1887

Chapter 12 : Biofilm Formation in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Biofilm Formation in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815523/9781555814380_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555815523/9781555814380_Chap12-2.gif

Abstract:

The first step of pathobiological development of following the inhalation of airborne conidia is the colonization of the upper respiratory tract. Modifications of the cell wall during biofilm formation are not unique to . For a better understanding of biofilm formation in chronic infections, an biofilm was produced on human bronchial epithelial cells (16HBE). Several studies have reported that biofilm production aids in the development of antimicrobial drug resistance in and bacteria. Persister cells, interactions of the drugs with polysaccharides of the extracellular matrix (ECM), and the ECM acting as a barrier can contribute to reduced antifungal drug susceptibility. In the study by Mowat et al., caspofungin (CSP) demonstrated poor overall activity against adherent multicellular cells. Itraconazole (ITC) was ineffective against adherent multicellular populations of . Overall, amphotericin B (AMB) was the most effective antifungal drug against biofilms at the lowest concentrations, followed by voriconazole (VRC), CSP, and ITC. can produce in vitro an extracellular hydrophobic matrix with typical characteristics of a biofilm under all static conditions tested: on agar medium, polystyrene, or epithelial cells. Under static conditions the mycelial growth is greater than under shaken submerged conditions. The ECM is composed of galactomannan, α-1,3-glucans, monosaccharides and polyols, melanin, and proteins, including major antigens and hydrophobins. All antifungal drugs are significantly less effective when is grown under biofilm versus planktonic conditions.

Citation: Anne B, Frank-Michael M. 2009. Biofilm Formation in , p 149-158. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch12

Key Concept Ranking

Confocal Laser Scanning Microscopy
0.42520764
0.42520764
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Growth of StA and ShS mycelia in 20 ml of culture medium containing 3% glucose–2% yeast extract, from 16 to 78 h ( ).

Citation: Anne B, Frank-Michael M. 2009. Biofilm Formation in , p 149-158. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Cryo-scanning electron microscopy images of an biofilm (StA; 30 h of growth) ( ).

Citation: Anne B, Frank-Michael M. 2009. Biofilm Formation in , p 149-158. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Ultrastructure of an biofilm (StA; 24 h of growth). High magnification of the network of hyphae shows the electron-dense ECM on the surface of the cell wall (arrows) ( ).

Citation: Anne B, Frank-Michael M. 2009. Biofilm Formation in , p 149-158. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Cryo-scanning (A) and transmission (B) electron microscopy images of ShS mycelium (30 h of growth) ( ).

Citation: Anne B, Frank-Michael M. 2009. Biofilm Formation in , p 149-158. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Scanning electron microscopy images of an biofilm on bronchial epithelial cells (Zeiss Novascan, Jena, Germany), showing the presence of ECM (arrow) (Seidler, unpublished data).

Citation: Anne B, Frank-Michael M. 2009. Biofilm Formation in , p 149-158. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Transmission electron microscopy image of an biofilm (StA) after AMB treatment. Note the presence of persister-like cells (Beauvais, unpublished).

Citation: Anne B, Frank-Michael M. 2009. Biofilm Formation in , p 149-158. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Immunolabeling of the ECM (thin arrow) and the cell wall (thick arrow) of StA (A) and ShS (B) hyphae with anti-α-1,3-glucan antibodies ( ).

Citation: Anne B, Frank-Michael M. 2009. Biofilm Formation in , p 149-158. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815523.ch12
1. Antachopoulos, C,, J. Meletiadis,, T. Sein, and, E. Roilides. 2008. Comparative in vitro pharmacodynamics of caspofungin, micafungin, and anidulafungin against Aspergillus germinated and nonger-minated conidia. Antimicrob. Agents Chemother. 52:321328.
2. Anwar, H.,, J. L. Strap, and, J. W. Costerton. 1992. Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob. Agents Chemother. 36:13471351.
3. Baillie, G. S., and, L. J. Douglas. 1998. Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. J. Antimicrob. Chemother. 42:19001905.
4. Baillie, G. S., and, L. J. Douglas. 2000. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J. Antimicrob. Chemother. 46:397403.
5. Barak, J. D.,, C. E. Jahn,, D. L. Gibson, and, A. O. Charkowski. 2007. The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica. Mol. Plant Microbe Interact. 20:10831091.
6. Beauvais, A.,, D. S. Perlin, and, J. P. Latge. 2006. Role of a(1-3) glucan in Aspergillus fumigatus and other human fungal pathogens, p. 269-288. In G. M. Gadd,, S. C. Watkinson, and, P. Dyer (ed.), Fungi in the Environment. Cambridge University Press, Cambridge, United Kingdom.
7. Beauvais, A.,, C. Schmidt,, S. Guadagnini,, P. Roux,, E. Perret,, C. Henry,, S. Paris,, A. Mallet,, M. C. Prevost, and, J. P. Latge. 2007. An extracellular matrix glues together the aerial grown hyphae of Aspergillus fumigatus. Cell. Microbiol. 9:15881600.
8. Boucherit, Z.,, O. Seksek, and, J. Bolard. 2007. Dormancy of Candida albicans cells in the presence of the polyene antibiotic amphotericin B: simple demonstration by flow cytometry. Med. Mycol. 45:525533.
9. Chandra, J.,, D. M. Kuhn,, P. K. Mukherjee,, L. L. Hoyer,, T. McCor-mick, and, M. A. Ghannoum. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183:53855394.
10. D’Enfert, C. 2006. Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Curr. Drug Targets 7:465470.
11. Du, C,, J. Sarfati,, J. P. Latge, and, R. Calderone. 2006. The role of the sakA (Hog1) and tcsB (sln1) genes in the oxidant adaptation of Aspergillus fumigatus. Med. Mycol. 44:211218.
12. Gastebois, A., and, J. P. Latge. 2008. Bacteries et champignons path-ogenes de l’homme: amis-ennemis. Biofutur 284:2227.
13. Hawser, S. P., and, L. J. Douglas. 1994. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect. Immun. 62:915921.
14. Jefferson, K. K. 2004. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 236:163173.
15. Kumamoto, C. A. 2005. A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc. Natl. Acad. Sci. USA 102:55765581.
16. Lewis, K. 2001. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45:9991007.
17. Lewis, K. 2007. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5:4856.
18. Mack, D.,, W. Fischer,, A. Krokotsch,, K. Leopold,, R. Hartmann,, H. Egge, and, R. Laufs. 1996. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucosaminoglycan: purification and structural analysis. J. Bacteriol. 178:175183.
19. Martinez, L. R., and, A. Casadevall. 2006. Susceptibility of Crypto-coccus neoformans biofilms to antifungal agents in vitro. Antimicrob. Agents Chemother. 50:10211033.
20. Maubon, D.,, S. Park,, M. Tanguy,, M. Huerre,, C. Schmitt,, M. C. Prevost,, D. S. Perlin,, J. P. Latge, and, A. Beauvais. 2006. AGS3, an a(1-3)glucan synthase gene family member of Aspergillus fumigatus, modulates mycelium growth in the lung of experimentally infected mice. Fungal Genet. Biol. 43:366375.
21. McKenney, D.,, J. Hubner,, E. Muller,, Y. Wang,, D. A. Goldmann, and, G. B. Pier. 1998. The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect. Immun. 66:47114720.
22. Mikkelsen L.,, S. Sarrocco,, M. Lubeck, and, D. F. Jensen. 2003. Expression of the red fluorescent protein DsRed-Express in filamentous ascomycete fungi. FEMS Microbiol. Lett. 223:135139.
23. Mowat, E.,, J. Butcher,, S. Lang,, C. Williams, and, G. Ramage. 2007. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J. Med. Microbiol. 56:12051212.
24. Nett, J.,, L. Lincoln,, K. Marchillo, and, D. Andes. 2007. Beta-1,3 glucan as a test for central venous catheter biofilm infection. J. Infect. Dis. 195:17051712.
25. O’Toole, G.,, H. B. Kaplan, and, K. Kolter. 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54:4979.
26. Paris, S.,, M. Monod,, M. Diaquin,, B. Lamy,, L. K. Arruda,, J. P. Punt, and, J. P. Latge. 1993. A transformant of Aspergillus fumigatus deficient in the antigenic cytotoxin ASPF1. FEMS Microbiol. Lett. III:3136.
27. Prosser, J. I. 1994. Kinetics of filamentous growth and branching, p. 301-317. In N. A. R. Gow and, G. M. Gadd (ed.), The Growing Fungus. Chapman and Hall, London, United Kingdom.
28. Ramage, G,, S. P. Saville,, D. P. Thomas, and, J. L. Lopez-Ribot. 2005. Candida biofilms: an update. Eukaryot. Cell 4:633638.
29. Richter, M.,, J. M. Willey,, R. Sussmuth,, G. Jung, and, H. P. Hiedler. 1998. Streptofactin, a novel biosurfactant with aerial mycelium inducing activity from Streptomyces tendae Tü 901-8c. FEMS Microbiol. Lett. 163:165171.
30. Righelato, R. C. 1979. The kinetics of mycelial growth, p. 385-401. In J. H. Burnett and, A. P. J. Trinci (ed.), Fungal Wall and Hyphal Growth. Cambridge University Press, Cambridge, United Kingdom.
31. Ritz, N.,, R. A. Ammann,, C. Casaulta-Aebischer,, F. Schoeni-Affolter, and, M. H. Schoeni. 2005. Risk factors for allergic bronchopulmonary aspergillosis and sensitisation to Aspergillus fumigatus in patients with cystic fibrosis. Fur. J. Pediatr. 164:577582.
32. Seidler, M.,, S. Salvenmoser,, F.-M. Muller. 2006a. In vitro effects of micafungin against Candida biofilms on polystyrene and central venous catheter sections. Int. J. Antimicrob. Agents 28:568573.
33. Seidler, M.,, S. Salvenmoser, and, F.-M. Muller. 2006b. Aspergillus fumigatus biofilm formation on polystyrene and bronchial epithelial cells. Abstr. 46th Intersci. Conf. Antimicrob. Agents Chemother., abstr. M–1766.
34. Steele, G. C., and, P. J. Trinci. 1975. Morphology and growth kinetics of hyphae of differentiated and undifferentiated mycelia of Neuros-pora crassa. J. Gen. Microbiol. 91:362368.
35. Tillotson, R. D.,, H. A. Wosten,, M. Richter, and, J. M. Willey. 1998. A surface active protein involved in aerial hyphae formation in the filamentous fungus Schizophillum commune restores the capacity of a bald mutant of the filamentous bacterium Streptomyces coelicolor to erect aerial structures. Mol. Microbiol. 30:595602.
36. Valiante, V.,, T. Heinekamp,, R. Jain,, A. Härtl, and, A. A. Brakhage. 2008. The mitogen-activated protein kinase MpkA of Aspergillus fumigatus regulates cell wall signaling and oxidative stress response. Fungal Genet. Biol. 45:618627.
37. van Vianen, W.,, S. de Marie,, M. T. ten Kate, and, R. A. Mathot. 2006. Caspofungin: antifungal activity in vitro, pharmacokinetics, and effects on fungal load and animal survival in neutropenic rats with invasive pulmonary aspergillosis. J. Antimicrob. Chemother. 57:732740.
38. Wösten, H. A.,, R. Bohlmann,, C. Eckerskorn,, F. Lottspeich,, M. Bolker, and, R. Kahmann. 1996. A novel class of small amphipathic peptides affect aerial hyphal growth and surface hydrophobicity in Ustilago maydis. EMBO J. 15:42744281.
39. Wösten, H. A.,, M. A. van Wetter,, L. G. Lugones,, H. C. van der Mei,, H. J. Busscher and, J. G. Wessels. 1999. How a fungus escapes the water to grow into the air. Curr. Biol. 9:8588.

Tables

Generic image for table
Table 1.

Composition of the extracellular matrix of biofilm

Citation: Anne B, Frank-Michael M. 2009. Biofilm Formation in , p 149-158. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error