1887

Chapter 7 : Phospholipases of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Phospholipases of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815523/9781555814380_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555815523/9781555814380_Chap07-2.gif

Abstract:

Phospholipases are a group of esterases that are composed of two major categories, the acyl hydrolases and the phosphodiesterases. Investigations on the phospholipases of species have been very limited to date. Indirect evidence for extracellular phospholipase activity was demonstrated in by identifying the accumulation of phospholipid breakdown products in cultures of grown on lecithin using fast atom bombardment spectroscopy based on their mass ratios. On the basis of the specific degradation products found, it was predicted that secretes multiple extracellular phospholipases, including phospholipase A (PLA), phospholipase B (PLB), phospholipase C (PLC), and phospholipase D (PLD). More recently, the extracellular phospholipase activity was investigated in clinical and environmental isolates of . In a survey to investigate the extracellular phospholipase activity in clinical and environmental isolates of , the production of extracellular phospholipase of collected from different centers worldwide was compared. Pathogenicity of gene knockout strains in a pulmonary animal model are required to determine the significance of PLB activity in lung infection and disease progression. Phospholipases play an important role in the induction of cytokines in mammalian cells; for example, PLC activity from has been reported to induce the expression of interleukin-8 (IL-8) by endothelial cells. Similarly, researchers have reported that injury of endothelial cells by phospholipases following exposure to led to the synthesis of IL-6 and IL-8.

Citation: Robson G. 2009. Phospholipases of , p 75-86. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch7

Key Concept Ranking

Aspergillus flavus
0.5794132
Aspergillus fumigatus
0.5358014
0.5794132
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

General structure of a phospholipid. R and R represent fatty acyl side chains and “Head” represents the polar head group (generally choline, ethanolamine, serine, inositol, or glycerol).

Citation: Robson G. 2009. Phospholipases of , p 75-86. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Phylogentic relationship of PLAs from fungi and other organisms. Fungi abbreviations: Acap, ; Acla, ; Afla, ; Afum, ; Anid, ; Aory, ; Ater, ; Bfuc, ; Cimm, ; Cglo, ; Fgra, ; Mgri, ; Ncra, ; Nfis, ; Nhae, ; Sscl, . Mammalian abbreviations: Btau, ; Hsap, ; Mmus, . Bacteria abbreviations: Save, ; Scoe, . The neighbor-joining tree was constructed using ClustalW, and predicted protein sequences were only selected from organisms for which the whole genome was sequenced and the annotation was publicly available. *, signal peptide predicted; **, signal anchor predicted.

Citation: Robson G. 2009. Phospholipases of , p 75-86. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Phylogentic relationship of PLBs from fungi and other organisms. Fungi abbreviations: Acap, ; Acla, ; Afla, ; Afum, ; Anid, ; Aory, ; Ater, ; Calb, ; Cimm, ; Cglo, ; Dhan, ; Fgra, ; Klac, ; Lelo, ; Mgri, ; Ncra, ; Nfis, ; Scer, . Mammalian abbreviations: Btau, ; Hsap, ; Mmus, . Protist abbreviations: Ddis, ; Glam, . The neighbor-joining tree was constructed using ClustalW, and predicted protein sequences were only selected from organisms for which the whole genome was sequenced and the annotation was publicly available. *, signal peptide predicted; **, signal anchor predicted.

Citation: Robson G. 2009. Phospholipases of , p 75-86. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Phylogentic relationship of PLCs from fungi and other organisms. Fungi abbreviations: Acap, ; Acla, ; Afla, ; Afum, ; Anid, ; Aory, ; Ater, ; Cimm, ; Fgra, ; Nfis, ; Rory, ; Tres, . Plant abbreviations: Atha, ; Osat, . Protist abbreviation: Tthe, . Bacteria abbreviations: Bper, ; Bpsu, ; Btha, ; Ccre, ; Mtub, ; Paer, ; Rsol, ; Save, ; Scoe, ; Xcam, ; Xory, . The neighbor-joining tree was constructed using ClustalW, and predicted protein sequences were only selected from organisms for which the whole genome was sequenced and annotation was publicly available. *, signal peptide predicted; **, signal anchor predicted.

Citation: Robson G. 2009. Phospholipases of , p 75-86. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815523.ch07
1. Beffa, T.,, F. Staib, and, J. Lott Fischer. 1998. Mycological control and surveillance of biological waste and compost. Med. Mycol. 36: 137145.
2. Birch, M.,, G. Robson,, D. Law, and, D. W. Denning. 1996. Evidence of multiple extracellular phospholipase activities of Aspergillus fumigatus. Infect. Immun. 64: 751755.
3. Birch, M.,, D. W. Denning, and, G. Robson. 2004. A comparison of extracellular phospholipase activities in clinical and environmental Aspergillus fumigatus isolates. Med. Mycol. 42: 8186.
4. Brown, H. A.,, L. G. Henage,, A. M. Preininger,, Y. Xiang, and, J. H. Exton. 2007. Biochemical analysis of phospholipase D. Methods Enzymol. 434: 4987.
5. Bryant, A. E.,, R. Bergstrom,, G. A. Zimmerman,, J. L. Salyer,, H. R. Hill,, R. K. Tweten,, H. Sato, and, D. L. Stevens. 1993. Clostridium perfringens invasiveness is enhanced by effects of theta toxin upon PMNL structure and function: the roles of leukocytotoxicity and expression of CD11/CD18 adherence glycoprotein. FEMS Immunol. Med. Microbiol. 7: 321336.
6. Bunting, M.,, D. E. Lorant,, A. E. Bryant,, G. A. Zimmerman,, T. M. McIntyre,, D. L. Stevens, and, S. M. Prescott. 1997. Alpha toxin from Clostridium perfringens induces proinflammatory changes in endothelial cells. J. Clin. Investig. 100:565574.
7. Campbell, C. D., and, W. I. McHardy. 1994. Scanning electron microscopy of the microbial colonization of composted tree bark. Micron 25: 253255.
8. Chander, A.,, X.-L. Chen, and, D. G. Naidu. 2007. Role for diacylglycerol in annexin A7-mediated fusion of lung lamellar bodies. Biochim. Biophys. Acta 1771: 13081318.
9. Chen, S. C.,, L. C. Wright,, J. C. Golding, and, T. C. Sorrell. 2000. Purification and characterization of secretory phospholipase B, lysophospholipase and lysophospholipase/transacylase from a virulent strain of the pathogenic fungus Cryptococcus neoformans. Biochem. J. 347: 431439.
10. Cox, G. M.,, H. C. McDade,, S. C. Chen,, S. C. Tucker,, M. Gottfredsson,, L. C. Wright,, T. C. Sorrell,, S. D. Leidich,, A. Casadevall,, M. A. Ghannoum, and, J. R. Perfect. 2001. Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol. Microbiol. 39: 166175.
11. De Lucas, J. R.,, A. I. Dominguez,, S. Valenciano,, G. Turner, and, F. Laborda. 1999. The acuH gene of Aspergillus nidulans, required for growth on acetate and long-chain fatty acids, encodes a putative homologue of the mammalian carnitine/acylcarnitine carrier. Arch. Microbiol. 171: 386396.
12. Dennis, E. A.,, S. G. Rhee,, M. M. Billah, and, Y. A. Hannun. 1991. Role of phospholipase in generating lipid second messengers in signal transduction. FASEB J. 5: 20682077.
13. Derouin, F. 1994. Special issue on aspergillosis. Pathol. Biol. 42: 625736.
14. Dessen, A.,, J. Tang,, H. Schmidt,, M. Stahl,, J. D. Clark,, J. Seehra, and, W. S. Somers. 1999. Crystal structure of human cytosolic phospholipase A2 reveals a novel topology and catalytic mechanism. Cell 97: 349360.
15. Dhondt, S.,, P. Geoffroy,, B. A. Stelmach,, M. Legrand, and, T. Heitz. 2000 Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes. Plant J. 23: 431440.
16. Dhondt, S.,, G. Gouzerh,, A. Muller,, M. Legrand, and, T. Heitz. 2002. Spatio-temporal expression of patatin-like lipid acyl hydrolases and accumulation of jasmonates in elicitor-treated tobacco leaves are not affected by endogenous levels of salicylic acid. Plant J. 32: 749762.
17. Djordjevic, J. T.,, M. Del Poeta,, T. C. Sorrel,, K. M. Turner, and, L. C. Wright. 2005. Secretion of cryptococcal phospholipase B1 PLB1 is regulated by a glycosylphosphatidylinositol GPI anchor. Biochem. J. 389: 803812.
18. Eckmann, L.,, S. L. Reed,, R. Smith, and, M. F. Kagnoff. 1995. Entamoeba histolytica trophozoites induce an inflammatory cytokine response by cultured human cells through the paracrine action of cytolytically released interleukin-1 alpha. J. Clin. Investig. 96: 12691279.
19. Ella, K. M.,, J. W. Dolan,, C. Qi, and, K. E. Meier. 1996. Characterization of Saccharomyces cerevisiae deficient in expression of phospholipase D. Biochem. J. 314: 1519.
20. Exton, J. H. 1990. Signaling through phosphatidylcholine breakdown. J. Biol. Chem. 265: 14.
21. Gainey, L. D.,, I. F. Connerton,, E. H. Lewis,, G. Turner, and, D. J. Balance. 1992. Characterization of the glyoxysomal isocitrate lyase genes of Aspergillus nidulans acuD and Neurospora crassa acu-3. Curr. Genet. 21: 4347.
22. Ganendren, R.,, F. Widmer,, V. Singha,, C. Wilson,, T. Sorrell, and, L. Wright. 2004. In vitro antifungal activities of inhibitors of phospholipases from the fungal pathogen Cryptococcus neoformans. Antimicrob. Agents Chemother. 48: 15611569.
23. Ghannoum, M. A. 2000. Potential role of phospholipases in virulence and fungal pathogenesis. Clin. Microbiol. Rev. 13: 122143.
24. Ghosh, M.,, D. E. Tucker,, S. A. Burchett, and, C. C. Leslie. 2006. Properties of the group IV phospholipase A2 family. Prog. LipidRes. 45: 487510.
25. Haines, J. 1995. Aspergillus in compost: straw man or fatal flaw. Biocycle. 6: 3235.
26. Hammond, S. M.,, J. M. Jenco,, S. Nakashima,, K. Cadwallader, Q. Gu, S. Cook,, Y. Nozawa,, G. D. Prestwich,, M. A. Frohman, and, A. J. Morris. 1997. Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-alpha. J. Biol. Chem. 272: 38603868.
27. Hite, R. D.,, M. C. Seeds,, A. M. Safta,, R. B. Jacinto,, J. I. Gyves,, D. A. Bass, and, B. M. Waite. 2004. Lysophospholipid generation and phosphatidylglycerol depletion in phospholipase A2-mediated surfactant dysfunction. Am. J. Physiol. Lung Cell. Mol. Physiol. 288: L618L624.
28. Hohl, T. M., and, T. Feldmesser. 2007. Aspergillus fumigatus: principles of pathogenesis and host defense. Eukaryot. Cell. 6: 19531963.
29. Hong, S.,, H. Horiuchi, and, A. Ohta. 2003. Molecular cloning of a phospholipase D gene from Aspergillus nidulans and characterization of its deletion mutants. FEMS Microbiol. Lett. 224: 231237.
30. Hong, S.,, H. Horiuchi, and, A. Ohta. 2005. Identification and molecular cloning of a gene encoding phospholipase A2 plaA from Aspergillus nidulans. Biochim. Biophys. Acta. 1735: 222229.
31. Hospenthal, D. R.,, K. J. Kwon-Chung, and J. E. Bennett. 1998. Concentrations of airborne Aspergillus compared to the incidence of invasive aspergillosis: lack of correlation. Med. Mycol. 36: 165168.
32. Idnurm, A., and, B. J. Howlett. 2002. Isocitrate lyase is essential for pathogenicity of the fungus Leptosphaeria maculans to canola Brassica napus. Eukaryot. Cell. 1: 719724.
33. Ito, M.,, N. Takeuchi,, T. Masuno,, M. Kikui, and, Y. Yamamura. 1975. Lung damage caused by phospholipase C and the changes in phospholipids in the rat lung. Jpn. J. Exp. Med. 45: 479488.
34. Kanoh, H.,, S. Nakashima,, Y. Zhao,, Y. Sugiyama,, Y. Kitajima, and, Y. Nozawa. 1998. Molecular cloning of a gene encoding phospholipase D from the pathogenic and dimorphic fungus, Candida albicans. Biochim. Biophys. Acta. 1398: 359364.
35. Kaplanski, G.,, N. Teysseire,, C. Farnarier,, S. Kaplanski,, J. C. Lissitzky,, J. M. Durand,, J. Soubeyrand,, C. A. Dinarello, and, P. Bongrand. 1995. IL-6 and IL-8 production from cultured human endothelial cells stimulated by infection with Rickettsia conorii via a cell-associated IL-1 alpha-dependent pathway. J. Clin. Investig. 96: 28392844.
36. Kunau, W. H.,, V. Dommes, and, H. Schulz. 1995. β-Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog. LipidRes. 34: 267342.
37. La Camera, S.,, P. Geoffroy,, H. Samaha,, A. Ndiaye,, G. Rahim,, M. Legrand, and, T. Heitz. 2005. A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Plant J. 44: 810825.
38. Largé, J.-P. 2001. The pathobiology of Aspergillus fumigatus. Trends Microbiol. 9: 382389.
39. Leidich, S. D.,, A. S. Ibrahim,, Y. Fu,, A. Koul,, C. Jessup,, J. Vitullo,, W. Fonzi,, F. Mirbod,, S. Nakashima,, Y. Nozawa, and, M. A. Ghannoum. 1998. Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J. Biol. Chem. 273: 2607826086.
40. Lorenz, M. C., and, G. R. Fink. 2001. The glyoxylate cycle is required for fungal virulence. Nature 412: 8386.
41. Lorenz, M. C.,, J. A. Bender, and, G. R. Fink. 2004. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3: 10761087.
42. Maggio-Hall, L. A., and, N. P. Keller. 2004. Mitochondrial betaoxidation in Aspergillus nidulans. Mol. Microbiol. 54: 11731185.
43. May, A. K.,, R. G. Sawyer,, T. Gleason,, A. Whitworth, and, T. L. Pruett. 1996. In vivo cytokine response to Escherichia coli alphahemolysin determined with genetically engineered hemolytic and nonhemolytic E. coli variants. Infect. Immun. 64: 21672171.
44. McLain, N., and, J. W. Dolan. 1997. Phospholipase D activity is required for dimorphic transition in Candida albicans. Microbiology 143: 35213526.
45. Mellor, H., and, P. J. Parker. 1998. The extended protein kinase C superfamily. Biochem. J. 332: 281292.
46. Meyers, D. J., and, R. S. Berk. 1990. Characterization of phospholipase C from Pseudomonas aeruginosa as a potent inflammatory agent. Infect. Immun. 58: 659666.
47. Miozzi, L.,, R. Balestrini,, A. Bolchi,, M. Novero,, O. Ottonello, and, P. Bonfante. 2005. Phospholipase A2 up-regulation during mycorrhiza formation in Tuber borchii. New Phytol. 167: 229238.
48. Morgenroth, K. 1988. The Surfactant System of the Lungs. Walter de Gruyter, Berlin, Germany.
49. Mukherjee, P. K.,, K. R. Seshan,, S. D. Leidich,, J. Chandra,, G. T. Cole, and, M. A. Ghannoum. 2001. Reintroduction of the PLB1 gene into Candida albicans restores virulence in vivo. Microbiology. 147: 25852597.
50. Muñoz-Elías, E. J., and, J. D. McKinney. 2005. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med. 11: 638644.
51. Nierman, W. C.,, A. Pain,, M. J. Anderson,, J. R. Wortman,, H. S. Kim,, J. Arroyo,, M. Berriman,, K. Abe,, D. B. Archer,, C. Bermejo,, J. Bennett,, P. Bowyer,, D. Chen,, M. Collins,, R. Coulsen,, R. Davies,, P. S. Dyer,, M. Farman,, N. Fedorova,, N. Fedorova,, T. V. Feldblyum,, R. Fischer,, N. Fosker,, A. Fraser,, J. L. García,, M. J. García,, A. Goble,, G. H. Goldman,, K. Gomi,, S. Griffith-Jones,, R. Gwilliam,, B. Haas,, H. Haas,, D. Harris,, H. Horiuchi,, J. Huang,, S. Humphray,, J. Jiménez,, N. Keller,, H. Khouri,, K. Kitamoto,, T. Kobayashi,, S. Konzack,, R. Kulkarni,, T. Kumagai,, A. Lafon,, J.-P. Latgé,, W. Li,, A. Lord,, C. Lu,, W. H. Majoros,, G. S. May,, B. L. Miller,, Y. Mohamoud,, M. Molina,, M. Monod,, I. Mouyna,, S. Mulligan,, L. Murphy,, S. O’Neil,, I. Paulsen,, M. A. Peñalva,, M. A. Pertea,, C. Price,, B. L. Pritchard,, M. A. Quail,, E. Rabbinowitsch,, N. Rawlins,, M. A. Rajandream,, U. Reichard,, H. Renauld,, G. D. Robson,, S. Rodriguez de Córdoba,, J. M. Rodríguez-Peña,, C. M. Ronning,, S. Rutter,, S. L. Salzberg,, M. Sanchez,, J. C. Sánchez-Ferrero, D. Saunders,, K. Seeger,, R. Squares,, S. Squares,, M. Takeuchi,, F. Tekaia,, G. Turner,, C. R. Vazquez de Aldana, J. Weidman,, O. White,, J. Woodward,, J. H. Yu,, C. Fraser,, J. E. Galagan,, K. Asai,, M. Machida,, N. Hall,, B. Barrell, and, D. W. Denning. 2005. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438: 11511156.
52. Nishizuka, Y. 1995. Protein kinase C and lipid signalling for sustained cellular responses. FASEB J. 9: 484496.
53. Oishi, K.,, R. L. Raynor,, P. A. Charp, and, J. F. Kuo. 1988. Regulation of protein kinase C by lysophospholipids. J. Biol. Chem. 263: 68656871.
54. Olivas, I.,, M. Royuela,, B. Romero,, M. C. Monteiro,, J. M. Mínguez,, F. Laborda, and, J. R. De Lucas. 2008. Ability to grow on lipids accounts for the fully virulent phenotype in neutropenic mice of Aspergillus fumigatus null mutants in the key glyoxylate cycle enzymes. Fungal Genet. Biol. 45: 4560.
55. Pickard, T. R.,, X. G. Chiou,, B. A. Strifler,, M. R. DeFelippis,, P. A. Hyslop,, A. L. Tebbe,, Y. K. Yee,, L. J. Reynolds,, E. A. Dennis,, R. M. Kramer, and, J. D. Sharp. 1996. Identification of essential residues for the catalytic function of 85-kDa cytosolic phospholipase A2. Probing the role of histidine, aspartic acid, cysteine, and arginine. J. Biol. Chem. 271: 1922519231.
56. Prat, S.,, W. B. Frommer,, R. Hofgen,, M. Keil,, J. Kossmann,, M. Köster-Töpfer,, X. J. Liu,, B. Müller,, H. Peña-Cortés,, M. Rocha-Sosa,, J. J. Sanchez-Serrano,, U. Sonnewald, and, L. Willmitzer. 1990. Gene expression during tuber development in potato plants. FEBS Lett. 268: 334338.
57. Ramírez, M. A., and, L. C. Lorenz. 2007. Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes. Eukaryot. Cell 6: 280290.
58. Robson, G. D.,, J. Huang,, J. Wortman, and, D. B. Archer. 2005. A preliminary analysis of the process of protein secretion and the diversity of putative secreted hydrolases encoded in Aspergillus fumigatus: insights from the genome. Med. Mycol. 43: S41S47.
59. Rude, T. H.,, D. L. Toffaletti,, G. M. Cox, and, J. R. Perfect. 2002. Relationship of the glyoxylate pathway to the pathogenesis of Cryptococcus neoformans. Infect. Immun. 70: 56845694.
60. Rydel, T. J.,, J. M. Williams,, E. Krieger,, F. Moshiri,, W. C. Stallings,, S. M. Brown,, J. C. Pershing,, J. P. Purcell, and, M. F. Alibhai. 2003. The crystal structure, mutagenesis, and activity studies reveal that patatin is a lipid acyl hydrolase with a Ser-Asp catalytic dyad. Biochemistry 42: 66966708.
61. Schmitt, H. J.,, A. Blevins,, K. Sobeck, and, D. Armstrong. 1990. Aspergillus species from hospital air and from patients. Mycoses. 33: 539541.
62. Schobel, F.,, O. Ibrahim-Granet,, P. Ave,, J.-P. Latgé,, A. A. Brakhage, and, M. Brock. 2007. Aspergillus fumigatus does not require fatty acid metabolism via isocitrate lyase for development of invasive aspergillosis. Infect. Immun. 75: 12371244.
63. Serhan, C. N.,, J. Z. Haeggstrom, and, C. C. Leslie. 1996. Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J. 10: 11471158.
64. Shea, J. M.,, J. L. Henry, and, M. Del Poeta. 2006. Lipid metabolism in Cryptococcus neoformans. FEMS Yeast Res. 6: 469479.
65. Shen, D. K.,, A. D. Noodeh,, A. Kazemi,, R. Grillot,, G. Robson, and, J. F. Brugere. 2004. Characterisation and expression of phospholipases B from the opportunistic fungus Aspergillus fumigatus. FEMS Microbiol. Lett. 239: 8793.
66. Shiba, Y.,, C. Ono,, F. Fukui,, I. Watanabe,, N. Serizawa,, K. Gomi, and, H. Yoshikawa. 2001. High-level secretory production of phospholipase A1 by Saccharomyces cerevisiae and Aspergillus oryzae. Biosci. Biotechnol. Biochem. 65: 95101.
67. Siafakas, A. R.,, T. C. Sorrell,, L. C. Wright,, C. Wilson,, M. Larsen,, R. Boadle,, P. R. Williamson, and, J. T. Djordjevic. 2007. Cell wall-linked cryptococcal phospholipase B1 is a source of secreted enzyme and a determinant of cell wall integrity. J. Biol. Chem. 282: 3750837514.
68. Songer, J. G. 1997. Bacterial phospholipases and their role in virulence. Trends Microbiol. 5: 156161.
69. Soragni, E.,, A. Bolchi,, R. Balestrini,, C. Gambaretto,, R. Percudani,, P. Bonfante, and, S. Ottonello. 2001. A nutrient-regulated, dual localization phospholipase A2 in the symbiotic fungus Tuber borchii. EMBO J. 20: 50795090.
70. Sugiyama, Y.,, S. Nakashima,, F. Mirbod,, H. Kanoh,, Y. Kitajima,, M. A. Ghannoum, and, Y. Nozawa. 1999. Molecular cloning of a second phospholipase B gene, caPLB2 from Candida albicans. Med. Mycol. 37: 6167.
71. Theiss, S.,, G. Ishdorj,, A. Brenot,, M. Kretschmar,, C. Y. Lan,, T. Nichterlein,, J. Hacker,, S. Nigam,, N. Agabian, and, G. A. Köhler. 2006. Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence. Int. J. Med. Microbiol. 296: 405420.
72. Titball, R. W. 1993. Bacterial phospholipases C. Microbiol. Rev. 57: 347366.
73. Tuckwell, D.,, S. E. Lavens, and, M. Birch. 2006. Two families of extracellular phospholipase C genes are present in aspergilla. Mycol. Res. 110: 11401151.
74. Turner, K. M.,, L. C. Wright,, T. C. Sorrell,, J. T. Djordjevic,, R. Veldhuizen,, K. Nag,, S. Orgeig, and, F. Possmayer. 1998. The role of lipids in pulmonary surfactant. Biochim. Biophys. Acta 1408: 90108.
75. Turner, K. M.,, L. C. Wright,, T. C. Sorrell, and, J. T. Djordjevic. 2006. N-linked glycosylation sites affect secretion of cryptococcal phospholipase B1, irrespective of glycosylphosphatidylinositol anchoring. Biochim. Biophys. Acta 1760: 15691579.
76. Ueki, J.,, S. Morioka,, T. Komari, and, T. Kumashiro. 1995. Purification and characterization of phospholipase D PLD from rice Oryza sativa L. and cloning of cDNA for PLD from rice and maize Zea mays L. Plant Cell Physiol. 36: 903914.
77. Veldhuizen, R.,, K. Nag,, S. Orgeig, and, F. Possmayer. 1998. The role of lipids in pulmonary surfactant. Biochim. Biophys. Acta 1408: 90108.
78. Waite, M. 1987. The Phospholipases. Plenum Press, New York, NY.
79. Waksman, M.,, Y. Eli,, M. Liscovitch, and, J. E. Gerst. 1996. Identification and characterization of a gene encoding phospholipase D activity in yeast. J. Biol. Chem. 271: 23612364.
80. Walker, T. S.,, J. S. Brown,, C. S. Hoover, and, D. A. Morgan. 1990. Endothelial prostaglandin secretion: effects of typhus rickettsiae. J. Infect. Dis. 162: 11361144.
81. Wall, D. M,, P. S. Duffy,, C. Dupont,, J. F. Prescott, and, W. G. Meijer. 2005. Isocitrate lyase activity is required for virulence of the intracellular pathogen Rhodococcus equi. Infect. Immun. 73: 67366741.
82. Wang, X. M.,, S. P. Devalah,, W. H. Zhang, and, R. Welti. 2006. Signaling functions of phosphatidic acid. Prog. Lipid Res. 45: 250278.
83. Wang, Z. Y.,, C. R. Thornton,, M. J. Kershaw,, L. Debao, and, N. J. Talbot. 2003. The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol. Microbiol. 47: 16011612.
84. Watanabe, I.,, R. Koishi,, Y. Yao,, T. Tsuji, and, N. Serizawa. 1999. Molecular cloning and expression of the gene encoding a phospholipase A1 from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 63: 820826.
85. Widmer, F.,, L. C. Wright,, D. Obando,, R. Handke,, R. Ganendren,, E. H. Ellis, and, T. C. Sorrell. 2006. Hexadecylphosphocholine miltefosine has broad-spectrum fungicidal activity and is efficacious in a mouse model of cryptococcosis. Antimicrob. Agents Chemother. 50: 414421.
86. Wieland, C. W.,, B. Siegmund,, G. Senaldi,, M. L. Vasil,, C. A. Dinarello, and, G. Fantuzzi. 2002. Pulmonary inflammation induced by Pseudomonas aeruginosa lipopolysaccharide, phospholipase C, and exotoxin A: role of interferon regulatory factor 1. Infect. Immun. 70: 13521358.

Tables

Generic image for table
Table 1.

Properties of predicted phospholipases from

Citation: Robson G. 2009. Phospholipases of , p 75-86. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error