1887

Chapter 8 : Secreted Proteases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Secreted Proteases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815523/9781555814380_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555815523/9781555814380_Chap08-2.gif

Abstract:

This chapter establishes a catalog of the proteases secreted by , briefly describes their various properties, and examines their biological functions, ranging from protein digestion into short peptides and assimilable amino acids to specific proteolysis during infection. The proteases include all enzymes that catalyze the cleavage of peptide bonds (CO-NH) of proteins, digesting them into peptides or free amino acids. The proteases can be further divided into endoproteases and exoproteases. From a physiological point of view, secreted proteases can be classified as either acidic, neutral, or basic. Efficient protein degradation of hard keratin by hydrolytic enzymes has to be accompanied by simultaneous reduction of cysteine disulfide bridges. Although it can be stated that individual proteases such as Alp1, Mep, and Pep1 are not essential for tissue invasion, it cannot be ruled out that secreted proteases do not contribute to the establishment of invasive aspergillosis. also does not possess specific large gene families encoding secreted proteases. Aspartic proteases of the A1 family and carboxypeptidases of the S10 family are multiple in many fungi. The emergence of multigenic families is most frequently due to ancient gene duplication processes allowing organisms to better adapt to different environmental conditions, and marked differences occur from one pathogenic species to another.

Citation: Monod M, Jousson O, Reichard U. 2009. Secreted Proteases, p 87-106. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch8

Key Concept Ranking

Amino Acids, Peptides and Proteins
0.90555197
Aspartic Acid Protease
0.42828524
0.90555197
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Hydrophobicity plots of two pepsin-like proteases, Pep1 (MER001437) and AP1 (MER082513) (A1 family) ( Table 1 ). Pep1 is a secreted enzyme with a hydrophobic signal sequence. In contrast, AP1 has no hydrophobic signal sequence at its beginning. For the plot, the program TopPred, available at http://bioweb.pasteur.fr/seqanal/interfaces/toppred.html, was used. The Pep1 signal peptidase cleavage site is indicated by a vertical arrow.

Citation: Monod M, Jousson O, Reichard U. 2009. Secreted Proteases, p 87-106. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Phylogenetic relationships of aspartic proteases (A1 family) from , and . Sequences of the well-characterized PepA (MER00919) and PepO (MER00920) were also included. Phylogenetic analyses were performed as previously described by . Three well-supported monophyletic groups correspond to MEROPS identifiers A01.026, A01.018, and A01.077. The other proteases are not assigned to specific identifiers. Nonprotease homologs in and are indicated by an asterisk.

Citation: Monod M, Jousson O, Reichard U. 2009. Secreted Proteases, p 87-106. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Immunofluorescence reaction of aspartic protease antigen at the surface of hyphae and conidiophores of . Indirect immunofluorescence was achieved with anti-Pep1 rabbit antiserum.

Citation: Monod M, Jousson O, Reichard U. 2009. Secreted Proteases, p 87-106. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Phylogenetic relationships of carboxypeptidases with other biochemically well-characterized carboxy-peptidases of the S10 family. The tree is rooted with plant carboxypeptidases of the S10.005 subfamily. Phylogenetic analyses were performed as previously described ( ). Abbreviations: Tru, ; Afu, ; Aory, ; Anid, ; Anig, ; Pja, ; Scer, ; Psat, ; Taes, . MEROPS identifiers are as follows: AfuCp1, MER079359; AfuCp2, MER079360; AfuCp3, MER079361; AfuCp4, MER079362; AfuCp5, MER079363; AfuCp6, MER082516; AfuCp7, MER082530; AfuCp8, MER032646; AfuCp9, MER032643; AoryS1, MER016549; AnidCpyA, MER090176, AnigCpD1, MER027994; AnigCpD2, MER000415; PjaS1, MER000412; ScerCpY, MER002010; TruScpB, MER079400; TruScpC, MER079401. TruScpA ( ) is not registered in MEROPS.

Citation: Monod M, Jousson O, Reichard U. 2009. Secreted Proteases, p 87-106. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Direct mycological examination of an infected nail, showing hyphae and conidiophores. Nail scrapings were examined in a dissolving solution containing a fluorochrome ( ). In situ identification of the fungus was performed using a PCR and sequencing method ( ).

Citation: Monod M, Jousson O, Reichard U. 2009. Secreted Proteases, p 87-106. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Reactivity of mycelia in the lung of an immunocompromised mouse infected with . Indirect immunofluorescence was achieved with anti-Alp1 rabbit antiserum.

Citation: Monod M, Jousson O, Reichard U. 2009. Secreted Proteases, p 87-106. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815523.ch08
1. Ammerer, G.,, C. P. Hunter,, J. H. Rothman,, G. C. Saari,, L. A. Valls, and, T. H. Stevens, 1986. PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors. Mol. Cell. Biol. 6: 24902499.
2. Awad, W. M. 2004. Streptomyces griseus aminopeptidase, p. 957–959. In A. J. Barrett,, N.D. Rawlings, and, J. F. Woessner (ed.), Handbook of Proteolytic Enzymes, 2nd ed. Elsevier, London, United Kingdom.
3. Barrett, A. J.,, N. D. Rawlings, and, J. F. Woessner, 2004. Handbook of Proteolytic Enzymes, 2nd ed. Elsevier Academic Press, London, United Kingdom.
4. Basrai, M. A.,, M. A. Lubkowitz,, J. R. Perry,, D. Miller,, E. Krainer,, F. Naider, and, J. M. Becker, 1995. Cloning of a Candida albicans peptide transport gene. Microbiology 141: 11471156.
5. Beauvais, A.,, M. Monod,, J. P. Debeaupuis,, M. Diaquin,, H. Kobayashi, and, J. P. Latgé. 1997a. Biochemical and antigenic characterization of a new dipeptidyl-peptidase isolated from Aspergillus fumigatus. J. Biol. Chem. 272: 62386244.
6. Beauvais, A.,, M. Monod,, J. Wyniger,, J. P. Debeaupuis,, E. Grouzmann,, N. Brakch,, J. Svab,, A. G. Hovanessian, and, J. P. Latgé. 1997b. Dipeptidyl-peptidase IV secreted by Aspergillus fumigatus, a fungus pathogenic to humans. Infect. Immun. 65: 30423047.
7. Beggah, S.,, B. Léchenne,, U. Reichard,, S. Foundling, and, M. Monod. 2000. Intra- and intermolecular events direct the propeptide-mediated maturation of the Candida albicans secreted aspartic proteinase Sap1p. Microbiology 146: 27652773.
8. Bendtsen, J. D.,, H. Nielsen,, G. von Heijne, and, S. Brunak. 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340: 783795.
9. Berka, R. M.,, M. Ward,, L. J. Wilson,, K. J. Hayenha,, K. H. Kodama,, L. P. Carlomango, and, S. A. Thompson, 1990. Molecular cloning and deletion of the gene encoding aspergillopepsin A from Aspergillus awamori. Gene 86: 153162.
10. Berka, R. M.,, C. L. Carmona,, K. J. Hayenga,, S. A. Thompson, and, M. Ward. 1993. Isolation and characterization of the Aspergillus oryzae gene encoding aspergillopepsin O. Gene 125: 195198.
11. Biguet, J.,, J. Tran Van Ky, and, S. Andrieu. 1967. Identification d’une activité chymotrypsique au niveau de fractions remarquables d’Aspergillus fumigatus. Répercussions sur le diagnostic immunologique de l’aspergillose. Rev. Immunol. Paris 31: 317328.
12. Blinkovsky, A. M.,, T. Byun,, K. M. Brown, and, E. J. Golightly, 1999. Purification, characterization, and heterologous expression in Fusarium venenatum of a novel serine carboxypeptidase from Aspergillus oryzae. Appl. Environ. Microbiol. 65: 32983303.
13. Blinkovsky, A. M.,, T. Byun,, K. M. Brown,, E. J. Golightly, and, A. V. Klotz, 2000. A non-specific aminopeptidase from Aspergillus. Biochim. Biophys. Acta 1480: 171181.
14. Blobel, G., and, B. Dobberstein. 1975. Transfer to proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J. Cell Biol. 67: 852862.
15. Byun, T.,, L. Kofod, and, A. Blinkovsky. 2001. Synergistic action of an X-prolyl dipeptidyl aminopeptidase and a non-specific aminopeptidase in protein hydrolysis. J. Agric. Food Chem. 49: 20612063.
16. Chevrier, B., and, H. D’Orchymont. 2004. Vibrio aminopeptidase, p. 963–965. In A. J. Barrett,, N.D. Rawlings, and, J. F. Woessner (ed.), Handbook of Proteolytic Enzymes, 2nd ed. Elsevier, London, United Kingdom.
17. Chien, H. C.,, S. H. Lin,, S. H. Chao,, C. C. Chen,, W. C. Wang,, C. Y. Shaw,, Y. C. Tsai,, H. Y. Hu, and, W. H. Hsu, 2002. Purification, characterisation, and genetic analysis of a leucine aminopepeptidase from Aspergillus sojae. Biochim. Biophys. Acta 1576: 119126.
18. Denning, D. W,, P. N. Ward,, L. E. Fenelon, and, E. W. Benbow, 1992. Lack of vessel wall elastolysis in human invasive aspergillosis. Infect. Immun. 60: 51535156.
19. Dmochowska, A.,, D. Dignard,, D. Henning,, D. Y. Thomas, and, H. Bussey. 1987. Yeast KEX1 gene encodes a putative protease with a carboxypeptidase B-like function involved in killer toxin and alpha-factor precursor processing. Cell 50: 573584.
20. Doi, Y.,, B. R. Lee,, M. Ikeguchi,, Y. Ohoba,, T. Ikoma,, S. Tero-Kubota,, S. Yamauchi,, K. Takahashi, and, E. Ichishima. 2003. Substrate specificities of deuterolysin from Aspergillus oryzae and electron paramagnetic resonance measurement of cobalt-substituted deuterolysin. Biosci. Biotechnol. Biochem. 67: 264270.
21. Doumas, A.,, R. Crameri,, B. Léchenne, and, M. Monod. 1999. Cloning of the gene encoding neutral protease I of the koji mold Aspergillus oryzae and its expression in Pichia pastoris. J. Food Mycol. 2: 271279.
22. Edens, L.,, P. Dekker,, R. van der Hoeven,, F. Deen,, A. de Roos. and, R. Floris. 2005. Extracellular prolyl endoprotease from A. niger and its use in the debittering of protein hydrolysates. J. Agric. Food Chem. 53: 79507957.
23. Eder, J., and, A. R. Fersht, 1995. Pro-sequence-assisted protein folding. Mol. Microbiol. 16: 609614.
24. Eisenhaber, B.,, G. Schneider,, M. Wildpaner, and, F. Eisenhaber. 2004. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. J. Mol.Biol. 337: 243253.
25. Fabre, E.,, J. M. Nicaud,, M. C. Lopez, and, C. Gaillardin. 1991. Role of the proregion in the production and secretion of the Yarrowia lipolytica alkaline extracellular protease. J. Biol. Chem. 266: 37823790.
26. Fankhauser, N., and, P. Mäser. 2005. Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformat-ics 21: 18461852.
27. Frederick, G. D.,, P. Rombouts, and, F. P. Buxton, 1993. Cloning and characterization of pepC, a gene encoding a serine protease from Aspergillus niger. Gene 125: 5764.
28. Frosco, M. B.,, T. Chase, and, J. D. MacMillan, 1992. Purification and properties of the elastase from Aspergillus fumigatus. Infect. Immun. 60: 728734.
29. Frosco, M. B.,, T. Chase, and, J. D. MacMillan, 1994. The effect of elastase-specific monoclonal and polyclonal antibodies on the virulence of Aspergillus fumigatus in immunocompromised mice. Mycopathologia 125: 6576.
30. Fukuda, R.,, K. Umebayashi,, H. Horiuchi,, A. Ohta, and, M. Takagi. 1996. Degradation of Rhizopus niveus aspartic proteinase-I with mutated prosequences occurs in the endoplasmic reticulum of Saccharomyces cerevisiae. J. Biol. Chem. 271: 1425214255.
31. Fushimi, N.,, C. E. Ee,, T. Nakajima, and, E. Ichishima. 1999. Aspzincin, a family of metalloendopeptidases with a new zinc-binding motif. Identification of new zinc-binding sites (His128, His132, and Asp164) and three catalytically crucial residues (Glu129, Asp143, and Tyr106) of deuterolysin from Aspergillus oryzae by site-directed mutagenesis. J. Biol. Chem. 274: 2419524201.
32. Grobler, J.,, F. Bauer,, R. E. Subden, and, H.J.J. vanVuuren. 1995. The mael gene of Schizosaccharomyces pombe encodes a permease for malate and other C4 dicarboxylic acids. Yeast 11: 14851491.
33. Grouzmann, E.,, M. Monod,, B. Landis,, S. Wilk,, N. Brakch,, K. Nicoucar,, R. Giger,, D. Malis,, I. Szalay-Quinodoz,, C. Cavadas,, D. R. Morel, and, J. S. Lacroix, 2002. Loss of dipeptidylpeptidase IV activity in chronic rhinosinusitis contributes to the neurogenic inflammation induced by substance P in the nasal mucosa. FASEB J. 16: 11321134.
34. Hauser, M.,, V. Narita,, A. M. Donhardt,, F. Naider, and, J. M. Becker, 2001. Multiplicity and regulation of genes encoding peptide transporters in Saccharomyces cerevisiae. Mol. Membr. Biol. 18: 105112.
35. Higgins, D. R., and, J. M. Cregg, 1998. Pichia Protocols. Humana Press, Totowa, NJ.
36. Huang, X. P.,, N. Kagami,, H. Inoue,, M. Kojima,, T. Kimura,, O. Makabe,, K. Suzuki, and, K. Takahashi. 2000. Identification of a glutamic acid and an aspartic acid residue essential for catalytic activity of aspergillopepsin II, a non-pepsin type acid proteinase. J. Biol. Chem. 275: 2660726614.
37. Hube, B., and, J. Naglik. 2001. Candida albicans proteinases: resolving the mystery of a gene family. Microbiology 147: 19972005.
38. Hung, C. Y.,, K. R. Seshan,, J. J. Yu,, R. Schaller,, J. Xue,, V. Basrur,, M. J. Gardner, and, G. T. Cole. 2005. A metalloproteinase of Coccidioides posadasii contributes to evasion of host detection. Infect. Immun. 73: 66896703.
39. Jaton-Ogay, K.,, M. Suter,, R. Crameri,, R. Falchetto,, A. Fatih, and, M. Monod. 1992. Nucleotide sequence of a genomic and a cDNA clone encoding an extracellular alkaline protease of Aspergillus fumigatus. FEMS Microbiol. Lett. 71: 163168.
40. Jaton-Ogay, K.,, S. Paris,, M. Huerre,, M. Quadroni,, R. Falchetto,, G. Togni,, J. P. Latge, and, M. Monod. 1994. Cloning and disruption of the gene encoding an extracellular metalloprotease of Aspergillus fumigatus. Mol. Microbiol. 14: 917928.
41. Jones, E. W., and, R. R. Naik, 2004. Cerevisin, p.1824–1827. In A. J. Barrett,, N.D. Rawlings, and, J. F. Woessner (ed.), Handbook of Proteolytic Enzymes, 2nd ed. Elsevier, London, United Kingdom.
42. Jongeneel, C. V.,, J. Bouvier, and, A. Bairoch. 1989. A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett. 242: 211214.
43. Joshi, L., and, R.J.St. Leger. 1999. Cloning, expression, and substrate specificity of MeCPA, a zinc carboxypeptidase that is secreted into infected tissues by the fungal entomopathogen Metarhizium anisopliae. J. Biol. Chem. 274: 98039811.
44. Jousson, O.,, B. Léchenne,, O. Bontems,, S. Capoccia,, B. Mignon,, J. Barblan,, M. Quadroni, and, M. Monod. 2004a. Multiplication of an ancestral gene encoding secreted fungalysin preceded species differentiation in the dermatophytes Trichophyton and Microsporum. Microbiology 150: 301310.
45. Jousson, O.,, B. Léchenne,, O. Bontems,, B. Mignon,, U. Reichard,, J. Barblan,, M. Quadroni, and, M. Monod. 2004b. Secreted subtilisin gene family in Trichophyton rubrum. Gene 339: 7988.
46. Julius, D.,, A. Brake,, L. Blair,, R. Kunisawa, and, J. Thorner. 1984. Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-a-factor. Cell 37: 10751089.
47. Kobayashi, H.,, J. P. Debeaupuis,, J. P. Bouchara, and, J. P. Latge, 1993. An 88-kilodalton antigen secreted by Aspergillus fumigatus. Infect. Immun. 61: 47674771.
48. Kogan, T. V.,, J. Jadoun,, L. Mittelman,, K. Hirschberg, and, N. Osherov. 2004. Involvement of secreted Aspergillus fumigatus proteases in disruption of the actin fiber cytoskeleton and loss of focal adhesion sites in infected A549 lung pneumocytes. J. Infect. Dis. 189: 19651973.
49. Koh, S.,, A. M. Wiles,, J. S. Sharp,, F. R. Naider,, J. M. Becker, and, G. Stacey. 2002. An oligopeptide transporter gene family in Arabidopsis. Plant Physiol. 128: 2129.
50. Kolattukudy, P. E.,, J. D. Lee,, L. M. Rogers,, P. Zimmerman,, S. Ceselski,, B. Fox,, B. Stein, and, E. A. Copelan, 1993. Evidence for possible involvement of an elastolytic serine protease in aspergillo-sis. Infect. Immun. 61: 23572368.
51. Kolattukudy, P. E., and, T. D. Sirakova, 2004. Fungalysin, p. 793–794. In A. J. Barrett,, N.D. Rawlings, and, J. F. Woessner (ed.), Handbook of Proteolytic Enzymes, 2nd ed. Elsevier, London, United Kingdom.
52. Kothary, M. H.,, T. Chase, and, J. D. MacMillan, 1984. Correlation of elastase production by some strains of Aspergillus fumigatus with ability to cause pulmonary invasive aspergillosis in mice. Infect. Immun. 43: 320325.
53. Kunert, J. 1972. Keratin decomposition by dermatophytes: evidence of the sulphitolysis of the protein. Experientia 28: 10251026.
54. Kunert, J. 1976. Keratin decomposition by dermatophytes. II. Presence of S-sulphocysteine and cysteic acid in soluble decomposition products. Z. Allg. Mikrobiol. 16: 97105.
55. Kunert, J. 2000. Physiology of keratinophilic fungi, p. 77–85. In R. K. S. Kushwaha and, J. Guarro (ed.), Biology of Dermatophytes and Other Keratinophilic Fungi. Revista Iberoamericana de Micología, Bilbao, Spain.
56. Landis, B. N.,, E. Grouzmann,, M. Monod,, N. Busso,, F. Petak,, A. Spiliopoulos,, J. H. Robert,, I. Szalay-Quinodoz,, D. R. Morel, and, J. S. Lacroix, 2008. Implication of dipeptidylpeptidase IV activity in human bronchial inflammation and in bronchoconstriction evaluated in anesthetized rabbits. Respiration 75: 8997.
57. Larcher, G.,, J. P. Bouchara,, V. Annaix,, F. Symoens,, D. Chabasse, and, G. Tronchin. 1992. Purification and characterization of a fibrinogenolytic serine proteinase from Aspergillus fumigatus culture filtrate. FEBS Lett. 308: 6569.
58. Latchinian-Sadek L., and, D. Y. Thomas, 1993. Expression, purification, and characterization of the yeast KEX1 gene product, a polypeptide precursor processing carboxypeptidase. J. Biol. Chem. 268: 534540.
59. Lavens, S. E.,, N. Rovira-Graells,, M. Birch, and, D. Tuckwell. 2005. ADAMs are present in fungi: identification of two novel ADAM genes in Aspergillus fumigatus. FEMS Microbiol. Lett. 248: 2330.
60. Léchenne, B.,, U. Reichard,, C. Zaugg,, M. Fratti,, J. Kunert,, O. Boulat, and, M. Monod. 2007. Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes. Microbiology 153: 905913.
61. Lee, B. R.,, M. Furukawa,, K. Yamashita,, Y. Kanasugi,, C. Kawabata,, K. Hirano,, K. Ando, and, E. Ichishima. 2003. Aorsin, a novel serine proteinase with trypsin-like specificity at acidic pH. Biochem. J. 371: 541548.
62. Lee, J. D., and, P. E. Kolattukudy, 1995. Molecular cloning of the cDNA and gene for an elastinolytic aspartic proteinase from Aspergillus fumigatus and evidence of its secretion by the fungus during invasion of the host lung. Infect. Immun. 63: 37963803.
63. Lubkowitz, M. A.,, L. Hauser,, M. Breslav,, F. Naider, and, J. M. Becker, 1997. An oligopeptide transport gene from Candida albicans. Microbiology 143: 387396.
64. Marie-Claire, C.,, B. P. Roques, and, A. Beaumont. 1998. Intramolecular processing of prothermolysin. J. Biol. Chem. 273: 56975701.
65. Markaryan, A.,, I. Morozova,, H. Yu, and, P. E. Kolattukudy, 1994. Purification and characterization of an elastinolytic metalloprotease from Aspergillus fumigatus and immunoelectron microscopic evidence of secretion of this enzyme by the fungus invading the murine lung. Infect.Immun. 62: 21492157.
66. Milstein, C.,, G. G. Brownlee,, T. M. Harrison, and, M. B. Mathews, 1972. A possible precursor of immunoglobulin light chains. Nat. New Biol. 239: 117120.
67. Misumi, Y., and, Y. Ikehara. 2004. Dipeptidyl-peptidases A and B, p. 1910–1911. In A. J. Barrett,, N.D. Rawlings, and, J. F. Woessner (ed.), Handbook of Proteolytic Enzymes, 2nd ed. Elsevier, London, United Kingdom.
68. Moehle, C. M.,, M. W. Aynardi,, M. R. Kolodny,, F. J. Park, and, E. W. Jones, 1987. Protease B of Saccharomyces cerevisiae: isolation and regulation of the PRB1 structural gene. Genetics 115: 255263.
69. Monod, M.,, F. Baudraz-Rosselet,, A. A. Ramelet, and, E. Frenk. 1989. Direct mycological examination in dermatology: a comparison of different methods. Dermatologica 179: 183186.
70. Monod, M.,, G. Togni,, L. Rahalison, and, E. Frenk. 1991. Isolation and characterisation of an extracellular alkaline protease of Aspergillus fumigatus. J. Med. Microbiol. 35: 2328.
71. Monod, M.,, S. Paris,, J. Sarfati,, K. Jaton-Ogay,, P. Ave, and, J. P. Latgé, 1993a. Virulence of alkaline protease-deficient mutants of Aspergillus fumigatus. FEMS Microbiol. Lett. 106: 3946.
72. Monod, M.,, S. Paris,, D. Sanglard,, K. Jaton-Ogay,, J. Bille, and, J. P. Latgé. 1993b. Isolation and characterization of a secreted metallo-protease of Aspergillus fumigatus. Infect. Immun. 61: 40994104.
73. Monod, M. M., and, A. Beauvais. 2004. Dipeptidyl-peptidases IV and V of Aspergillus, p. 1911–1913. In A. J. Barrett,, N.D. Rawlings, and, J. F. Woessner (ed.), Handbook of Proteolytic Enzymes, 2nd ed. Elsevier, London, United Kingdom.
74. Monod, M.,, B. Léchenne,, O. Jousson,, D. Grand,, C. Zaugg,, R. Stocklin, and, E. Grouzmann. 2005. Aminopeptidases and dipeptidyl-peptidases secreted by the dermatophyte Trichophyton rubrum. Microbiology 151: 145155.
75. Monod, M.,, O. Bontems,, C. Zaugg,, B. Léchenne,, M. Fratti, and, R. Panizzon. 2006. Fast and reliable PCR/sequencing/RFLP assay for identification of fungi in onychomycoses. J. Med. Microbiol. 55: 12111216.
76. Mortensen, U. H.,, K. Olesen, and, K. Breddam. 2004. Serine carbox-ypeptidase C including carboxypeptidase Y, p. 1919–1923. In A. J. Barrett,, N.D. Rawlings, and, J. F. Woessner (ed.), Handbook of Proteolytic Enzymes, 2nd ed. Elsevier, London, United Kingdom.
77. Moser, M.,, G. Menz,, K. Blaser, and, R. Crameri. 1994. Recombinant expression and antigenic properties of a 32-kilodalton extracellular alkaline protease, representing a possible virulence factor from Aspergillus fumigatus. Infect. Immun. 62: 936942.
78. Moutaouakil, M.,, M. Monod,, M. C. Prevost,, J. P. Bouchara, and, J. P. Latgé. 1993. Identification of the 33-kDa alkaline protease of Aspergillus fumigatus in vitro and in vivo. J. Med. Microbiol. 39: 393399.
79. Nakadai, T.,, S. Nasuno, and, N. Iguchi. 1972a. Purification and properties of acid carboxypeptidase I from Aspergillus oryzae. Agric. Biol. Chem. 36: 13431352.
80. Nakadai, T.,, S. Nasuno, and, N. Iguchi. 1972b. Purification and properties of acid carboxypeptidase II from Aspergillus oryzae. Agric. Biol. Chem. 36: 14731480.
81. Nakadai, T.,, S. Nasuno, and, N. Iguchi. 1972c. Purification and properties of acid carboxypeptidase III from Aspergillus oryzae. Agric. Biol. Chem. 36: 14811488.
82. Nakadai, T.,, S. Nasuno, and, N. Iguchi. 1973a. Purification and properties of neutral proteinase I from Aspergillus oryzae. Agric. Biol. Chem. 37: 26952701.
83. Nakadai, T.,, S. Nasuno, and, N. Iguchi. 1973b. Purification and properties of neutral proteinase II from Aspergillus oryzae. Agric. Biol. Chem. 37: 27032708.
84. Nakadai, T.,, S. Nasuno, and, N. Iguchi. 1973c. Purification and properties of leucine aminopeptidase I from Aspergillus oryzae. Agric. Biol. Chem. 37: 757765.
85. Nakadai, T.,, S. Nasuno, and, N. Iguchi. 1973d. Purification and properties of leucine aminopeptidase II from Aspergillus oryzae. Agric. Biol. Chem. 37: 767774.
86. Nakadai, T.,, S. Nasuno, and, N. Iguchi. 1973e. Purification and properties of leucine aminopeptidase III in Aspergillus oryzae. Agric. Biol. Chem. 37: 775782.
87. Nakadai, T.,, S. Nasuno, and, N. Iguchi. 1973f. Purification and properties of acid carboxypeptidase IV from Aspergillus oryzae. Agric. Biol. Chem. 37: 12371251.
88. Newport, G., and, N. Agabian. 1997. KEX2 influences Candida albicans proteinase secretion and hyphal formation. J. Biol. Chem. 272: 2895428961.
89. Nielsen, H.,, J. Engelbrecht,, S. Brunak, and, G. von Heijne 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10: 16.
90. Nikai, T., and, T. Yasuhara. 2004. Aminopeptidase Y, p. 956–957. In A. J. Barrett,, N.D. Rawlings, and, J. F. Woessner (ed.), Handbook of Proteolytic Enzymes, 2nd ed. Elsevier, London, United Kingdom.
91. Perry, J. R.,, M. A. Basrai,, H. Y. Steiner,, F. Naider, and, J. M. Becker, 1994. Isolation and characterization of a Saccharomyces cerevisiae peptide transport gene. Mol. Cell. Biol. 14: 104115.
92. Pfeffer, S. R., and, J. E. Rothman, 1987. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu. Rev. Biochem. 56: 829852.
93. Piechura, J. E.,, V. P. Kurup, and, L. J. Daft, 1990. Isolation and immunochemical characterization of fractions from membranes of Aspergillus fumigatus with protease activity. Can. J. Microbiol. 36: 3341.
94. Rawlings, N. D,, F. R. Morton, and, A. J. Barrett. 2006. MEROPS: the peptidase database. Nucleic Acids Res. 34: D270D272.
95. Reichard, U.,, S. Büttner,, H. Eiffert,, F. Staib, and, R. Rüchel. 1990. Purification and characterisation of an extracellular serine proteinase from Aspergillus fumigatus and its detection in tissue. J. Med. Microbiol. 33: 243251.
96. Reichard, U.,, H. Eiffert, and, R. Rüchel. 1994. Purification and characterization of an extracellular aspartic proteinase from Aspergillus fumigatus. J. Med. Vet. Mycol. 32: 427436.
97. Reichard, U.,, M. Monod, and, R. Rüchel. 1995. Molecular cloning and sequencing of the gene encoding an extracellular aspartic proteinase from Aspergillus fumigatus. FEMS Microbiol. Lett. 130: 6974.
98. Reichard, U.,, M. Monod, and, R. Rüchel. 1996. Expression pattern of aspartic proteinase antigens in aspergilli. Mycoses 39: 99101.
99. Reichard, U.,, M. Monod,, F. Odds, and, R. Rüchel. 1997. Virulence of an aspergillopepsin-deficient mutant of Aspergillus fumigatus and evidence for another aspartic proteinase linked to the fungal cell wall. J. Med. Vet. Mycol. 35: 189195.
100. Reichard, U.,, G. T. Cole,, R. Rüchel, and, M. Monod. 2000a. Molecular cloning and targeted deletion of PEP2 which encodes a novel aspartic proteinase from Aspergillus fumigatus. Int. J. Med. Microbiol. 290: 8596.
101. Reichard, U.,, G. T. Cole,, T. W. Hill,, R. Rüchel, and, M. Monod. 2000b. Molecular characterization and influence on fungal development of ALP2, a novel serine proteinase from Aspergillus fumigatus. Int. J. Med. Microbiol. 290: 549558.
102. Reichard, U.,, B. Léchenne,, A. R. Asif,, F. Streit,, E. Grouzmann,, O. Jousson, and, M. Monod. 2006. Sedolisins, as new class of secreted proteases from Aspergillus fumigatus with endoprotease or tripeptidyl-peptidase activity at acidic pH. Appl. Environ. Microbiol. 72: 17391748.
103. Reuss, O., and, J. Morschhäuser. 2006. A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Mol. Microbiol. 60: 795812. (Erratum, 62: 916.)
104. Rypniewski, W. R.,, S. Hastrup,, C. Betzel,, M. Dauter,, Z. Dauter,, G. Papendorf,, S. Branner, and, K. S. Wilson, 1993. The sequence and X-ray structure of the trypsin from Fusarium oxysporum. Protein Eng. 6: 341348.
105. Sarfati, J.,, M. Monod,, P. Recco,, A. Sulahian,, C. Pinel,, E. Candolfi,, T. Fontaine,, J. P. Debeaupuis,, M. Tabouret, and, J. P. Latgé. 2006. Recombinant antigens as diagnostic markers for aspergillosis. Diagn. Microbiol. Infect. Dis. 55: 279291.
106. Screen, S. E., and, R.J. St, Leger. 2000. Cloning, expression, and substrate specificity of a fungal chymotrypsin. Evidence for lateral gene transfer from an actinomycete bacterium. J. Biol. Chem. 275: 66896694.
107. Sekine, H. 1972. Neutral proteinases I and II of Aspergillus sojae. Isolation in homogeneous form. Agric. Biol. Chem. 36: 198206.
108. Sekine, H. 1973. Neutral proteinases II of Aspergillus sojae: an enzyme specifically active on protamine and histone. Agric. Biol. Chem. 37: 17651767.
109. Sirakova, T. D.,, A. Markaryan, and, P. E. Kolattukudy, 1994. Molecular cloning and sequencing of the cDNA and gene for a novel elastinolytic metalloproteinase from Aspergillus fumigatus and its expression in Escherichia coli. Infect. Immun. 62: 42084218.
110. Staib, P.,, M. Kretschmar,, T. Nichterlein,, H. Hof, and, J. Morschhäuser. 2000. Differential activation of a Candida albicans virulence gene family during infection. Proc. Natl. Acad. Sci. USA 97: 61026107.
111. Stepniak, D.,, L. Spaenij-Dekking,, C. Mitea,, M. Moester,, A. de Ru., R. Baak-Pablo., P. van Veelen., L. Edens, and, F. Koning. 2006. Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease. Am. J. Physiol. Gastrointest. Liver Physiol. 291: G621G629.
112. St. Leger, R. J.,, L. Joshi,, M. J. Bidochka,, N. W. Rizzo, and, D. W. Roberts, 1996. Biochemical characterization and ultrastructural localization of two extracellular trypsins produced by Metarhizium anisopliae in infected insect cuticles. Appl. Environ. Microbiol. 62: 12571264.
113. Sturtevant, J., and, J. P. Latgé. 1992. Interactions between conidia of Aspergillus fumigatus and human complement component C3. Infect. Immun. 60: 19131918.
114. Suarez-Rendueles, P., and, J. Bordallo. 2004. Gly-X carboxypeptidase, p. 956–957. In A. J. Barrett,, N. D. Rawlings, and, J. F. Woessner (ed.), Handbook of Proteolytic Enzymes, 2nd ed. Elsevier, London, United Kingdom.
115. Svendsen, I., and, F. Dal Degan. 1998. The amino acid sequences of carboxypeptidases I and II from Aspergillus niger and their stability in the presence of divalent cations. Biochim. Biophys. Acta 1387: 369377.
116. Takahashi, K. 2004. Aspergillopepsin II, p. 221–224. In A. J. Barrett,, N. D. Rawlings, and, J. F. Woessner (ed.), Handbook of Proteolytic Enzymes, 2nd ed. Elsevier, London, United Kingdom.
117. Tang, C. M.,, J. Cohen, and, D. W. Holden, 1992. An Aspergillus fumigatus alkaline protease mutant constructed by gene disruption is deficient in extracellular elastase activity. Mol. Microbiol. 6: 16631671.
118. Tang, C. M.,, J., Cohen,, T., Krausz,, S., Van Noorden, and, D. W. Holden, 1993. The alkaline protease of Aspergillus fumigatus is not a virulence determinant in two murine models of invasive pulmonary aspergillosis. Infect. Immun. 61: 16501656.
119. Tatsumi, H.,, S. Murakami,, R. F. Tsuji,, Y. Ishida,, K. Murakami,, A. Masaki,, H. Kawabe,, H. Arimura,, E. Nakano, and, H. Motai. 1991. Cloning and expression in yeast of a cDNA clone encoding Aspergillus oryzae neutral protease II, a unique metalloprotease. Mol. Gen. Genet. 228: 97103.
120. Togni, G.,, D. Sanglard,, M. Quadroni,, S. I. Foundling, and, M. Monod. 1996. Acid proteinase secreted by Candida tropicalis: functional analysis of preproregion cleavages in C. tropicalis and Saccharomyces cerevisiae. Microbiology 142: 493503.
121. van den Burg, B., and, V. Eijsink. 2004. Thermolysin and related Bacillus metallopeptidases, p. 374–387. In A. J. Barrett,, N.D. Raw-lings. and, J. F. Woessner (ed.), Handbook of Proteolytic Enzymes, 2nd ed. Elsevier, London, United Kingdom.
122. Vickers, I.,, E. P. Reeves,, K. A. Kavanagh, and, S. Doyle. 2007. Isolation, activity and immunological characterisation of a secreted aspartic protease, CtsD, from Aspergillus fumigatus. Protein Expr. Purif. 53: 216224.
123. von Heijne, G. 1983. Patterns of amino acids near signal-sequence cleavage sites. Eur. J. Biochem. 133: 1721.
124. von Heijne, G. 1984. How signal sequences maintain cleavage specificity. J. Mol. Biol. 173: 243251.
125. von Heijne, G. 1985. Signal sequences. The limits of variation. J. Mol. Biol. 184: 99105.
126. von Heijne, G. 1986. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 14: 46834690.
127. Walker, S. J., and, M. O. Lively, 2004. Signal peptidase (eukaryote), p. 1991–1997. In A. J. Barrett,, N. D. Rawlings, and, J. F. Woessner (ed.), Handbook of Proteolytic Enzymes, 2nd ed. Elsevier, London, United Kingdom.
128. Walter, E. G.,, J. H. Weiner, and, D. E. Taylor, 1991. Nucleotide sequence and overexpression of the tellurite-resistance determinant from the IncHII plasmid pHH1508a. Gene 101: 17.
129. Winther, J. R.,, L. Phylip, and, J. Kay. 2004. Saccharopepsin, p. 87–90. In A. J. Barrett,, N. D. Rawlings, and, J. F. Woessner (ed.), Handbook of Proteolytic Enzymes, 2nd ed. Elsevier, London, United Kingdom.
130. Wlodawer, A.,, M. Li,, A. Gustchina,, H. Oyama,, B. M. Dunn, and, K. Oda. 2003. Structural and enzymatic properties of the sedolisin family of serine-carboxyl peptidases. Acta Biochim. Pol. 50: 81102.
131. Wolfsberg, T. G.,, P. Primakoff,, D. G. Myles, and, J. M. White, 1995. ADAM, a novel family of membrane proteins containing a disintegrin and metalloprotease domain: multipotential functions in cell-cell and cell-matrix interactions. J. Cell Biol. 131: 275278.
132. Wolfsberg, T. G., and, J. M. White, 2004. ADAM metalloproteinases, p. 709–714. In A. J. Barrett,, N. D. Rawlings, and, J. F. Woessner (ed.), Handbook of Proteolytic Enzymes, 2nd ed. Elsevier, London, United Kingdom.
133. Yabuki, Y.,, K. Kubota,, M. Kojima,, H. Inoue, and, K. Takahashi. 2004. Identification of a glutamine residue essential for catalytic activity of aspergilloglutamic peptidase by site-directed mutagenesis. FEBS Lett. 569:161164.
134. Zaugg, C.,, O. Jousson,, B. Léchenne,, P. Staib, and, M. Monod. 25 January 2008 posting date. Trichophyton rubrum secreted and membrane-associated carboxypeptidases. Int. J. Med. Microbiol. [Epub ahead of print.]

Tables

Generic image for table
Table 1.

proteases synthesized with a signal sequence and closely related proteases

Citation: Monod M, Jousson O, Reichard U. 2009. Secreted Proteases, p 87-106. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch8
Generic image for table
Table 2.

Distribution of protease families among taxonomic kingdoms

Citation: Monod M, Jousson O, Reichard U. 2009. Secreted Proteases, p 87-106. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch8
Generic image for table
Table 3.

pNA release from various pNA substrates by different mixes of exopeptidases

Citation: Monod M, Jousson O, Reichard U. 2009. Secreted Proteases, p 87-106. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error