1887

Chapter 3 : Molecular Methods for Species Identification and Strain Typing of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Molecular Methods for Species Identification and Strain Typing of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815523/9781555814380_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555815523/9781555814380_Chap03-2.gif

Abstract:

The chapter provides an overview of species within the section , including , along with an outline of the recently advocated genealogical concordance phylogenetic species recognition concept to recognize members of the section . In addition, species identification strategies useful for applications in clinical microbiology laboratories are elaborated in this chapter that also describes molecular methods currently available for subtyping of strains. The element is present in ~20 copies in the genome and can be targeted by random fragment length polymorphism (RFLP)-Southern blotting procedures. Multiple panels of microsatellites have been proposed for and have performed well in comparative studies. An infection by is thought to be acquired after exposure and subsequent inhalation of conidia from the air in the environment. However, amplified fragment length polymorphism (AFLP) analysis has demonstrated that water should also be considered as a potential source of . species identification by morphological methods continues to have an important place in the clinical microbiology laboratory. These methods have a number of practical limitations, rendering them largely unsuitable for intrasection species identification, comprehensive studies of population structure, and epidemiological and surveillance studies. Recently, polyphasic taxonomy, a method that utilizes a combination of different phenotypic or genotypic data sets to define genera, species, and even taxonomically relevant subspecies, has been proposed and may be a more relevant method of defining species and subspecies within the genus .

Citation: Balajee S, Klaassen C. 2009. Molecular Methods for Species Identification and Strain Typing of , p 15-28. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch3

Key Concept Ranking

Aspergillus fumigatus
0.47849464
DNA Restriction Enzymes
0.43126863
0.47849464
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Combined ML trees (a) and parsimony tree (one of three) (b) generated from sequences from five protein-coding loci, showing as a separate species with high bootstrap values. Reprinted from with permission of the publisher ( ).

Citation: Balajee S, Klaassen C. 2009. Molecular Methods for Species Identification and Strain Typing of , p 15-28. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Proposed work flow for identification of using comparative sequence-based methods amenable for use in clinical microbiology laboratories.

Citation: Balajee S, Klaassen C. 2009. Molecular Methods for Species Identification and Strain Typing of , p 15-28. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Examples of short tandem repeat amplification results. The principal peak used for analysis is indicated with a dot. Numbers with each dot represent the repeat unit size of the marker, and the letter represents the fluorescent label: A, 6-carboxyfluorescein (FAM); B, hexachlorofluorescein (HEX); C, tetrachlorofluorescein (TET). The boxed numbers below the graph indicate the size of the amplified products (in nucleotides) as determined by high-resolution capillary electrophoresis.

Citation: Balajee S, Klaassen C. 2009. Molecular Methods for Species Identification and Strain Typing of , p 15-28. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Minimum spanning tree of 250 random isolates based on a categorical analysis of nine microsatellite repeat markers. Each circle represents a unique genotype. The size of each circle corresponds to the number of isolates with the same genotype. Genotypes connected by a shaded background differ by a maximum of two of the nine markers and could be considered a “clonal complex.” Thick connecting line, one marker difference; regular connecting line, two marker differences; interrupted line, three or more marker differences.

Citation: Balajee S, Klaassen C. 2009. Molecular Methods for Species Identification and Strain Typing of , p 15-28. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

AFLP analysis of five isolates of , three isolates of , and four isolates each of , revealing species-specific banding patterns.

Citation: Balajee S, Klaassen C. 2009. Molecular Methods for Species Identification and Strain Typing of , p 15-28. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Alignment of the repeat region of the Afu3g08990 locus (CSP locus). Representative sequence types and sequences of are shown. A dash indicates an insertion or deletion, and a dot indicates a nucleotide that is identical to the nucleotide in the top sequence. Reprinted from with permission of the publisher ( ).

Citation: Balajee S, Klaassen C. 2009. Molecular Methods for Species Identification and Strain Typing of , p 15-28. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Phylogeny of unique sequence types based on the 564-bp CSP gene fragment. is the outgroup taxon used to root the tree. Only unique STs were used to construct the tree. Strains listed below the tree are grouped with other strains that possess identical CSP STs; the numbers above each grouping correspond to the numerical superscripts for each representative ST included in the phylogeny. Isolates from six invasive aspergillosis outbreaks were included in the analysis and are represented as OB1 to -6. Reprinted from the journal with permission of the publisher ( ).

Citation: Balajee S, Klaassen C. 2009. Molecular Methods for Species Identification and Strain Typing of , p 15-28. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815523.ch03
1. Bain, J. M.,, A. Tavanti,, A. D. Davidson,, M. D. Jacobsen,, D. Shaw,, N. A. Gow, and, F. C. Odds. 2007. Multilocus sequence typing of the pathogenic fungus Aspergillus fumigatus. J. Clin. Microbiol. 45: 14691477.
2. Balajee, S. A.,, J. Gribskov,, M. Brandt,, J. Ito,, A. Fothergill, and, K. A. Marr.2005a. Mistaken identity: Neosartorya pseudofischeri and its anamorph masquerading as Aspergillus fumigatus. J. Clin. Microbiol. 43: 59965999.
3. Balajee, S. A.,, J. L. Gribskov,, E. Hanley,, D. Nickle, and, K. A. Marr. 2005b. Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus. Eukaryot. Cell 4: 625632.
4. Balajee, S. A.,, D. Nickle,, J. Varga, and, K. A. Marr. 2006. Molecular studies reveal frequent misidentification of Aspergillus fumigatus by morphotyping. Eukaryot. Cell 5: 17051712.
5. Balajee, S. A.,, L. Sigler, and, M. E. Brandt.2007a. DNA and the classical way: identification of medically important molds in the 21st century. Med. Mycol. 45: 475490.
6. Balajee, S. A.,, S. T. Tay,, B. A. Lasker,, S. F. Hurst, and, A. P. Rooney.2007b. Characterization of a novel gene for strain typing reveals substructuring of Aspergillus fumigatus across North America. Eu-karyot. Cell 6: 13921399.
7. Balajee, S. A.,, J. Houbraken,, P. E. Verweij,, S. B. Hong,, T. Yaghuchi,, J. Varga, and, R. A. Samson.2007c. Aspergillus species identification in the clinical setting. Stud. Mycol. 59: 3946.
8. Bart-Delabesse, E.,, C. Cordonnier, and, S. Bretagne. 1999. Usefulness of genotyping with microsatellite markers to investigate hospital-acquired invasive aspergillosis. J. Hosp. Infect. 42: 321327.
9. Bart-Delabesse, E.,, J. F. Humbert,, E. Delabesse, and, S. Bretagne. 1998. Microsatellite markers for typing Aspergillus fumigatus isolates. J. Clin. Microbiol. 36: 24132418.
10. Bart-Delabesse, E.,, J. Sarfati,, J. P. Debeaupuis,, W. van Leeuwen,, A. van Belkum,, S. Bretagne, and, J. P. Latgé. 2001. Comparison of restriction fragment length polymorphism, microsatellite length polymorphism, and random amplification of polymorphic DNA analyses for fingerprinting Aspergillus fumigatus isolates. J. Clin. Microbiol. 39: 26832686.
11. Chazalet, V.,, J. P. Debeaupuis,, J. Sarfati,, J. Lortholary,, P. Ribaud,, P. Shah,, M. Cornet,, H. Vu Thien,, E. Gluckman,, G. Brucker, and, J. P. Latgé. 1998. Molecular typing of environmental and patient isolates of Aspergillus fumigatus from various hospital settings. J. Clin. Microbiol. 36: 14941500.
12. de Ruiter, M. T.,, H. A. de Valk,, J. F. Meis, and, C. H. Klaassen. 2007. Retrotransposon insertion-site context (RISC) typing: a novel typing method for Aspergillus fumigatus and a convenient PCR alternative to restriction fragment length polymorphism analysis. J. Microbiol. Methods 70: 528534.
13. Dettman, J. R.,, D. J. Jacobson,, E. Turner,, A. Pringle, and, J. W. Taylor. 2003. Reproductive isolation and phylogenetic divergence in Neurospora: comparing methods of species recognition in a model eukaryote. Evolution 57: 27212741.
14. de Valk, H. A.,, J. F. Meis,, I. M. Curfs,, K. Muehlethaler,, J. W. Mouton, and, C. H. Klaassen. 2005. Use of a novel panel of nine short tandem repeats for exact and high-resolution fingerprinting of As-pergillus fumigatus isolates. J. Clin. Microbiol. 43: 41124120.
15. de Valk, H. A.,, J. F. Meis and C. H. Klaassen.2007a. Microsatellite based typing of Aspergillus fumigatus: strengths, pitfalls and solutions. J. Microbiol. Methods 69: 268272.
16. de Valk, H. A.,, J. F. Meis,, B. E. de Pauw,, P. J. Donnelly, and, C. H. Klaassen.2007b. Comparison of two highly discriminatory molecular fingerprinting assays for analysis of multiple Aspergillus fumigatus isolates from patients with invasive aspergillosis. J. Clin. Microbiol. 45: 14151419.
17. Girardin, H.,, J. Sarfati,, H. Kobayashi,, J. P. Bouchara, and, J. P. Latgé.1994. Use of DNA moderately repetitive sequence to type Aspergil-lus fumigatus isolates from aspergilloma patients. J. Infect. Dis. 169: 683685.
18. Henry, T.,, P. C. Iwen, and, S. H. Hinrichs. 2000. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J. Clin. Microbiol. 38: 15101515.
19. Hong, S. B.,, H. S. Cho,, H. D. Shin,, J. C. Frisvad, and, R. A. Samson. 2006. Novel Neosartorya species isolated from soil in Korea. Int. J. Syst. Evol. Microbiol. 56: 477486.
20. Hong, S. B.,, S. J. Go,, H. D. Shin,, J. C. Frisvad, and, R. A. Samson. 2005. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97: 13161329.
21. Hong, S. B.,, H. D. Shin,, J. Hong,, J. C. Frisvad,, P. V. Nielsen,, J. Varga, and R. A. Samson. 2008. New taxa of Neosartorya and Aspergillusin Aspergillus section Fumigati. Antonie Leeuwenhoek 93: 8798.
22. Katz, M. E.,, A. M. Dougall,, K. Weeks, and, B. F. Cheetham. 2005. Multiple genetically distinct groups revealed among clinical isolates identified as atypical Aspergillus fumigatus. J. Clin. Microbiol. 43: 551555.
23. Larsen, T. O.,, J. Smedsgaard,, K. F. Nielsen,, M. A. Hansen,, R. A. Samson, and, J. C. Frisvad. 2007. Production of mycotoxins by As-pergillus lentulus and other medically important and closely related species in section Fumigati. Med. Mycol. 45: 225232.
24. Lasker, B. A. 2002. Evaluation of performance of four genotypic methods for studying the genetic epidemiology of Aspergillus fumigatus isolates. J. Clin. Microbiol. 40: 28862892.
25. Levdansky, E.,, J. Romano,, Y. Shadkchan,, H. Sharon,, K. J. Verstrepen,, G. R. Fink, and, N. Osherov. 2007. Coding tandem repeats generate diversity in Aspergillus fumigatus genes. Eukaryot. Cell 6: 13801391.
26. Mellado, E.,, L. Alcazar-Fuoli,, G. Garcia-Effron,, A. Alastruey-Izquierdo,, M. Cuenca-Estrella, and, J. L. Rodriguez-Tudela. 2006. New resistance mechanisms to azole drugs in Aspergillus fumigatus and emergence of antifungal drugs-resistant A. fumigatus atypical strains. Med. Mycol. 44(Suppl.): 367371.
27. Neuveglise, C.,, J. Sarfati,, J. P. Latgé, and, S. Paris. 1996. Afut1, a retrotransposon-like element from Aspergillus fumigatus. Nucleic Acids Res. 24: 14281434.
28. Neuveglise, C.,, J. Sarfati,, J. P. Debeaupuis,, H. Vu Thien,, J. Just,, G. Tournier, and, J. P. Latgé. 1997. Longitudinal study of Aspergillus fumigatus strains isolated from cystic fibrosis patients. Eur. J. Clin. Microbiol. Infect. Dis. 16: 747750.
29. Nielsen, M. L.,, T. D. Hermansen, and, A. Aleksenko. 2001. A family of DNA repeats in Aspergillus nidulans has assimilated degenerated retrotransposons. Mol. Genet. Genomics 265: 883887.
30. Okubara, P. A.,, B. K. Tibbot,, A. S. Tarun,, C. E. McAlpin, and, S. S. Hua. 2003. Partial retrotransposon-like DNA sequence in the genomic clone of Aspergillus flavus, pAF28. Mycol. Res. 107: 841846.
31. Pringle, A.,, D. M. Baker,, J. L. Platt,, J. P. Wares,, J. P. Latgé, and, J. W. Taylor. 2005. Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59: 18861899.
32. Rydholm, C.,, G. Szakacs, and, F. Lutzoni. 2006. Low genetic variation and no detectable population structure in Aspergillus fumigatus compared to closely related Neosartorya species. Eukaryot. Cell 5: 650657.
33. Taylor, J.,, D. Jacobson, and, M. Fisher. 1999. The evolution of asexual fungi: reproduction, speciation and classification. Annu. Rev. Phy-topathol. 37: 197246.
34. Taylor, J. W.,, D. J. Jacobson,, S. Kroken,, T. Kasuga,, D. M. Geiser,, D. S. Hibbett, and, M. C. Fisher. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 31: 2132.
35. Varga, J. 2006. Molecular typing of aspergilli: recent developments and outcomes. Med. Mycol. 44: 149161.
36. Vos, P.,, R. Hogers,, M. Bleeker,, M. Reijans,, T. van de Lee,, M. Hornes,, A. Frijters,, J. Pot,, J. Peleman,, M. Kuiper, et al. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 44074414.
37. Wang, L.,, K. Yokoyama,, M. Miyaji, and, K. Nishimura. 2000. Mitochondrial cytochrome b gene analysis of Aspergillus fumigatus and related species. J. Clin. Microbiol. 38: 13521358.
38. Warris, A.,, C. H. Klaassen,, J. F. Meis,, M. T. De Ruiter,, H. A. De Valk,, T. G. Abrahamsen,, P. Gaustad, and, P. E. Verweij. 2003. Molecular epidemiology of Aspergillus fumigatus isolates recovered from water, air, and patients shows two clusters of genetically distinct strains. J. Clin. Microbiol. 41: 41014106.
39. Yaguchi, T.,, Y. Horie,, R. Tanaka,, T. Matsuzawa,, J. Ito, and, K. Nish-imur a. 2007. Molecular phylogenetics of multiple genes on Aspergillus section Fumigati isolated from clinical specimens in Japan. Nippon Ishinkin Gakkai Zasshi 48: 3746.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error