1887

Chapter 18 : Flagellation and Chemotaxis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Flagellation and Chemotaxis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap18-2.gif

Abstract:

One of the better-studied aspects of archaea physiology is the understanding of various types of taxis (phototaxis, chemotaxis), especially in halobacteria. Bacterial flagella and archaeal flagella are responsible for swimming, while type IV pili are involved in surface translocation or twitching. The study of phototaxis and chemotaxis in is a rare instance where significant biochemical and genetic studies on taxis in an archaeon have been reported. Transducer proteins are responsible for the detection of the external signal that is transmitted to the internal components of the chemotaxis system. An deletional mutant is defective in chemotaxis toward glutamic acid and aspartic acid and devoid of methyltransferase activity. Continued study of archaeal flagellation and chemotaxis is expected to yield the same far-ranging information about the much less well-studied archaea. Significant progress in understanding motility, flagellation, and chemotaxis will occur as the genetic tools continue to improve in the various model organisms. Study of the flagella-associated genes which are often cotranscribed with flagellins will, it is hoped, yield important information about their, so far completely unknown, role in archaeal flagellation. It is expected that the continued study of archaeal flagellation and chemotaxis will lead to novel discoveries about these structures and processes in archaea, and these may in turn lead to insights into the understanding of bacterial chemotaxis and type IV pili assembly, structure, and function.

Citation: Jarrell K, Ng S, Chaban B. 2007. Flagellation and Chemotaxis, p 385-410. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch18

Key Concept Ranking

Bacteria and Archaea
0.4426211
Bacterial Proteins
0.43140927
0.4426211
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Distribution of flagellation throughout the domain +, at least some species of the genus are flagellated; —, no members of the genus are reported to be flagellated. Reproduced with modifications from ( ).

Citation: Jarrell K, Ng S, Chaban B. 2007. Flagellation and Chemotaxis, p 385-410. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Electron micrographs depicting flagella on a diverse range of archaea. (A) negative stain, bar = 1 μm. Reproduced from the ( ) with permission of the publisher. (B) platinum shadowed, bar = 1 μm. Picture courtesy of Reinhard Rachel. (C) , negative stain, bar = 1 μm. Picture courtesy of Li Huang. (D) platinum shadowed, bar = 1 μm. Picture courtesy of Reinhard Rachel. (E) carbon/platinum shadow. Reproduced from the ( ) with permission of the publisher and D. Oesterhelt.

Citation: Jarrell K, Ng S, Chaban B. 2007. Flagellation and Chemotaxis, p 385-410. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Density map of the flagellar filament. (a) Cross-section through the three-dimensional density map of a flagellum. The triskelion-like shape and lack of a central channel is shown. (b) An axial projection of a stack of ten sections as shown in (a) spaced 5.8 Å apart and rotated by 108° relative to each other. Reproduced from the ( ) with permission of the publisher and S. Trachtenberg.

Citation: Jarrell K, Ng S, Chaban B. 2007. Flagellation and Chemotaxis, p 385-410. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Flagella gene families in selected archaeal species. Similar shadings indicate homologs shared among families. Genes are transcribed in the direction of the arrows. In , the B flagellin genes are adjacent to the accessory genes while the A flagellin genes are located elsewhere on the chromosome. One of the flagellin genes of is located on a plasmid.

Citation: Jarrell K, Ng S, Chaban B. 2007. Flagellation and Chemotaxis, p 385-410. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Model of assembly of archaeal flagella. The assembly of the glycan modification is believed to occur independently on a lipid carrier in the cytoplasmic membrane (steps 1 to 3 for the three-sugar glycan of ) before transfer via an SST3 homolog to an Asn residue within the -linked sequon present on the flagellins (step 4). Glycosylation, as well as removal of the signal peptide by FlaK (steps 5 to 6, although the order of the two steps is unknown), occurs in the cytoplasmic membrane prior to incorporation of the flagellins into the filament (step 7). The incorporation step is presumed to involve a FlaHIJ complex of ATPases and a conserved membrane protein that has homologs in the type IV pili system. Incorporation of new flagellin subunits is hypothesized to occur at the base of the structure since no hollow center for passage of subunits has been observed.

Citation: Jarrell K, Ng S, Chaban B. 2007. Flagellation and Chemotaxis, p 385-410. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Chemotaxis gene families in selected archaeal species. Similar shadings indicate homologs shared among families. Genes are transcribed in the direction of the arrows.

Citation: Jarrell K, Ng S, Chaban B. 2007. Flagellation and Chemotaxis, p 385-410. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Archaeal transducer families involved in taxis. Similar to bacterial MCPs, the cytoplasmic domain contains conserved modules involved in methylation/demethylation for signal adaptation as well as for signal transmission to the histidine ki-nase, CheA. Family A transducers are similar to bacterial chemotaxis transducers while Family B transducers lack the periplasmic domain. Family C transducers are soluble. Aerotaxis transducer Htr VIII is unusual in having six transmembrane helices rather than two. Depiction of HtrII is from . HtrII lacks the periplasmic domain. Figure based on data presented in Hoff et al. ( ) and Marwan and Oesterhelt ( ).

Citation: Jarrell K, Ng S, Chaban B. 2007. Flagellation and Chemotaxis, p 385-410. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Overview of halobacterial signal transduction. Transducer proteins (Htr proteins) are depicted as dimers (brown) and shown in their expected topology. The Htr regions involved in adaptation (yellow) and in signal relay (dark gray) to the flagellar motor via various Che proteins are indicated. The actions of the Che-protein machinery are illustrated for only one of the Htr proteins, shown on the left, for which an interaction with a substrate-loaded, membrane-anchored binding protein is indicated. CheD and CheJ (CheC) proteins are omitted for clarity. Htr1 and Htr2 transduce light signals via direct interaction with their corresponding receptors SRI and SRII. Repellent light signals mediated by SRI and SRII elicit the release of switch factor fumarate from a membrane-bound fumarate pool. MpcT senses changes in membrane potential (Δψ) generated via light-dependent changes in ion transport activity of BR and HR. The relative sizes of receptors, binding proteins, transducers, and Che proteins approximately reflect their corresponding molecular masses. Reproduced from ( ) with permission of the publisher and D. Oesterhelt.

Citation: Jarrell K, Ng S, Chaban B. 2007. Flagellation and Chemotaxis, p 385-410. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815516.ch18
1. Adler, J. 1973. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemo-taxis by Escherichia coli. J. Gen. Microbiol. 74:7791.
2. Alam, M., and, G. L. Hazelbauer. 1991. Structural features of methyl-accepting taxis proteins conserved between archaebacteria and eubacteria revealed by antigenic cross-reaction. J. Bacteriol. 173:58375842.
3. Alam, M., and, D. Oesterhelt. 1984. Morphology, function and isolation of halobacterial flagella. J. Mol. Biol. 176:459475.
4. Albers, S.-V., and, A. J. M. Driessen. 2005. Analysis of ATPases of putative secretion operons in the thermoacidophilic archaeon Sulfolobus sol-fataricus. Microbiology 151:763773.
5. Albers, S.-V.,, Z. Szabo, and, A. J. M. Driessen. 2003. Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J. Bacteriol. 185:39183925.
6. Alm, R. A., and, J. S. Mattick. 1997. Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. Gene 192:8997.
7. Bardy, S. L.,, J. Eichler, and, K. F. Jarrell. 2003. Archaeal signal peptides—a comparative survey at the genome level. Protein Sci. 12:18331843.
8. Bardy, S. L., and, K. F. Jarrell. 2002. FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. FEMS Microbiol. Lett. 208:5359.
9. Bardy, S. L., and, K. F. Jarrell. 2003. Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae. Mol. Microbiol. 50:13391347.
10. Bardy, S. L.,, T. Mori,, K. Komoriya,, S.-I. Aizawa, and, K. F. Jarrell. 2002. Identification and localization of flagellins FlaA and FlaB3 within flagella of Methanococcus voltae. J. Bacteriol. 184:52235233.
11. Bardy, S. L.,, S. Y. M. Ng, and, K. F. Jarrell. 2004. Recent advances in the structure and assembly of the archaeal flagellum. J. Mol. Microbiol. Biotechnol. 7:4151.
12. Bardy, S. L.,, S. Y. M. Ng, and, K. F. Jarrell. 2003. Prokaryotic motility structures. Microbiology 149:295304.
13. Bayley, D. P., and, K. F. Jarrell. 1999. Overexpression of Methanococcus voltae flagellins subunits in Escherichia coli and Pseudomonas aeruginosa: a source of archaeal preflagellin. J. Bacteriol. 181:41464153.
14. Bayley, D. P., and, K. F. Jarrell. 1998. Further evidence to suggest that archaeal flagella are related to bacterial type IV pili. J. Mol. Evol. 46:370373.
15. Bayley, D. P.,, M. L. Kalmokoff, and, K. F. Jarrell. 1993. Effect of bacitracin on flagellar assembly and presumed glycosylation of the flagellins of Methanococcus deltae. Arch. Microbiol. 160:179185.
16. Bibikov, S. I., and, V. P. Skulachev. 1989. Mechanisms of phototaxis and aerotaxis in Halobacterium halobium. FEBS Lett. 243:303306.
17. Black, F. T.,, E. A. Freund,, O. Vinther, and, C. Christiansen. 1979. Flagellation and swimming motility of Thermplasma acidophilum. J. Bacteriol. 137:456460.
18. Bren, A., and, M. Eisenbach. 1998. The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemo-tactic response regulator, CheY. J. Mol. Biol. 278:507514.
19. Brooun, A.,, J. Bell,, T. Freitas,, R.W. Larsen, and, M. Alam. 1998. An archaeal aerotaxis transducer combines subunit I core structures of eukaryotic cytochrome c oxidase and eubacterial methyl-accepting chemotaxis proteins. J. Bacteriol. 180:16421646.
20. Brooun, A.,, W. Zhang, and, M. Alam. 1997. Primary structure and functional analysis of the soluble transducer protein HtrXI in the archaeon Halobacterium salinarium. J. Bacteriol. 179:29632968.
21. Burda, P., and, M. Aebi. 1999. The dolichol pathway of N-linked glycosylation. Biochim. Biophys. Acta 1426:239257.
22. Chaban, B.,, S. Voisin,, J. Kelly,, S. M. Logan, and, K. F. Jarrell. 2006. Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea. Mol. Microbiol. 61:259268.
23. Chen, X., and, J. Spudich. 2004. Five residues in the HtrII transducer membrane-proximal domain close the cytoplasmic proton-conducting channel of sensory rhodopsin I. J. Biol. Chem. 279:4296442969.
24. Cohen-Krausz, S., and, S. Trachtenberg. 2002. The structure of the archaebacterial flagellar filament of the extreme halophiles Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili. J. Mol. Biol. 321:383395.
25. Correia, J. D., and, K. F. Jarrell. 2000. Posttranslational processing of Methanococcus voltae preflagellin by preflagellin peptidases of M. voltae and other methanogens. J. Bacteriol. 182:855858.
26. Craig, L.,, M. E. Pique, and, J. A. Trainer. 2004. Type IV pilus structure and bacterial pathogenicity. Nat. Rev. Microbiol. 2:363378.
27. Crowther, L. J.,, R. P. Anantha, and, M. S. Donnenberg. 2004. The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine. Mol. Microbiol. 52:6779.
28. Cruden, D.,, R. Sparling, and, A. J. Markovetz. 1989. Isolation and ultrastructure of the flagella of Methanococcus thermolithotrophicus and Methanospirullum hungatei. Appl. Environ. Microbiol. 55:14141419.
29. Faguy, D. M.,, D. S. Bayley,, A. S. Kostyukova,, N. A. Thomas, and, K. F. Jarrell. 1996. Isolation and characterization of flagella and flagellin proteins from the thermoacidophilic archaea Thermoplasma volcanium and Sulfolobus shibatae. J. Bacteriol. 178:902905.
30. Faguy, D. M., and, K. F. Jarrell. 1999. A twisted tale: the origin and evolution of motility and chemotaxis in prokaryotes. Microbiology 145:279281.
31. Faguy, D. M.,, K. F. Jarrell,, J. Kuzio, and, M. L. Kalmokoff. 1994. Molecular analysis of archaeal flagellins: similarity to the type IV pilin-transport superfamily widespread in bacteria. Can. J. Microbiol. 40:6771.
32. Faguy, D. M.,, S. F. Koval, and, K. F. Jarrell. 1993. Effects of changes in mineral concentration and growth temperature on filament length and flagellation in the archaeon Methanospirillum hungatei. Arch. Microbiol. 159:512520.
33. Faguy, D. M.,, S. F. Koval, and, K. F. Jarrell. 1992. Correlation between glycosylation of flagellin proteins and sensitivity of flagellar filaments to Triton X-100 in methanogens. FEMS Microbiol. Lett. 90:129134.
34. Fedorov, O. V.,, M. G. Pyatibratov,, A. S. Kostyukova,, N. K. Osina, and, V. Y. Tarasov. 1994. Protofilament as a structural element of flagella of haloalkalophilic archaebacteria. Can. J. Microbiol. 40:4553.
35. Forest, K. T.,, K. A. Satyshur,, G. A. Worzalla,, J. K. Hansen, and, T. J. Herderdorf. 2004. The pilus retraction protein PilT:ultrastructure of the biological assembly. Acta Crystallogr. Sect. D Biol Crystallogr. 60:978982.
36. Gavel, Y., and, G. von Heijne. 1990. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 3:433442.
37. Gerl, L., and, M. Sumper. 1988. Halobacterial flagellins are encoded by a multigene family. Characterization of five fla-gellins genes. J. Biol. Chem. 263:1324613251.
38. Gestwicki, J. E.,, A. C. Lamanna,, R. M. Harshey,, L. L. Mc-Carter,, L. L. Kiessling, and, J. Adler. 2000. Evolutionary conservation of methyl-accepting chemotaxis protein location in Bacteria and Archaea. J. Bacteriol. 182:64996502.
39. Giometti, C. S.,, C. I. Reich,, S. L. Tollaksen,, G. Babnigg,, H. Lim,, J. R. Yates III, and, G. J. Olsen. 2001. Structural modifications of Methanococcus jannaschii flagellin proteins revealed by proteome analysis. Proteomics 1:10331042.
40. Gordeliy, V. I.,, J. llabahn,, R. Moukhametzlanov,, R. Efremov,, J. Granzin,, R. Schlesinger,, G. Buldt,, T. Savopol,, A. J. Scheidig,, J. P. Klare, and, M. Engelhard. 2002. Molecular basis of transmembrane signaling by sensory rhodopsin II-transducer complex. Nature 419:484487.
41. Hellingwerf, K. J. 2002. The molecular basis of sensing and responding to light in microorganisms. Antonie van Leeuwen-hoek 81:5159.
42. Hoff, W. D.,, K.-H. Jung, and, J. L. Spudich. 1997. Molecular mechanism of photosignalling by archaeal sensory rhodopsins. Annu. Rev. Biophys. Biomol. Struct. 26:223258.
43. Hou, S.,, A. Brooun,, H. S. Yu,, T. Freitas, and, M. Alam. 1998. Sensory rhodopsin II transducer HtrII is also responsible for serine chemotaxis in the archaeon Halobacterium salinarium. J. Bacteriol. 180:16001602.
44. Hou, S.,, R. W. Larsen,, D. Boudko,, C. W. Riley,, E. Karatan,, M. Zimmer,, G. W. Ordal, and, M. Alam. 2000. Myoglobinlike aerotaxis transducers in Archaea and Bacteria. Nature 403:540544.
45. Jarrell, K. F.,, D. P. Bayley,, V. Florian, and, A. Klein. 1996. Isolation and characterization of insertional mutations in fla-gellins genes in the archaeon Methanococcus voltae. Mol. Microbiol. 20:657666.
46. Jarrell, K. F.,, D. P. Bayley, and, A. S. Kostyukova. 1996. The archaeal flagellum: a unique motility structure. J. Bacteriol. 178:50575064.
47. Jarrell, K. F. and, S. F. Koval. 1989. Ultrastructure and biochemistry of Methanococcus voltae. CRC Crit. Rev. Microbiol. 17:5387.
48. Jaschke, M.,, H.-J. Butt, and, E. K. Wolff. 1994. Imaging flagella of halobacteria by atomic force microscopy. Analyst 119:19431946.
49. Jones, C. J. and, S.-I. Aizawa. 1991. The bacterial flagellum and flagellar motor: structure, function and assembly. Adv. Microb. Physiol. 32:109172.
50. Kachlany, S. C.,, P. J. Planet,, M. K. Bhattacharjee,, E. Kollia,, R. deSalle,, D. H. Fine, and, D. H. Figurski. 2000. Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in Bacteria and Archaea. J. Bacteriol. 182:61696176.
51. Kalmokoff, M. L., and, K. F. Jarrell. 1991. Cloning and sequencing of a multigene family encoding the flagellins of Methanococcus voltae. J. Bacteriol. 173:71137125.
52. Kalmokoff, M. L.,, S. F. Koval, and, K. F. Jarrell. 1992. Relatedness of the flagellins from methanogens. Arch. Microbiol. 157:481487.
53. Kalmokoff, M. L.,, S. F. Koval, and, K. F. Jarrell. 1988. Isolation of flagella of the archaebacterium Methanococcus voltae by phase separation with Triton X-114. J. Bacteriol. 170:17521758.
54. Kim, W., and, W. B. Whitman. 1999. Isolation of acetate auxotrophs of the methane-producing archaeon Methanococcus maripaludis by random insertional mutagenesis. Genetics 152:14291437.
55. Koch, M. K., and, D. Oesterhelt. 2005. MpcT is the transducer for membrane potential changes in Halobacterium salinarum. Mol. Microbiol. 55:16811694.
56. Kokoeva, M. V., and, D. Oesterhelt. 2000. BasT, a membrane-bound transducer for protein for amino acid detection in Halobacterium salinarum. Mol. Microbiol. 35:647656.
57. Kokoeva, M. V.,, K.-F. Storch,, C. Klein, and, D. Oesterhelt. 2002. A novel mode of sensory transduction in archaea: binding protein-mediated chemotaxis towards osmoprotectants and amino acids. EMBO J. 21:23122322.
58. Konig, H. 1988. Archaeobacterial cell envelopes. Can. J. Microbiol. 34:395406.
59. Koval, S. F., and, K. F. Jarrell. 1987. Ultrastructure and biochemistry of the cell wall of Methanococcus voltae. J. Bacteriol. 169:12981306.
60. Kupper, J.,, W. Marwan,, D. Typke,, H. Grunberg,, U. Uwer,, M. Gluch, and, D. Oesterhelt. 1994. The flagella bundle of Halobacterium salinarium is inserted into a distinct polar cap structure. J. Bacteriol. 176:51845187.
61. Lechner, J., and, F. Wieland. 1989. Structure and biosynthesis of prokaryotic glycoproteins. Annu. Rev. Biochem. 58:173194.
62. Luo, Y., and, A. Wasserfallen. 2001. Gene transfer systems and their applications in Archaea. Syst. Appl. Microbiol. 24:1525.
63. Macnab, R. M. 2004. Type III flagellar protein export and flagellar assembly. Biochim. Biophys. Acta 1694:207217.
64. Macnab, R. M. 1999. The bacterial flagellum: reversible rotary propellor and type III export apparatus. J. Bacteriol. 181:71497153.
65. Marwan, W., and, D. Oesterhelt. 2000. Archaeal vision and bacterial smelling. ASM News 66:8389.
66. Marwan. W., and, D. Oesterhelt. 1991. Light-induced release of the switch factor during photophobic responses of Halo-bacterium halobium. Naturwissenschaften 78:127129.
67. Marwan, W., and, D. Oesterhelt. 1987. Signal formation in the halobacterial photophobic response mediated by a fourth retinal protein (P480). J. Mol. Biol. 195:333342.
68. Marwan, W.,, W. Schafer, and, D. Oesterhelt. 1990. Signal transduction in Halobacterium depends on fumarate. EMBO J. 9:355362.
69. Mattick, J. S. 2002. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56:289314.
70. Metlina, A. L. 2004. Bacterial and archaeal flagella as prokaryotic motility organelles. Biochemistry (Moscow) 69:12031212.
71. Migas, J.,, K. L. Anderson,, D. L. Cruden, and, A. J. Markovetz. 1989. Chemotaxis in Methanospirillum hungatei. Appl. Environ. Microbiol. 55:264265.
72. Mironova, O.S.,, R. G. Efremov,, B. Person,, J. Heberle,, I. L. Budyak,, G. Buldt, and, R. Schlesinger. 2005. Functional characterization of sensory rhodopsin II from Halobacterium salinarum expressed in Escherichia coli. FEBS Lett. 579:31473151.
73. Moore, B. C., and, J. A. Leigh. 2005. Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for ala-nine dehydrogenase, alanine racemase, and alanine permease. J. Bacteriol. 187:972979.
74. Morand, P. C.,, E. Bille,, S. Morelle,, E. Eugene,, J.-L. Beretti,, M. Wolfgang,, T. F. Meyer,, M. Kooney, and, X. Nassif. 2004. Type IV pilus retraction in pathogenic Neisseria is regulated by the PilC protein. EMBO J. 23:20092017.
75. Mukhopadhyay, B.,, E. F. Johnson, and, R. S. Wolfe. 2000. A novel pH2 control on the expression of flagella in the hyper-thermophilic strictly hydrogenotrophic methanarchaeon Methanococcus jannaschii. Proc. Natl. Acad. Sci. USA 97:1152211527.
76. Nagahisa, K.,, S. Ezaki,, S. Fujiwara,, T. Imanaka, and, M. Takagi. 1999. Sequence and transcriptional studies of five clustered flagellin genes from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. FEMS Microbiol. Lett. 178:183190.
77. Ng, S. Y. M.,, B. Chaban, and, K. F. Jarrell. 2006. Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modification. J. Mol. Microbiol. Biotechnol., 11:167191.
78. Ng, W. V.,, S. P. Kennedy,, G. G. Mahairas,, B. Berquist,, M. Pan,, H. D. Shukla,, S. R. Lasky,, N. S. Baliga,, V. Thorsson,, J. Sbrogna,, S. Swartzell,, D. Weir,, J. Hall,, T. A. Dahl,, R. Welti,, Y. A. Goo,, B. Leithauser,, K. Keller,, R. Cruz,, M. J. Danson,, D. W. Hough,, D. G. Maddocks,, P. E. Jablonski,, M. P. Krebs,, C. M. Angevine,, H. Dale,, T. A. Isenbarger,, R. F. Peck,, M. Pohlschroder,, J. L. Spudich,, K. W. Jung,, M. Alam,, T. Freitas,, S. Hou,, C. J. Daniels,, P. P. Dennis,, A. D. Omar,, H. Ebhardt,, T. M. Lowe,, P. Liang,, M. Riley,, L. Hood, and, S. DasSarma. 2000. Genomic sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sci. USA 97:1217612181.
79. Nita-Lazar, M.,, M. Wacker,, B. Schegg,, S. Amber, and, M. Aebi. 2004. The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation. Glycobiology 15:361367.
80. Nutsch, T.,, W. Marwan,, D. Oesterhelt, and, E. D. Gilles. 2003. Signal processing and flagellar motor switching during phototaxis of Halobacterium salinarum. Genome Res. 13:24062412.
81. Oesterhelt, D. 1998. The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr. Opin. Struct. Biol. 8:489500.
82. Oesterhelt, D., and, W. Marwan. 1993. Signal transduction in halobacteria, p. 173187. In M. Kates et al. (ed.), The Biochemistry of Archaea (Archaebacteria). Elsevier Science Publications, New York, N.Y.
83. Oprian, D. D. 2003. Phototaxis, chemotaxis and the missing link. Trends Biochem. Sci. 28:167169.
84. Patenge, N.,, A. Berendes,, H. Engelhardt,, S. C. Schuster, and, D. Oesterhelt. 2001. The fla gene cluster is involved in the biogenesis of flagella in Halobacterium salinarum. Mol. Microbiol. 41:653663.
85. Peabody, C. R.,, Y. J. Chung,, M.-R. Yen,, D. Vidal-Ingigliardi,, A. P. Pugsley, and, M. H. Saier, Jr. 2003. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149:30513072.
86. Perazzona, B., and, J. L. Spudich. 1999. Identification of methylation sites and effects of phototaxis stimuli on transducer methylation in Halobacterium salinarium. J. Bacteriol. 181:56765683.
87. Pohlschroder, M.,, K. Dilks,, N. J. Hand, and, R. W. Rose. 2004. Translocation of proteins across archaeal cytoplasmic membranes. FEMS Microbiol. Rev. 28:324.
88. Polosina, Y. Y.,, K. F. Jarrell,, O. V. Fedorov, and, A. S. Kostyukova. 1998. Nucleotide diphosphate kinase from haloalkaliphilic archaeon Natronobacterium magadii: purification and characterization. Extremophiles 2:333338.
89. Pyatibratov, M. G.,, K. Leonard,, V. Y. Tarasov, and, O. V. Fedorov. 2002. Two immunologically distinct types of protofilaments can be identified in Naltrialba magadii flagella. FEMS Microbiol. Lett. 212:2327.
90. Ring, G., and, J. Eichler. 2004. Extreme secretion: protein translocation across the archaeal plasma membrane. J. Bioenerg. Biomembr. 36:3545.
91. Rudolph, J., and, D. Oesterhelt. 1996. Deletion analysis of the che operon in Halobacterium salinarium. J. Mol. Biol. 258:548554.
92. Rudolph, J., and, D. Oesterhelt. 1995. Chemotaxis and phototaxis require a CheA histidine kinase in the archaeon Halobacterium salinarium. EMBO J. 14:667673.
93. Rudolph, J.,, N. Tolliday,, C. Schmitt,, S. C. Schuster, and, D. Oesterhelt. 1995. Phosphorylation in halobacterial signal transduction. EMBO J. 14:42494257.
94. Schafer, G.,, M. Engelhard, and, V. Muller. 1999. Bioenergetics of the archaea. Microbiol. Mol. Biol. Rev. 63:570620.
95. Scharf, B., and, E. K. Wolff. 1994. Phototactic behaviour of the archaebacterial Natronobacterium pharaonis. FEBS Lett. 340:114116.
96. Seidel, R.,, B. Scharf,, M. Gautel,, K. Kleine,, D. Oesterhelt, and, M. Engelhardt. 1995. The primary structure of sensory rhodopsin II: a member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II. Proc. Natl. Acad. Sci. USA 92:30363040.
97. Serganova, I. S.,, Y. Y. Polosina,, A. S. Kostyukova,, A. L. Metlina,, M. G. Pyatibratov, and, O. V. Fedorov. 1995. Flagella of halophilic archaea: biochemical and genetic analysis. Biochemistry (Moscow) 60:953957.
98. Sment, K. A., and, J. Konisky. 1989. Chemotaxis in the archaebacterium Methanococcus voltae. J. Bacteriol. 171:28702872.
99. Sourjik, V., and, R. Schmitt. 1998. Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry 37:23272335.
100. Southam, G.,, M. L. Kalmokoff,, K. F. Jarrell,, S. F. Koval, and, T. J. Beveridge. 1990. Isolation, characterization and cellular insertion of the flagella from two strains of the archaebacterium Methanospirillum hungatei. J. Bacteriol. 172:32213228.
101. Speranskii, V. V.,, A. L. Metlina,, T. M. Novikova, and, L. Y. Bakeyeva. 1996. Disk-like lamellar structure as part of the archaeal flagellar apparatus. Biophysics 41:167173.
102. Spudich, J. L., and, H. Luecke. 2002. Sensory rhodopsin II: functional insights from structure. Curr. Opin. Struct. Biol. 12:540546.
103. Stoeckenius, W.,, E. K. Wolff, and, B. Hess. 1988. A rapid population method for action spectra applied to Halobacterium halobium. J. Bacteriol. 170:27902795.
104. Storch, K. F.,, J. Rudolph, and, D. Oesterhelt. 1999. Car: a cytoplasmic sensor responsible for arginine chemotaxis in Halobacterium salinarum. EMBO J. 18:11461158.
105. Sumper, M. 1987. Halobacterial glycoprotein synthesis. Biochim. Biophys. Acta 906:6979.
106. Sumper, M., and, F. T. Wieland. 1995. Bacterial glycoproteins. In J. Montreuil,, H. Schachter, and, J. F. G. Vliegenthart (ed.), Glycoproteins. Elsevier Science, New York, N.Y.
107. Szurmant, H.,, T. J. Muff, and, G. W. Ordal. 2004. Bacillus subtilis CheC and FliY are members of a novel class of CheY-P-hydrolyzing proteins in the chemotactic signal transduction cascade. J. Biol. Chem. 279:2178721792.
108. Szurmant, H., and, G. Ordal. 2004. Diversity in chemotaxis mechanisms among the Bacteria and Archaea. Microbiol. Mol. Biol. Rev. 68:301319.
109. Szymanski, C. M.,, S. M. Logan,, D. Linton, and, B. W. Wren. 2003. Campylobacter—a tale of two protein glycosylation systems. Trends Microbiol. 11:233238.
110. Szymanski, C. M., and, B. W. Wren. 2005. Protein glycosylation in bacterial mucosal pathogens. Nat. Rev. Microbiol. 3:225237.
111. Tarasov, V. Y.,, M. G. Pyatibratov,, S. Tang,, M. Dyall-Smith, and, O. V. Fedorov. 2000. Role of flagellins from A and B loci in flagella formation of Halobacterium salinarum. Mol. Microbiol. 35:6978.
112. Thomas, N. A.,, S. L. Bardy, and, K. F. Jarrell. 2001. The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol. Rev. 25:147174
113. Thomas, N. A.,, E. D. Chao, and, K. F. Jarrell. 2001. Identification of amino acids in the leader peptide of Methanococcus voltae preflagellin that are important in posttranslational processing. Arch. Microbiol. 175:263269.
114. Thomas, N. A., and, K. F. Jarrell. 2001. Characterization of flagellum gene families of methanogenic archaea and localization of novel accessory proteins. J. Bacteriol. 183:71547164.
115. Thomas, N. A.,, S. Mueller,, A. Klein, and, K. F. Jarrell. 2002. Mutants in flaI and flaJ of the archaeon Methanococcus voltae are deficient in flagellum assembly. Mol. Microbiol. 46:879887.
116. Trachtenberg, S.,, V. E. Galkin, and, E. H. Egelman. 2005. Refining the structure of the Halobacterium salinarum flagellar filament using the iterative helical real space reconstruction method: insights into polymorphism. J. Mol. Biol. 346:665676.
117. Voisin, S.,, R. S. Houliston,, J. Kelly,, J.-R. Brisson,, D. Watson,, S. L. Bardy,, K. F. Jarrell, and, S. M. Logan. 2005. Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae. J. Biol. Chem. 280:1658616593.
118. Wadhams, G. H., and, J. P. Armitage. 2004. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5:10241037.
119. Wieland, F.,, G. Paul, and, M. Sumper. 1985. Halobacterial fla-gellins are sulfated glycoproteins. J. Biol. Chem. 260:1518015185.
120. Yang, C.-S.,, O. Sineshchekov,, E. N. Spudich, and, J. L. Spudich. 2004. The cytoplasmic membrane-proximal domain of the HtrII transducer interacts with the E-F loop of photoactivated Natronomonas pharoanis sensory rhodopsin II. J. Biol. Chem. 279:4297042976.
121. Yu, H. S., and, M. Alam. 1997. An agarose-in-plug bridge method to study chemotaxis in the Archaeon Halobacterium salinarum. FEMS Microbiol. Lett. 156:265269.
122. Zhang, J. K.,, M. A. Pritchett,, D. J. Lampe,, H. M. Robertson, and, W. W. Metcalf. 2000. In vivo transposon mutagenesis of the methanogenic archaeon Methanosarcina acetivorans C2A using a modified version of the insect marinerfamily transposable element Himar1. Proc. Natl. Acad. Sci. USA 97:96659670.
123. Zhang, W.,, A. Brooun,, J. McCandless,, P. Banda, and, M. Alam. 1996. Signal transduction in the archaeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins. Proc. Natl. Acad. Sci. USA 93:46494654.

Tables

Generic image for table
Table 1.

Distribution of gene clusters in archaea

Citation: Jarrell K, Ng S, Chaban B. 2007. Flagellation and Chemotaxis, p 385-410. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch18
Generic image for table
Table 2.

Comparison of archaeal flagella to bacterial flagella and type IV pili

Citation: Jarrell K, Ng S, Chaban B. 2007. Flagellation and Chemotaxis, p 385-410. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch18
Generic image for table
Table 3.

Distribution of gene clusters in archaea

Citation: Jarrell K, Ng S, Chaban B. 2007. Flagellation and Chemotaxis, p 385-410. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error