Chapter 22 : Biotechnology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Biotechnology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap22-2.gif


The biotechnology of the has been reviewed in recent articles. This chapter covers topics that include enzymes and molecules from archaea and the use of archaeal whole cells. It updates the current state of biotechnology of the , paying special attention to distinguish between extant and potential applications, to provide a realistic overview of the impact of these organisms on biotechnology. Among hydrolases, proteases, esterases/lipases, and glycoside hydrolases are important in industry. Glycosidases synthesize oligosaccharides in reactions of reverse hydrolysis or transglycosylation in which an alcohol or another sugar acts as acceptor instead of water. Microbial exopolysaccharides (EPS) are used as stabilizers, thickeners, and emulsifiers in several industries, and the major commercial exopolysaccharides derives from the bacterium . Compatible solutes from archaea have biotechnological roles as cryoprotectants and preservatives. Hydrogen gas is an attractive alternative to fossil fuel as it is a clean, nonpolluting source of energy. However, conventional production is based, at present, on the steam reforming of natural gas and petroleum, and microbial production of H is gaining increasing interest. Many studies on the microbial production of H have focused on the bacterial genera, and . Extremophilic archaea have been considered an interesting source of molecules for novel biotechnological applications. Their stability and activity to extreme conditions make them useful alternatives to labile mesophilic counterparts.

Citation: Moracci M, Cobucci-Ponzano B, Perugino G, Mosè R. 2007. Biotechnology, p 478-495. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch22

Key Concept Ranking

Bacteria and Archaea
Ligase Chain Reaction
Ribonucleoside Diphosphate Reductase
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Reaction mechanism of β-glycosidases. Hydrolysis occurs if “X” is a hydrogen (H) atom, or transglycosylation occurs if “X” is a different “R” group.

Citation: Moracci M, Cobucci-Ponzano B, Perugino G, Mosè R. 2007. Biotechnology, p 478-495. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Reaction mechanism of hyperthermophilic glycosynthases. (A) Scheme of the glycosynthase mechanism: the transferred sugar is shown in bold. (B) Scheme of the processive glycosynthetic reaction: the transferred sugar in a chair conformation is shown with closed symbols; the aryl leaving group is shown as a hexagon.

Citation: Moracci M, Cobucci-Ponzano B, Perugino G, Mosè R. 2007. Biotechnology, p 478-495. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

The intein self-catalytic protein-splicing mechanism is shown.

Citation: Moracci M, Cobucci-Ponzano B, Perugino G, Mosè R. 2007. Biotechnology, p 478-495. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, M. W. W.,, F. B. Perler, and, R. M. Kelly. 1995. Extremozymes—expanding the limits of biocatalysis. Bio-Technology 13:662668.
2. Akarsubasi, A. T,, O. Ince,, B. Kirdar,, N. A. Oz,, D. Orhon,, T. P. Curtis,, I. M. Head, and, B. K. Ince. 2005. Effect of waste-water composition on archaeal population diversity. Water Res. 39:15761584.
3. Akiba, T.,, M. Nishio,, I. Matsui, and, K. Harata. 2004. X-ray structure of a membrane-bound beta-glycosidase from the hyperthermophilic archaeon Pyrococcus horikoshii. Proteins. 57:422431.
4. Andersen, L. N.,, M. E. Bjoernvad, and, N. Schuelein. 1998. A thermostable endo-β-1,4-glucanase. Patent WO9833895.
5. Ando, S.,, H. Ishida,, Y. Kosugi, and, K. Ishikawa. 2002. Hy-perthermostable endoglucanase from Pyrococcus horikoshii. Appl. Environ. Microbiol. 68:430433.
6. Andonopoulou, E., and, C. E. Vorgias. 2004. Multiple components and induction mechanism of the chitinolytic system of the hyperthermophilic archaeon Thermococcus chitonoph-agus. Appl. Microbiol. Biotechnol. 65:694702.
7. Andrade, C. M.,, W. B. Aguiar, and, G. Antranikian. 2001. Physiological aspects involved in production of xylanolytic enzymes by deep-sea hyperthermophilic archaeon Pyrodictium abyssi. Appl. Biochem. Biotechnol. 91–93:655669.
8. Anton, J.,, I. Meseguer, and, F. Rodriguezvalera. 1988. Production of an extracellular polysaccharide by Haloferax mediterranei. Appl. Environ. Microbiol. 54:23812386.
9. Atomi, H. 2005. Recent progress towards the application of hyperthermophiles and their enzymes. Curr. Opin. Chem. Biol. 9:166173.
10. Bayer, E. A.,, E. Morag, and, R. Lamed. 1994. The cellulo-some-a treasure-trove for biotechnology. Trends Biotechnol. 12:379386.
11. Bergquist, P. L.,, M. D. Gibbs,, D. D. Morris,, V. S. Te’o,, D. J. Saul, and, H. W. Moran. 1999. Molecular diversity of ther-mophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol. Ecol. 28:99110.
12. Bertoldo, C., and, G. Antranikian. 2002. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol. 6:151160.
13. Borges N,, A. Ramos,, N. D. Raven,, R. J. Sharp, and, H. Santos. 2002. Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Extremophiles 6:209216.
14. Borns, M., and, H. Hogrefe. 2000. Unique enhanced DNA polymerase delivers high fidelity and great PCR performance. Strategies 13:7679.
15. Burykin, N. N.,, E. Y. Korchemskaya,, M. S. Soskin,, V. B. Taranenko,, T. V. Dukova, and, N. N. Vsevolodov. 1985. Pho-toinduced Anisotropy In Bio-Chrom Films. Opt. Commun. 54:6870.
16. Cady, S. G.,, M. W. Bauer,, W. Callen,, M. A. Snead,, E. J. Mathur,, J. M. Short, and, R. M. Kelly. 2001. β-Endoglucanase from Pyrococcus furiosus. Methods Enzymol. 330:346354.
17. Cannio, R.,, N. Di Prizito,, M. Rossi, and, A. Morana. 2004. A xylan-degrading strain of Sulfolobus sol-fataricus: isolation and characterization of the xylanase activity. Extremophiles 8:117124.
18. Cary, S. C.,, T. Shank, and, J. Stein. 1998. Worms bask in extreme temperatures. Nature 391:545546.
19. Catara, G,, G. Ruggiero,, F. La Cara,, F. A. Digilio,, A. Capasso, and, M. Rossi. 2003. A novel extracellular subtilisin-like protease from the hyperthermophile Aeropyrum pernix K1: biochemical properties, cloning, and expression. Extremophiles 7:391399.
20. Cavicchioli, R.,, K. S. Siddiqui,, D. Andrews, and, K. R. Sowers. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13:253261.
21. Chen, L.,, K. Brugger,, M. Skovgaard,, P. Redder,, Q. She,, E. Torarinsson,, B. Greve,, M. Awayez,, A. Zibat,, H. P. Klenk, and, R. A. Garrett. 2005. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J. Bacteriol. 187:49924999.
22. Chien, A.,, D. Edgar, and, J. Trela. 1976. Deoxyribonucleic acid polymerase from the extreme thermophilile Thermus aquaticus. J. Bacterial. 127:15501557.
23. Chong, S.,, F. B. Mersha,, D. G. Comb,, M. E. Scott,, D. Landry,, L. M. Vence,, F. B. Perler,, J. Benner,, R. B. Kucera,, C. A. Hirvonen,, J. J. Pelletier,, H. Paulus, and, M. Q. Xu. 1997. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192:271281.
24. Chong, S.,, G. E. Montello,, A. Zhang,, E. J. Cantor,, W. Liao,, M. Q Xu, and, J. Benner. 1998. Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res. 26:51095115.
25. Cobucci-Ponzano, B.,, G. Perugino,, A. Trincone,, M. Mazzone,, B. Di Lauro,, A. Giordano,, M. Rossi, and, M. Moracci. 2003. Applications in biocatalysis of glycosyl hydrolases from the hyperthermophilic archaeon Sulfolobus sol-fataricus. Bio-cat. Biotrans. 21:215221.
26. Connaris, H.,, D. A. Cowan, and, R. J. Sharp. 1991. Heterogeneity of proteinases from the hyperthermophilic archaeobacterium Pyrococcus furiosus. J. Gen. Microbiol. 137:11931199.
27. da Costa, M. S.,, H. Santos, and, E. A. Galinski. 1998. An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv. Biochem. Eng. Biotechnol. 61:117153.
28. Demirjian, D. C.,, F. Moris-Varas, and, C. S. Cassidy. 2001. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5:144151.
29. De Simone, G,, V. Menchise,, G. Manco,, L. Mandrich,, N. Sorrentino,, D. Lang,, M. Rossi, and, C. Pedone. 2001. The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus. J. Mol. Biol. 314:507518.
30. Di Lernia, I.,, A. Morana,, A. Ottombrino,, S. Fusco,, M. Rossi, and, M. De Rosa. 1998. Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles 2:409416.
31. Di Lernia, I.,, C. Schiraldi,, M. Generoso, and, M. De Rosa. 2002. Trehalose production at high temperature exploiting an immobilized cell bioreactor. Extremophiles 6:341347.
32. Dong, G.,, C. Veille,, A. Savchenko, and, J. G. Zeikus. 1997. Cloning, sequencing and expression of the gene encoding extracellular a-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl. Environ. Microbiol. 63:35693576.
33. Duffner, F.,, C. Bertoldo,, J. T. Andersen,, K. Wagner, and, G. Antranikian. 2000. A new thermoactive pullulanase from Desulfurococcus mucosus: cloning, sequencing, purification, and characterization of the recombinant enzyme after expression in Bacillus subtilis. J. Bacterial. 182:63316338.
34. Eckert, K. A., and, T. A. Kunkel. 1991. DNA polymerase fidelity and the polymerase chain reaction. PCR Methods Appl. 1:1724.
35. Eichler, J. 2001. Biotechnological uses of archaeal ex-tremozymes. Biotechnol. Adv. 19:261278.
36. Eichler, J. 2003. Facing extremes: archaeal surface-layer (glyco) proteins. Microbiology 149:33473351.
37. Eriksen, N. 1996. Detergents, p.187200. In T. Godfrey and, S. West (ed.), Industrial Enzymes, 2nd ed. The Macmillan Press Ltd., Basingstoke, United Kingdom.
38. Erlich, H.,, D. Gelfand, and, R. Saiki. 1988. Specific DNA amplification product review. Nature 33:–461462.
39. Esposito, L.,, I. Bruno,, F. Sica,, C. A, Raia,, A. Giordano,, M. Rossi,, L. Mazzarella, and, A. Zagari. 2003. Crystal structure of a ternary complex of the alcohol dehydrogenase from Sulfolobus sol-fataricus. Biochemistry 42:–1439714407.
40. Franzetti, B.,, G. Schoehn,, J. F. Hernandez,, M. Jaquinod,, R. W. Ruigrok, and, G. Zaccai. 2002. Tetrahedral aminopeptidase: a novel large protease complex from archaea. EMBO J. 21:21322138.
41. Frillingos, S.,, A. Linden,, F. Niehaus,, C. Vargas,, J. J. Nieto,, A. Ventosa,, G. Antranikian, and, C. Drainas. 2000. Cloning and expression of alpha-amylase from the hyperthermophilic archaeon Pyrococcus weosei in the moderately halophilic bacterium Halomonas elongata. J. Appl. Microbial. 88:495503.
42. Fukui, T.,, T. Eguchi,, H. Atomi, and, T. Imanaka. 2002. A membrane-bound archaeal Lon protease displays ATP-independent proteolytic activity towards unfolded proteins and ATP-dependent activity for folded proteins. J. Bacteriol. 184:36893698.
43. Futterer, O.,, A. Angelov,, H. Liesegang,, G. Gottschalk,, C. Schleper,, B. Schepers,, C. Dock,, G. Antranikian, and, W. Liebl. 2004. Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc. Natl. Acad. Sci. USA 101:90919096.
44. Galinski, E. A. 1995. Osmoadaptation in bacteria. Adv. Microb. Physiol. 37:272328.
45. Gerday, C.,, M. Aittaleb,, M. Bentahir,, J. P. Chessa,, P. Claverie,, T. Collins,, S. D’Amico,, J. Dumont,, G. Garsoux,, D. Georlette,, A. Hoyoux,, T. Lonhienne,, M. A. Meuwis, and, G. Feller. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18:103107.
46. Godfrey, T. 1996. Baking, p. 87101. In T. Godfrey and, S. West (ed.), Industrial Enzymes, 2nd ed. The Macmillan Press Ltd., Basingstoke United Kingdom.
47. Gray, N. D.,, I. P. Miskin,, O. Kornilova,, T. P Curtis, and, I. M. Head. 2002. Occurrence and activity of Archaea in aerated activated sludge wastewater treatment plants. Environ. Microbiol. 4:158168.
48. Greagg, M. A.,, M. J. Fogg,, G. Panayotou,, S. J. Evans,, B. A. Connolly, and, L. H. Pearl. 1999. A read-head function in archaeal DNA polymerases detects promutagenic template-strand uracil. Proc. Natl. Acad. Sci. USA 96:90459050.
49. Guagliardi, A.,, L. Cerchia, and, M. Rossi. 2002. An intracel-lular protease of the crenarchaeon Sulfolobus sol-fataricus, which has sequence similarity to eukaryotic peptidases of the CD clan. Biochem. J. 368:357363.
50. Haki, G. D., and, S. K. Rakshit. 2003. Developments in industrially important thermostable enzymes: a review. Bio-resour. Technol. 89:1734.
51. Hirakawa, H.,, N. Kamiya,, Y. Kawarabayashi, and, T. Naga-mune. 2004. Properties of an alcohol dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix K1. J. Biosci. Bioeng. 97:202206.
52. Hogrefe, H.,, B. Scott,, K. Nielson,, V. Hedden,, C. Hansen,, J. Cline,, F. Bai,, J. Amberg,, R. Allen, and, M. Madden. 1997. Nover PCR enhancing factor improves performance of Pfu DNA polymerase. Strategies 10:9396.
53. Hogrefe, H. H.,, C. J. Hansen,, B. R. Scott, and, K. B. Nielson. 2002. Archaeal dUTPase enhances PCR amplifications with archaeal DNA polymerase by preventing dUTP incorporation. Proc. Natl. Acad. Sci. USA 99:596601.
54. Holmes, M. L.,, R. K. Scopes,, R. L. Moritz,, R. J. Simpson,, C. Englert,, F. Pfeifer, and, M. L. Dyall-Smith. 1997. Purification and analysis of an extremely halophilic beta-galactosi-dase from Haloferax alicantei. Biochim. Biophys. Acta 1337:276286.
55. Hotta, Y.,, S. Ezaki,, H. Atomi, and, T. Imanaka. 2002. Extremely stable and versatile carboxylesterase from a hyperthermophilic archaeon. Appl. Environ. Microbiol. 68:39253931.
56. Hough, D. W., and, M. J. Danson. 1999. Extremozymes. Curr. Opin. Chem. Biol. 3:3946.
57. Huang, L. N.,, H. Zhou,, Y. Q. Chen,, S. Luo,, C. Y. Lan, and, L. H. Qu. 2002. Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval. FEMS Microbiol. Lett. 214:235240.
58. Huang, Y.,, G. Krauss,, S. Cottaz,, H. Driguez, and, G. Lipps. 2005. A highly acid-stable and thermostable endo-beta-glu-canase from the thermoacidophilic archaeon Sulfolobus sol-fataricus. Biochem. J. 385(Pt 2):581588.
59. Ichiyanagi, K.,, Y. Ishino,, M. Ariyoshi,, K. Komori, and, K. Morikawa. 2000. Crystal structure of an archaeal intein-encoded homing endonuclease PI-PfuI. J. Mol. Biol. 300:889901.
60. Ikeda, M., and, D. S. Clark. 1998. Molecular cloning of extremely thermostable esterase gene from hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli. Biotechnol. Bioeng. 57:624629.
61. Ishikawa, K., and, K. Mino. 2004. Heat-resistant cysteine syn-thase. U.S. Patent 2,004,002,075.
62. J0rgensen, S.,, C. E. Vorgias, and, G. Antranikian. 1997. Cloning, sequencing and expression of an extracellular a-amylase from the hyperthermophilic archeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. J. Biol. Chem. 272:1633516342.
63. Jun, H. B.,, S. M. Park,, N. B. Park, and, S. H. Lee. 2004. Nitrogen removal and sludge reduction in a symbiotic activated sludge system between anaerobic archaea and bacteria. Water Sci. Technol. 50:189197.
64. Kaledin, A.,, A. Sliusarenko, and, S. Gorodetski. 1980. Isolation and properties of DNA polymerase from extreme ther-mophilic bacteria Thermus aquaticus YT-1. Biochimiya 45:644651.
65. Kamekura, M.,, Y. Seno, and, M. Dyall-Smith. 1996. Halolysin R4, a serine proteinase from the halophilic archaeon Haloferax mediterranei; gene cloning, expression and structural studies. Biochim. Biophys. Acta 1294:159167.
66. Kanai, T,, H. Imanaka,, A. Nakajima,, K. Uwamori,, Y. Omori,, T. Fukui,, H. Atomi, and, T. Imanaka. 2005. Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. J. Biotechnol. 116:271282.
67. Kaper, X,, M. J. van der Maarel,, G. J. Euverink, and, L. Dijkhuizen. 2004. Exploring and exploiting starch-modifying amylomaltases from thermophiles. Biochem. Soc. Trans. 32:279282.
68. Kataoka, N.,, A. Miya, and, K. Kiriyama. 1997. Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Sci. Technol. 36:4147.
69. Kim, J., and, J. S. Dordick. 1997. Unusual salt and solvent dependence of a protease from an extreme halophile. Biotechnol. Bioeng. 55:471479.
70. Kim, S., and, S. B. Lee. 2004. Thermostable esterase from a thermoacidophilic archaeon: purification and characterization for enzymatic resolution of a chiral compound. Biosci. Biotechnol. Biochem. 68:22892298.
71. Kirk, O.,, T. V. Borchert, and, C. C. Fuglsang. 2002. Industrial enzyme applications. Curr. Opin. Biotechnol. 13:345351.
72. Klingeberg, M.,, B. Galunsky,, C. Sjoholm,, V. Kasche, and, G. Antranikian. 1995. Purification and properties of a highly thermostable, sodium dodecyl sulfate-resistant and stereospecific proteinase from the extremely thermophilic archaeon Thermococcus stetteri. Appl. Environ. Microbiol. 61:30983104.
73. Kobayashi, K.,, M. Kato,, Y. Miura,, M. Kettoku,, T. Komeda, and, A. Iwamatsu. 1996. Gene cloning and expression of new trehalose-producing enzymes from the hyperthermophilic ar-chaeum Sulfolobus sol-fataricus KM1. Biosci. Biotechnol. Biochem. 60:18821885.
74. Krahe, M.,, G. Antranikian, and, H. Markl. 1996. Fermentation of extremophilic microorganisms. FEMS Microbiol. Rev. 18:271285.
75. Kumar, N., and, D. Das. 2001. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microbiol. Technol. 29:280287.
76. Laderman, K. A.,, K. Asada,, T. Uemori,, H. Mukai,, Y. Taguchi,, I. Kato, and, C. B. Anfinsen. 1993. a-Amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Cloning and sequencing of the gene and expression in Escherichia coli. J. Biol. Chem. 268:2440224407.
77. Lam, D. E., and, E. J. Mathur. 1998. Endoglucanases U.S. Patent 5,789,228.
78. Lillo, J. G., and, F. Rodriguezvalera. 1990. Effects of culture conditions on poly(beta-hydroxybutyric acid) production by Haloferax-Mediterranei. Appl. Environ. Microbiol. 56:25172521.
79. Limauro, D.,, R. Cannio,, G. Fiorentino,, M. Rossi, and, S. Bartolucci. 2001. Identification and molecular characterization of an endoglucanase gene, celS, from the extremely thermophilic archaeon Sulfolobus sol-fataricus. Extremophiles 5:213219.
80. Manco, G.,, E. Giosuè,, S. D’Auria,, P. Herman,, G. Carrea, and, M. Rossi. 2000. Cloning, overexpression, and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone-sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus. Arch. Biochem. Byophys., 373:182192.
81. Marhuenda-Egea, F. C., and, M. J. Bonete. 2002. Extreme halophilic enzymes in organic solvents. Curr. Opin. Biotechnol. 13:385389.
82. Matsui, I.,, K. Ishikawa,, H. Ishida,, Y. Kosugi, and, Y. Tahara. 2002. Thermostable enzyme having phosphatidylethanola-mine N-methyltransferase activity. U.S. Patent 6,391,604.
83. Mayr, J.,, A. Lupas,, J. Kellermann,, C. Eckerskom,, W. Baumeister, and, J. Peters. 1996. A hyperthermostable protease of the subtilisin family bound to the surface layer of the archaeon Staphylothermus marinus. Curr. Biol. 6:739749.
84. Mendonca, N. M.,, C. L. Niciura,, E. P. Gianotti, and, J. R. Campos. 2004. Full scale fluidized bed anaerobic reactor for domestic wastewater treatment: performance, sludge production and biofilm. Water Sci. Technol. 49:319325.
85. Merone, L.,, L. Mandrich,, M. Rossi, and, G. Manco. 2005. A thermostable phosphotriesterase from the archaeon Sulfolobus sol-fataricus: cloning, overexpression and properties. Extremophiles 9:297305.
86. Moracci, M.,, B. Cobucci-Ponzano,, A. Trincone,, S. Fusco,, M. De Rosa,, J. Van der Oost,, C. W. Sensen,, R. L. Charlebois, and, M. Rossi. 2000. Identification and molecular characterization of the first a-xylosidase from an archaeon. J. Biol. Chem. 275:2208222089.
87. Moracci, M.,, A. Trincone,, G. Perugino,, M. Ciaramella, and, M. Rossi. 1998. Restoration of the activity of active-site mutants of the hyperthermophilic beta-glycosidase from Sulfolobus sol-fataricus: dependence of the mechanism on the action of external nucleophiles. Biochemistry 37:1726217270.
88. Mozhaev, V. V. 1993. Mechanism-based strategies for protein thermostabilization. Trends Biotechnol. 11:8895.
89. Nakatani, M.,, S. Ezaki,, H. Atomi, and, T. Imanaka. 2000. A DNA ligase from a hyperthermophilic archaeon with unique cofactor specificity. J. Bacteriol. 182:64246433.
90. Nakatani, M.,, S. Ezaki,, H. Atomi, and, T. Imanaka. 2002. Substrate recognition and fidelity of strand joining by an archaeal DNA ligase. Eur. J. Biochem. 269:650656.
91. Nicolaus, B.,, M. C. Manca,, I. Romano, and, L. Lama. 1993. Production of an exopolysaccharide from 2 thermophilic ar-chaea belonging to the genus Sulfolobus. FEMS Microbiol. Lett. 109:203206.
92. Niehaus, F.,, A. Peters,, T. Groudieva, and, G. Antranikian. 2000. Cloning, expression and biochemical characterisation of a unique thermostable pullulan-hydrolysing enzyme from the hyperthermophilic archaeon Thermococcus aggregans. FEMS Microbiol. Lett. 190:223229.
93. Perler, F. B. 2002. InBase, the Intein Database. Nucleic Acids Res. 30:383384.
94. Perler, F. B.,, E. O. Davis,, G. E. Dean,, F. S. Gimble,, W. E. Jack,, N. Neff,, C. J. Noren,, J. Thorner, and, M. Belfort. 1994. Protein splicing elements: inteins and exteins—a definition of terms and recommended nomenclature. Nucleic Acids Res. 22:11251127.
95. Perler, F. B.,, S. Kumar, and, H. Kong. 1996. Thermostable DNA polymerases. Adv. Protein Chem. 48:377435.
96. Perugino, G.,, A. Trincone,, A. Giordano,, J. van der Oost,, T. Kaper,, M. Rossi, and, M. Moracci. 2003. Activity of hyperthermophilic glycosynthases is significantly enhanced at acidic pH. Biochemistry 42:84848493.
97. Perugino, G.,, A. Trincone,, M. Rossi, and, M. Moracci. 2004. Oligosaccharide synthesis by glycosynthases. Trends Biotechnol. 22:3137.
98. Plumb, J. J.,, J. Bell, and, D. C. Stuckey. 2001. Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor. Appl. Environ. Microbiol. 67:32263235.
99. Pouwels, J.,, M. Moracci,, B. Cobucci-Ponzano,, G. Perugino,, J. Van der Oost,, T. Kaper,, J. H. G. Lebbink,, V. W. De Vos,, M. Ciaramella, and, M. Rossi. 2000. Activity and stability of hyperthermophilic enzymes: a comparative study on two archaeal β-glycosidases. Extremophiles 4:157164.
100. Radianingtyas, H, and, P. C. Wright. 2003. Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev. 27:593616.
101. Raia, C. A.,, A. Giordano, and, M. Rossi. 2001. Alcohol de-hydrogenase from Sulfolobus sol-fataricus. Methods Enzymol. 331:176195.
102. Randau, L.,, R. Munch,, M. J. Hohn,, D. Jahn, and, D. Soll. 2005. Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5’- and 3’-halves. Nature 433:537541.
103. Richardson, R. E.,, C.A. James,, V. K. Bhupathiraju, and, L. Alvarez-Cohen. 2002. Microbial activity in soils following steam treatment. Biodegradation 13:285295.
104. Rinker, K. D., and, R. M. Kelly. 2000. Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima. Biotechnol Bioeng. 69:537547.
105. Roberts, M. F. 2004. Osmoadaptation and osmoregulation in archaea: update 2004. Front. Biosci. 9:19992019.
106. Robertson, D. E.,, D. Murphy,, J. Reid,, A. M. Maffia,, S. Link,, R. V. Swanson,, P. V Warren, and, A. Kosmotka. 1999. Esterases. U.S. Patent 5,942,430.
107. Roeißler, M., and, V. Müller. 2001. Osmoadaptation in bacteria and archaea: common principles and differences. Environ. Microbiol. 3:743754.
108. Rolfsmeier, M.,, C. Haseltine,, E. Bini,, A. Clark, and, P. Blum. 1998. Molecular characterization of the a-glucosidase gene (malA) from the hyperthermophilic archaeon Sulfolobus sol-fataricus. J. Bacteriol. 180:12871295.
109. Roling, W. F.,, I. R. de Brito Couto,, R. P. Swannell, and, I. M. Head. 2004. Response of Archaeal communities in beach sediments to spilled oil and bioremediation. Appl. Environ. Microbiol. 70:26142620.
110. Rolland, J. L.,, Y. Gueguen,, D. Flament,, Y. Pouliquen,, P. F. Street, and, J. Dietrich. 2002. Comment on “The first description of an archaeal hemicellulase: the xylanase from Thermococcus zilligii strain AN1”: evidence that the unique N-terminal sequence proposed comes from a maltodextrin phosphorylase. Extremophiles 6:349350.
111. Ryu, K.,, J. Kim, and, J. S. Dordick. 1994. Catalytic properties and potential of an extracellular protease from an extreme halophile. Enzyme Microb. Technol. 16:266275.
112. Santos, H., and, M. S. da Costa. 2002. Compatible solutes of organisms that live in hot saline environments. Environ. Microbiol. 4:501509.
113. Santos, M. E. D.,, A. A. Martins, and, M. da Costa. 1998. Thermostabilization, osmoprotection, and protection against desiccation of enzymes, cell components and cells by mannosyl-glycerate. Eur. Patent 0816509.
114. Schaffer, C., and, P. Messner. 2001. Glycobiology of surface layer proteins. Biochimie 83:591599.
115. Schicho, R. N.,, K. Ma,, M. W. Adams, and, R. M. Kelly. 1993. Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacterial. 175:18231830.
116. Schiraldi, C,, I. Di Lernia, and, M. De Rosa. 2002. Trehalose production: exploiting novel approaches. Trends Biotechnol. 20:420425.
117. Schiraldi, C,, M. Giuliano, and, M. De Rosa. 2002. Perspectives on biotechnological applications of archaea. Archaea 1:7586.
118. Schuster, B.,, E. Gyorvary,, D. Pum, and, U. B. Sleytr. 2005. Nanotechnology with S-layer proteins. Methods Mol. Biol. 300:101123.
119. Schwerdtfeger, R. M.,, R. Chiaraluce,, V. Consalvi,, R. Scandurra, and, G. Antranikian. 1999. Stability, refolding and Ca2 + binding of pullulanase from the hyperthermophilic archaeon Pyrococcus woesei. Eur. J. Biochem. 264:479487.
120. Sehgal, A. C.,, W. Callen,, E. J. Mathur,, J. M. Short, and, R. M. Kelly. 2001. Carboxylesterase from Sulfolobus sol-fataricus P1. Methods Enzymol. 330:461471.
121. Sehgal, A. C., and, R. M. Kelly. 2002. Enantiomeric resolution of 2-aryl propionic esters with hyperthermophilic and mesophilic esterases: contrasting thermodynamic mechanisms. J. Am. Chem. Soc. 124:81908191.
122. Sehgal, A. C.,, R. Tompson,, J. Cavanagh, and, R. M. Kelly. 2002. Structural and catalytic response to temperature and cosolvents of carboxylesterase EST1 from the extremely ther-moacidophilic archaeon Sulfolobus sol-fataricus P1. Biotechnol. Bioeng. 80:784793.
123. Sellek, G. A., and, J. B. Chaudhuri. 1999. Biocatalysis in organic media using enzymes from extremophiles. Enzyme Microbiol. Technol. 25:471482.
124. Serour, E., and, G. Antranikian. 2002. Novel thermoactive glucoamylases from the thermoacidophilic Archaea Thermo-plasma acidophilum, Picrophilus torridus and Picrophilus os-himae. Antonie Van Leeuwenhoek 81:7383.
125. Sleytr, U. B., and, M. Sara. 1997. Bacterial and archaeal S-layer proteins: structure-function relationships and their biotechnological applications. Trends Biotechnol. 15:2026.
126. Smith, D. R.,, L. A. Doucette-Stamm,, C. Deloughery,, H. Lee,, J. Dubois,, T. Aldredge,, R. Bashirzadeh,, D. Blakely,, R. Cook,, K. Gilbert,, D. Harrison,, L. Hoang,, P. Keagle,, W. Lumm,, B. Pothier,, D. Qiu,, R. Spadafora,, R. Vicaire,, Y. Wang,, J. Wierz-bowski,, R. Gibson,, N. Jiwani,, A. Caruso,, D. Bush,, B. Pothier,, D. Qiu,, H. Safer,, D. Patwell,, S. Prabhakar,, S. McDougall,, G. Shimer,, A. Goyal,, S. Pietrokovski,, G. M. Church,, C. J. Daniels,, J. Mao,, P. Rice,, J. Nölling, and, J. N. Reeve. 1997. Complete genome sequence of Methanobacterium thermau-totrophicum deltaH: functional analysis and comparative genomics. J. Bacteriol. 179:71357155.
127. Stepanov, V. M.,, G. N. Rudenskaya,, L. P. Revina,, Y. B. Gryaznova,, E. N. Lysogorskaya,, I. Y. U. Filippova, and, I. I. Ivanova. 1992. A serine proteinase of an archaebacterium Halobacterium mediterranei. A homologue of eubacterial subtilisins. Biochem. J. 285:281286.
128. Stetter, K. O. 1998. Thermococcus AV4 and enzymes produced by the same. U.S. Patent 5,714,373.
129. Story, S. V.,, C. Shah,, F. E. Jr Jenney, and, M. W. Adams. 2005. Characterization of a novel zinc-containing, lysine-specific aminopeptidase from the hyperthermophilic archaeon Pyro-coccus furiosus. J. Bacteriol. 187:20772083.
130. Sunna, A.,, M. Moracci,, M. Rossi, and, G. Antranikian. 1997. Glycosyl hydrolases from hyperthermophiles. Extremophiles 1:213.
131. Takagi, M.,, M. Nishioka,, H. Kakihara,, M. Kitabayashi.,, H. Inoue,, B. Kawakami,, M. Oka, and, T. Imanaka. 1997. Characterization of DNA polymerase from Pyrococcus sp. Strain KOD1 and its application to PCR. Appl. Environ. Microbiol. 63:45044510.
132. Tanaka, T.,, T. Fukui,, S. Fujiwara,, H. Atomi, and, T. Imanaka. 2003. Characterization of an exo-beta-D-glucosaminidase involved in a novel chitinolytic pathway from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Bacteriol. 185:51755181.
133. Tanaka, T.,, T. Fukui,, S. Fujiwara,, H. Atomi, and, T. Imanaka. 2004. Concerted action of diacetylchitobiose deacetylase and exo-beta-D-glucosaminidase in a novel chitinolytic pathway in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Biol. Chem. 279:3002130027.
134. Tanaka, T.,, T. Fukui, and, T. Imanaka. 2001. Different cleavage specificities of the dual catalytic domains in chitinase from the hyperthermophilic archaeon Thermococcus kodakaraen-sis KOD1. J. Biol. Chem. 276:3562935635.
135. Taylor, I. N.,, R. C. Brown,, M. Bycroft,, G. King,, J. A. Little-child,, M. C. Lloyd,, C. Praquin,, H. S. Toogood, and, S. J. Taylor. 2004. Application of thermophilic enzymes in commercial biotransformation processes. Biochem. Soc. Trans. 32:290292.
136. Tolan, J. S. 1996. Pulp and paper, p. 327338. In T. Godfrey and, S. West (ed.), Industrial Enzymes, 2nd ed. The Macmillan Press Ltd., Basingstoke, United Kingdom.
137. Toogood, H. S.,, E. J. Hollingsworth,, R. C. Brown,, I. N. Taylor,, S. J. C. Taylor,, R. McCague, and, J. A. Littlechild. 2002. A thermostable L-aminoacylase from Thermococcus litoralis: cloning, overespression, characterization, and applications in biotransformations. Extremophiles 6:111122.
138. Trincone, A.,, A. Giordano,, G. Perugino,, M. Rossi, and, M. Moracci. 2003. Glycosynthase-catalysed syntheses at pH below neutrality. Bioorg. Med. Chem. Lett. 13:40394042.
139. Trincone, A.,, A. Giordano,, G. Perugino,, M. Rossi, and, M. Moracci. 2005. Highly productive autocondensation and transglycosylation reactions with Sulfolobus sol-fataricus gly-cosynthase. Chembiochem 6:14311437.
140. Uhl, A. M., and, R. M. Daniel. 1999. The first description of an archaeal hemicellulase: the xylanase from Thermococcus zilligii strain AN1. Extremophiles 3:263267.
141. van der Oost, J.,, W. G. Voorhorst,, S. W. Kengen,, A. C. Geerling,, V. Wittenhorst,, Y. Gueguen, and, W. M. de Vos. 2001. Genetic and biochemical characterization of a short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur. J. Biochem. 268:30623068.
142. Van Hamme, J. D.,, A. Singh, and, O. P. Ward. 2003. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67:503549.
143. Ventosa, A., and, J. J. Nieto. 1995. Biotechnological applications and potentialities of halophilic microorganisms. World J. Microbiol. Biotechnol. 11:8594.
144. Ventosa, A.,, J. J. Nieto, and, A. Oren. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62:504544.
145. Vieille, C., and, G. J. Zeikus. 2001. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65:143.
146. Waino, M., and, K. Ingvorsen. 2003. Production of beta-xylanase and beta-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles 7:8793.
147. Warren, P. V., and, R. V. Swanson. 1998. Transaminases and aminotransferases. U.S. Patent 5,814,473.
148. Weiner, R. M. 1997. Biopolymers from marine prokaryotes. Trends Biotechnol. 15:390394.
149. West, S. 1996. Flavour production with enzymes, p. 209224. In T. Godfrey and, S. West (ed.), Industrial Enzymes, 2nd ed. The Macmillan Press Ltd., Basingstoke, United Kingdom.
150. Wheals, A. E.,, L. C. Basso,, D. M. Alves, and, H. V. Amorim. 1999. Fuel ethanol after 25 years. Trends Biotechnol. 17:482487.
151. Wise, K. J.,, N. B. Gillespie,, J. A. Stuart,, M. P. Krebs, and, R. R. Birge. 2002. Optimization of bacteriorhodopsin for bio-electronic devices. Trends Biotechnol. 20:387394.
152. Xu, M. Q.,, M. W. Southworth,, F. B. Mersha,, L. J. Hornstra, and, F. B. Perler. 1993. In vitro protein splicing of purified precursor and the identification of a branched intermediate. Cell 75:13711377.
153. Xu, M. Q.,, H. Paulus, and, S. Chong. 2000. Fusions to self-splicing inteins for protein purification. Methods Enzymol. 326:376418.
154. Zopf, D., and, S. Roth. 1996. Oligosaccharide anti-infective agents. Lancet 347:10171021.


Generic image for table
Table 1.

Applications of extremozymes

Citation: Moracci M, Cobucci-Ponzano B, Perugino G, Mosè R. 2007. Biotechnology, p 478-495. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch22

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error