 1992. Functional reconstitution of membrane proteins in monolayer liposomes from bipolar lipids of Sulfolobus acidocaldarius. J. Biol. Chem. 267:13751381.
24. Erra-Pujada, M.,, P. Debeire,, F. Duchiron, and, M. J. O’Dono-hue. 1999. The type II pullulanase of Thermococcus hydrothermalis: molecular characterization of the gene and expression of the catalytic domain. J. Bacteriol. 181:32843287.
25. Evdokimov, A. G.,, D. E. Anderson,, K. M. Routzahn, and, D. S. Waugh. 2001. Structural basis for oligosaccharide recognition by Pyrococcus furiosus maltodextrin-binding protein. J. Mol. Biol. 305:891904.
26. Greene, R. V., and, R. E. MacDonald. 1984. Partial purification and reconstitution of the aspartate transport system from Halobacterium halobium. Arch. Biochem. Biophys. 229:576584.
27. Greller, G.,, R. Horlacher,, J. DiRuggiero, and, W. Boos. 1999. Molecular and biochemical analysis of MalK, the ATP-hydrolyzing subunit of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. J. Biol. Chem. 274:2025920264.
28. Greller, G.,, R. Riek, and, W. Boos. 2001. Purification and characterization of the heterologously expressed trehalose/maltose ABC transporter complex of the hyperthermophilic archaeon Thermococcus litoralis. Eur. J. Biochem. 268:40114018.
29. Grogan, D. W. 1989. Phenotypic characterization of the Archaebacterial genus Sulfolobus: comparison of five wild-type strains. J. Bacteriol. 171:67106719.
30. Hamill, O. P., and, B. Martinac. 2001. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81:685740.
31. Hettmann, T.,, C. L. Schmidt,, S. Anemuller,, U. Zahringer,, H. Moll,, A. Petersen, and, G. Schafer. 1998. Cytochrome b558/566 from the archaeon Sulfolobus acidocaldarius. A novel highly glycosylated, membrane-bound b-type hemoprotein. J. Biol. Chem. 273:1203212040.
32. Hirai, T., and, S. Subramaniam. 2003. Structural insights into the mechanism of proton pumping by bacteriorhodopsin. FEBS Lett. 545:28.
33. Holtmann, G. 2004. Ph.D. Thesis. University of Marburg, Germany.
34. Horlacher, R.,, K. B. Xavier,, H. Santos,, J. DiRuggiero,, M. Kossmann, and, W. Boos. 1998. Archaeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. J. Bacterial. 180:680689.
35. Jiang, Q. X.,, D. N. Wang, and, R. MacKinnon. 2004. Electron microscopic analysis of KvAP voltage-dependent K+ channels in an open conformation. Nature 430:806810.
36. Jiang, Y.,, A. Lee,, J. Chen,, M. Cadene,, B. T. Chait, and, R. MacKinnon. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515522.
37. Jiang, Y.,, A. Lee,, J. Chen,, V. Ruta,, M. Cadene,, B. T. Chait, and, R. MacKinnon. 2003. X-ray structure of a voltage-dependent K+ channel. Nature 423:3341.
38. Jiang, Y.,, V. Ruta,, J. Chen,, A. Lee, and, R. MacKinnon. 2003. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423:4248.
39. Kaidoh, K.,, S. Miyauchi,, A. Abe,, S. Tanabu,, T. Nara, and, N. Kamo. 1996. Rhodamine 123 efflux transporter in Haloferax volcanii is induced when cultured under ’metabolic stress’ by amino acids: the efflux system resembles that in a doxoru-bicin-resistant mutant. Biochem. J. 314(Pt 1):355359.
40. Kates, M. 1996. Structural analysis of phospholipids and glycolipids in extremely halophilic archaebacteria. J. Microbiol. Methods 25:113128.
41. Kates, M. 1993. Membrane lipids of Archaea, p. 261295. In M. Kates,, D. J. Kushner, and, A. T. Matheson. (ed.), The Biochemistry of Archaea (Archaebacteria). Elsevier, London, United Kingdom.
42. Kates, M.,, N. Moldoveanu, and, L. C. Stewart. 1993. On the revised structure of the major phospholipid of Halobacterium salinarium. Biochim. Biophys. Acta 1169:4653.
43. Kawarabayasi, Y.,, Y. Hino,, H. Horikawa,, K. Jin-no,, M. Takahashi,, M. Sekine,, S. Baba,, A. Ankai,, H. Kosugi,, A. Hosoyama,, S. Fukui,, Y. Nagai,, K. Nishijima,, R. Otsuka,, H. Nakazawa,, M. Takamiya,, Y. Kato,, T. Yoshizawa,, T. Tanaka,, Y. Kudoh,, J. Yamazaki,, N. Kushida,, A. Oguchi,, K. Aoki,, S. Masuda,, M. Yanagii,, M. Nishimura,, A. Yamagishi,, T. Oshima, and, H. Kikuchi. 2001. Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res. 8:123140.
44. Kloda, A., and, B. Martinac. 2001. Mechanosensitive channel of Thermoplasma, the cell wall-less archaea: cloning and molecular characterization. Cell Biochem. Biophys. 34:321347.
45. Kloda, A., and, B. Martinac. 2001. Molecular identification of a mechanosensitive channel in archaea. Biophys. J. 80:229240.
46. Kloda, A., and, B. Martinac. 2001. Structural and functional differences between two homologous mechanosensitive channels of Methanococcus jannaschii. EMBO J. 20:18881896.
47. Koenig, H. 1988. Archaeobacterial cell envelopes. Can. J. Microbiol. 34:395406.
48. Koga, Y.,, M. Nishihara,, H. Morii, and, M. Kagawa-Mat-sushita. 1993. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. Microbiol. Rev. 57:164182.
49. Kokoeva, M. V.,, K. F. Storch,, C. Klein, and, D. Oesterhelt. 2002. A novel mode of sensory transduction in archaea: binding protein-mediated chemotaxis towards osmoprotectants and amino acids. EMBO J. 21:23122322.
50. Koning, S. M.,, M. G. Elferink,, W. N. Konings, and, A. J. Driessen. 2001. Cellobiose uptake in the hyperthermophilic archaeon Pyrococcus furiosus is mediated by an inducible, high-affinity ABC transporter. J. Bacteriol. 183:49794984.
51. Koning, S. M.,, W. N. Konings, and, A. J. M. Driessen. 2002. Biochemical evidence for the presence of two alpha-glucoside ABC-transport systems in the hyperthermophilic archaeon Pyroccocus furiosus. Archaea 1:1925.
52. Konrad, Z., and, J. Eichler. 2002. Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the surface-layer glycoprotein of Haloferax volcanii follows protein translocation. Biochem. J. 366:959964.
53. Kushwaha, S. C., and, M. Kates. 1973. Isolation and identification of “bacteriorhodopsin” and minor C40-carotenoids in Halobacterium cutirubrum. Biochim. Biophys. Acta 316:235243.
54. Lai, M. C.,, T. Y. Hong, and, R. P. Gunsalus. 2000. Glycine betaine transport in the obligate halophilic archaeon Methano-halophilus portucalensis. J. Bacteriol. 182:50205024.
55. Langworthy, T. A. 1982. Lipids of Thermoplasma. Methods Enzymol. 88:369406.
56. Le Dain, A. C.,, N. Saint,, A. Kloda,, A. Ghazi, and, B. Martinac. 1998. Mechanosensitive ion channels of the archaeon Haloferax volcanii. J. Biol. Chem. 273:1211612119.
57. Lee, S. J.,, A. Engelmann,, R. Horlacher,, Q. Qu,, G. Vierke,, C. Hebbeln,, M. Thomm, and, W. Boos. 2003. TrmB, a sugar-specific transcriptional regulator of the trehalose/maltose ABC transporter from the hyperthermophilic archaeon Thermococcus litoralis. J. Biol. Chem. 278:983990.
58. Lee, S. J.,, C. Moulakakis,, S. M. Koning,, W. Hausner,, M. Thomm, and, W. Boos. 2005. TrmB, a sugar sensing regulator of ABC transporter genes in Pyrococcus furiosus exhibits dual promoter specificity and is controlled by different inducers. Mol. Microbiol. 57:17971807.
59. MacDonald, R. E.,, R. V. Greene, and, J. K. Lanyi. 1977. Light-activated amino acid transport systems in Halobacterium halobium envelope vesicles: role of chemical and electrical gradients. Biochemistry 16:32273235.
60. Martinac, B. 2004. Mechanosensitive ion channels: molecules of mechanotransduction. J. Cell Sci. 117:24492460.
61. Mattar, S.,, B. Scharf,, S. B. Kent,, K. Rodewald,, D. Oesterhelt, and, M. Engelhard. 1994. The primary structure of halocyanin, an archaeal blue copper protein, predicts a lipid anchor for membrane fixation. J. Biol. Chem. 269:1493914945.
62. Miyauchi, S.,, M. Komatsubara, and, N. Kamo. 1992. In archaebacteria, there is a doxorubicin efflux pump similar to mammalian P-glycoprotein. Biochim. Biophys. Acta 1110:144150.
63. Moll, R., and, G. Schäfer. 1988. Chemiosmotic H+ cycling across the plasma membrane of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. FEBS Lett. 232:359363.
64. Moody, J. E.,, L. Millen,, D. Binns,, J. F. Hunt, and, P. J. Thomas. 2002. Cooperative, ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. J. Biol. Chem. 277:2111121114.
65. Nelson, K. E.,, R. A. Clayton,, S. R. Gill,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, J. D. Peterson,, W. C. Nelson,, K. A. Ketchum,, L. McDonald,, T. R. Utterback,, J. A. Malek,, K. D. Linher,, M. M. Garrett,, A. M. Stewart,, M. D. Cotton,, M. S. Pratt,, C. A. Phillips,, D. Richardson,, J. Heidelberg,, G. G. Sutton,, R. D. Fleischmann,, J. A. Eisen, and, C. M. Fraser. 1999. Evidence for lateral gene transfer between Ar-chaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323329.
66. Neutze, R.,, E. Pebay-Peyroula,, K. Edman,, A. Royant,, J. Navarro, and, E. M. Landau. 2002. Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim. Biophys. Acta 1565:144167.
67. Ng, S. Y., and, K. F. Jarrell. 2003. Cloning and characterization of archaeal type I signal peptidase from Methanococcus voltae. J. Bacterial. 185:59365942.
68. Nichols, D. S.,, M. R. Miller,, N. W. Davies,, A. Goodchild,, M. Raftery, and, R. Cavicchioli. 2004. Cold adaptation in the Antarctic Archaeon Methanococcoides burtonii involves membrane lipid unsaturation. J. Bacteriol. 186:85088515.
69. Ninio, S., and, S. Schuldiner. 2003. Characterization of an archaeal multidrug transporter with a unique amino acid composition. J. Biol. Chem. 278:1200012005.
70. Oesterhelt, D.,, M. Meentzen, and, L. Schuhmann. 1973. Reversible dissociation of the purple complex in bacteriorhodopsin and identification of 13-cis and all-trans-retinal as its chromophores. Eur. J. Biochem. 40:453463.
71. Panagiotidis, C. H.,, W. Boos, and, H. A. Shuman. 1998. The ATP-binding cassette subunit of the maltose transporter MalK antagonizes MalT, the activator of the Escherichia coli mal regulon. Mol. Microbiol. 30:535546.
72. Paulsen, I. T.,, L. Nguyen,, M. K. Sliwinski,, R. Rabus, and, M. H. J. Saier. 2000. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J. Mol. Biol. 301:75100.
73. Prisco, A.,, M. Moracci,, M. Rossi, and, M. Ciaramella. 1995. A gene encoding a putative membrane protein homologous to the major facilitator superfamily of transporters maps upstream of the β-glycosidase gene in the Archaeon Sulfolobus sol-fataricus. J. Bacterial. 177:16141619.
74. Proctor, L. M.,, R. Lai, and, R. P. Gunsalus. 1997. The methanogenic archaeon Methanosarcina thermophila TM-1 possesses a high-affinity glycine betaine transporter involved in osmotic adaptation. Appl. Environ. Microbiol. 63:22522257.
75. Quiocho, F A., and, P. S. Ledvina. 1996. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol. Microbiol. 20:1725.
76. Reich-Slotky, R.,, C. Panagiotidis,, M. Reyes, and, H. A. Shuman. 2000. The detergent-soluble maltose transporter is activated by maltose binding protein and verapamil. J. Bacteriol. 182:9931000.
77. Ren, Q.,, K. H. Kang, and, I. T. Paulsen. 2004. TransportDB: a relational database of cellular membrane transport systems. Nucleic Acids Res. 32:D284-D288.
78. Revell Phillips, L.,, M. Milescu,, Y. Li-Smerin,, J. A. Mindell,, J. I. Kim, and, K. J. Swartz. 2005. Voltage-sensor activation with a tarantula toxin as cargo. Nature 436:857860.
79. Ruta, V.,, Y. Jiang,, A. Lee,, J. Chen, and, R. MacKinnon. 2003. Functional analysis of an archaebacterial voltage-dependent K+ channel. Nature 422:180185.
80. Sato, T.,, T. Fukui,, H. Atomi, and, T. Imanaka. 2003. Targeted gene disruption by homologous recombination in the hyper-thermophilic archaeon Thermococcus kodakaraensis KOD1. J. Bacteriol. 185:210220.
81. Schiefner, A.,, G. Holtmann,, K. Diederichs,, W. Welte, and, E. Bremer. 2004. Structural basis for the binding of compatible solutes by ProX from the hyperthermophilic archaeon Archaeoglobus fulgidus. J. Biol. Chem. 279:4827048281.
82. Schleper, C,, G. Pühler,, I. Holz,, A. Gambacorta,, D. Janekovic,, U. Santarius,, H.-P. Klenk, and, W. Zillig. 1995. Picrophilus gen.nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J. Bacteriol. 177:70507059.
83. Schneider, E. 2001. ABC transporters catalyzing carbohydrate uptake. Res. Microbiol. 152:303310.
84. Schouten, S.,, E. C. Hopmans,, J. S. Schefuss, and, J. S. Damste. 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204:265274.
85. She, Q.,, R. K. Singh,, F. Confalonieri,, Y. Zivanovic,, G. Allard,, M. J. Awayez,, C. C. Chan-Weiher,, I. G. Clausen,, B. A. Curtis,, A. De Moors,, G. Erauso,, C. Fletcher,, P. M. Gordon,, I. Heikamp-De Jong,, A. C. Jeffries,, C. J. Kozera,, N. Medina,, X. Peng,, H. P. Thi-Ngoc,, P. Redder,, M. E. Schenk,, C. Theri-ault,, N. Tolstrup,, R. L. Charlebois,, W. E Doolittle,, M. Duguet,, T. Gaasterland,, R. A. Garrett,, M. A. Ragan,, C. W. Sensen, and, O. J. van der. 2001. The complete genome of the crenarchaeon Sulfolobus sol-fataricus P2. Proc. Natl. Acad. Sci. USA 98:78357840.
86. Sprott, G. D.,, M. Meloche, and, J. C. Richards. 1991. Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschii grown at different temperatures. J. Bacteriol. 173:39073910.
87. Stock, J.,, M. Surette, and, P. Park. 1994. Chemosensing and signal transduction in bacteria. Curr. Opin. Neurobiol. 4:474480.
88. Sumper, M.,, E. Berg,, R. Mengele, and, I. Strobel. 1990. Primary structure and glycosylation of the S-layer protein of Haloferax volcanii. J. Bacterial. 172:71117118.
89. Tawara, E., and, N. Kamo. 1991. Glucose transport of Haloferax volcanii requires the Na(+)-electrochemical potential gradient and inhibitors for the mammalian glucose transporter inhibit the transport. Biochim. Biophys. Acta 1070:293299.
90. Thomas, N. A.,, S. L. Bardy, and, K. F. Jarrell. 2001. The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol. Rev. 25:147174.
91. Upasani, V. N.,, S. G. Desai,, N. Moldoveanu, and, M. Kates. 1994. Lipids of extremely halophilic archaeobacteria from saline environments in India: a novel glycolipid in Natro-nobacterium strains. Microbiology 140(Pt 8):19591966.
92. Van den Berg. B.,, W. M. Clemons, Jr.,, I. Collinson,, Y. Modis,, E. Hartmann,, S. C. Harrison, and, T. A. Rapoport. 2004. X-ray structure of a protein-conducting channel. Nature 427:3644.
93. van de Vossenberg, A., J. Driessen,, W. Zillig, and, W. N. Kon-ings. 1998. Bioenergetics and cytoplasmic membrane stability of the extremely acidophilic, thermophilic archaeon Picrophilus oshimae. Extremophiles 2:6774.
94. Van de Vossenberg, J. L. C. M.,, T. Ubbink-Kok,, M. G. L. Elferink,, A. J. M. Driessen, and, W. N. Konings. 1995. Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea. Mol. Microbiol. 18:925932.
95. Verdon, G.,, S. V Albers,, B. W. Dijkstra,, A. J. Driessen, and, A. M. Thunnissen. 2003. Crystal structures of the ATPase subunit of the glucose ABC transporter from Sulfolobus sol-fataricus: nucleotide-free and nucleotide-bound conformations. J. Mol. Biol. 330:343358.
96. Verdon, G.,, S. V Albers,, N. van Oosterwijk,, B. W. Dijkstra,, A. J. Driessen, and, A. M. Thunnissen. 2003. Formation of the productive ATP-Mg2+-bound dimer of GlcV, an ABC-ATPase from Sulfolobus sol-fataricus. J. Mol. Biol. 334:255267.
97. Walker, J. E.,, M. Saraste,, M. J. Runswick, and, N. J. Gay. 1982. Distantly related sequences in the alpha- and beta-sub-units of ATP synthase, myosin, kinases and other ATP-requir-ing enzymes and a common nucleotide binding fold. EMBO J. 1:945951.
98. Wanner, C., and, J. Soppa. 1999. Genetic identification of three ABC transporters as essential elements for nitrate respiration in Haloferax volcanii. Genetics 152:14171428.
99. Woodson, J. D.,, A. A. Reynolds, and, J. C. Escalante-Semerena. 2005. ABC Transporter for corrinoids in Halobacterium sp. strain NRC-1. J. Bacteriol. 187:59015909.
100. Yamauchi, K., and, M. Kinoshita. 1995. Highly stable lipid membranes from archaebacterial extremophiles. Prog. Polym. Sci. 18:763804.
101. Yernool, D.,, O. Boudker,, Y. Jin, and, E. Gouaux. 2004. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811818.
102. Yuan, Y. R.,, S. Blecker,, O. Martsinkevich,, L. Millen,, P. J. Thomas, and, J. F. Hunt. 2001. The crystal structure of the MJ0796 ATP-binding cassette: Implications for the structural consequences of ATP hydrolysis in the active site of an ABC-transporter. J. Biol. Chem. 276:3231332321.


Generic image for table
Table 1.

Characterized ABC transporters in the

Citation: Albers S, Konings W, Driessen A. 2007. Solute Transport, p 354-368. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch16
Generic image for table
Table 2.

Comparison of the predicted ABC-transport clusters in the three species

Citation: Albers S, Konings W, Driessen A. 2007. Solute Transport, p 354-368. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error