Chapter 20 : Dendritic Cells in Infection and Allergy

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Dendritic Cells in Infection and Allergy, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815523/9781555814380_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555815523/9781555814380_Chap20-2.gif


Innate and adaptive immune responses act to generate the most effective form of immunity for protection against . The inflammatory allergic manifestations that follow contact with or inhalation of spp. all constitute compelling evidence for the pathogenic role of T-cell dysreactivity in fungal diseases. Allergy is an overzealous Th2 response to environmental airborne allergens. The association of persistent inflammation with intractable infection is common in nonneutropenic patients after allogeneic hematopoietic stem cell transplantation (HSCT) as well as in those with allergic fungal diseases. This chapter highlights how the remarkable functional plasticity of dendritic cells (DC) in response to the fungus may accommodate the activation of different mechanisms of immunity and can be exploited for the deliberate targeting of cells and pathways of protective cell-mediated immunity and for the identification of candidate fungal vaccines. The inflammatory/anti-inflammatory state of DC is strictly controlled by the metabolic pathway involved in tryptophan catabolism and mediated by indoleamine 2,3-dioxygenase (IDO). Antigenspecific proliferation was induced by conventional DC, more than pDC, from healthy donors but not by DC from HSCT patients. These results suggest that human pDC are fully competent at inducing IFN-γ-/IL-10-producing cells in response to the fungus in vitro and are defective at early stages after HSCT.

Citation: Romani L. 2009. Dendritic Cells in Infection and Allergy, p 247-261. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch20

Key Concept Ranking

Immune Receptors
Major Histocompatibility Complex
Immune Systems
Innate Immune System
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Transmission electron microscopy images of lungs of mice with infection. Mice were intratracheally injected with viable conidia 2 h before being processed for transmission electron microscopy. (A) Conidia are internalized by phagocytic cells with characteristics of DC morphology, as judged by the numerous cytoplasmic extensions and abundant cytoplasm present in the alveolar spaces. Magnification, × 12,000. (B) Through emission of pseudopods, DC engulf conidia and make contact with the epithelial barrier (arrow). Magnification, ×8,000. (C) DC with engulfed conidia and free conidia migrate through invaginated epithelial cells (arrow). Magnification, × 8,000. (D) DC with engulfed conidia are present within the alveolar septal wall. Magnification, × 12,000. Reproduced from with permission of the publisher.

Citation: Romani L. 2009. Dendritic Cells in Infection and Allergy, p 247-261. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Transmission electron microscopy images of phagocytosis of by DC. Fetal skin-derived murine DC were incubated with live unopsonized conidia (A to D) or hyphae (E to G) for 1 h (A and E) or 3 h (B, C, D, F, and G) before processing for transmission electron microscopy. (A) Conidial engulfment through coiling phagocytosis. Magnification, × 20,000. (B) Conidia inside the cells 3 h later. Magnification, ×12,000. (C and D) Conidia are emanating thick projections (C; magnification, ×30,000) through which they make contact with mitochondria (D, arrow; magnification, ×35,000). (E and F) Hyphal uptake through zipper-type phagocytosis at 1 h after infection (E; magnification, ×8,000) and inside the cells (F; magnification, ×8,000). (G) Hyphae in partially degraded forms at 3 h after exposure (arrows). Magnification, ×8,000. Reproduced from with permission from the publisher.

Citation: Romani L. 2009. Dendritic Cells in Infection and Allergy, p 247-261. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Encounter of DC subsets with leads to a distinct outcome. Under steady-state conditions, in the absence of accompanying danger signals in the lung, inhaled conidia and small hyphal fragments are picked up by lung DC, which take the cargo antigen to draining lymph nodes, where the close interaction with naïve Th cells results in the activation of distinct Th cell responses ( ). Conventional CD11c DC and CD11c B200 IDO pDC sense fungi in a morphotype-dependent manner through the engagement of distinct receptors ( ). This translates into downstream signaling events that differentially affect cytokine production and Th cell activation. PAMP, pathogen-associated molecular pattern; MyD88, myeloid differentiation primary response gene 88; TRIF, Toll/IL-1R domain-containing adaptor inducing IFN-β.

Citation: Romani L. 2009. Dendritic Cells in Infection and Allergy, p 247-261. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Exploiting DC for transplantation tolerance and concomitant pathogen clearance in hematopoietic transplantation. The figure shows the relative contributions of murine DC subsets to antifungal priming and alloantigen tolerization upon adoptive transfer in vivo in HSCT mice with aspergillosis ( ). Specialization and complementarity in priming and tolerization by the different DC subsets is shown. Whereas CD11c DC activate Th1 cells and concomitant inflammatory toxicity, CD11c B220 IDO DC fulfilled the requirement for (i) Th1/Treg antifungal priming, (ii) tolerization toward alloantigens, and (iii) diversion from alloantigen-specific to antigen-specific T-cell responses in the presence of donor T lymphocytes. Interestingly, Ta1, known to modulate human pDC functions through TLR9, affected mobilization and tolerization of pDC by activating the IDO-dependent pathway, and this resulted in Treg development and tolerization ( ). Thus, transplantation tolerance and concomitant pathogen clearance can be achieved through the therapeutic induction of antigen-specific Tregs via instructive immunotherapy with pathogen- or TLR-conditioned donor DC. GVHD, graft-versus-host disease.

Citation: Romani L. 2009. Dendritic Cells in Infection and Allergy, p 247-261. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Balloy, V.,, M. Huerre,, J. P. Latgé, and, M. Chignard. 2005. Differences in patterns of infection and inflammation for corticosteroid treatment and chemotherapy in experimental invasive pulmonary aspergillosis. Infect. Immun. 73: 494503.
2. Behnsen, J.,, P. Narang,, M. Hasenberg,, F. Gunzer,, U. Bilitewski,, N. Klippel,, M. Rohde,, M. Brock,, A. A. Brakhage, and, M. Gunzer. 2007. Environmental dimensionality controls the interaction of phagocytes with the pathogenic fungi Aspergillus fumigatus and Candida albicans. PLoS Pathog. 3: e13.
3. Belkaid, Y. 2007. Regulatory T cells and infection: a dangerous necessity. Nat. Rev. Immunol. 7: 875888.
4. Bellocchio, S.,, C. Montagnoli,, S. Bozza,, R. Gaziano,, G. Rossi,, S. S. Mambula,, A. Vecchi,, A. Mantovani,, S. M. Levitz, and, L. Romani. 2004a. The contribution of the Toll-Like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. 172: 30593069.
5. Bellocchio, S.,, S. Moretti,, K. Perruccio,, F. Fallarino,, S. Bozza,, C. Montagnoli,, P. Mosci,, G. B. Lipford,, L. Pitzurra, and, L. Romani. 2004b. TLRs govern neutrophil activity in aspergillosis. J. Immunol. 173: 74067415.
6. Bettelli, E.,, M. Oukka, and, V. K. Kuchroo. 2007. TH-17 cells in the circle of immunity and autoimmunity. Nat. Immunol. 8: 345350.
7. Bozza, S.,, R. Gaziano,, G. B. Lipford,, C. Montagnoli,, A. Bacci,, P. Di Francesco,, V. P. Kurup,, H. Wagner, and, L. Romani. 2002a. Vaccination of mice against invasive aspergillosis with recombinant Aspergillus proteins and CpG oligodeoxynucleotides as adjuvants. Microbes Infect. 4: 12811290.
8. Bozza, S.,, R. Gaziano,, A. Spreca,, A. Bacci,, C. Montagnoli,, P. di Francesco, and, L. Romani. 2002b. Dendritic cells transport conidia and hyphae of Aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate Th responses to the fungus. J. Immunol. 168: 13621371.
9. Bozza, S.,, C. Montagnoli,, R. Gaziano,, G. Rossi,, G. Nkwanyuo,, S. Bellocchio, and, L. Romani. 2004. Dendritic cell-based vaccination against opportunistic fungi. Vaccine 22: 857864.
10. Bozza, S.,, K. Perruccio,, C. Montagnoli,, R. Gaziano,, S. Bellocchio,, E. Burchielli,, G. Nkwanyuo,, L. Pitzurra,, A. Velardi, and, L. Romani. 2003. A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood 102: 38073814.
11. Braedel, S.,, M. Radsak,, H. Einsele,, J. P. Latgé,, A. Michan,, J. Loeffler,, Z. Haddad,, U. Grigoleit,, H. Schild, and, H. Hebart. 2004. Aspergillus fumigatus antigens activate innate immune cells via toll-like receptors 2 and 4. Br. J. Haematol. 125: 392399.
12. Bretz, C.,, G. Gersuk,, S. Knoblaugh,, N. Chaudhary,, J. Randolph-Habecker,, R. Hackman,, J. Staab, and, K. A. Marr. 2008. MyD88-signaling contributes to early pulmonary responses to Aspergillus fumigatus. Infect. Immun. 76: 952958.
13. Chignard, M.,, V. Balloy,, J. M. Sallenave, and, M. Si-Tahar. 2007. Role of Toll-like receptors in lung innate defense against invasive aspergillosis. Distinct impact in immunocompetent and immunocompromized hosts. Clin. Immunol. 124: 238243.
14. Colonna, M.,, G. Trinchieri, and, Y. J. Liu. 2004. Plasmacytoid dendritic cells in immunity. Nat. Immunol. 5: 12191226.
15. D’Amico, A., and, L. Wu. 2003. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med. 198: 293303.
16. De Luca, A.,, C. Montagnoli,, T. Zelante,, P. Bonifazi,, S. Bozza,, S. Moretti,, C. D’Angelo,, C. Vacca,, L. Boon,, F. Bistoni,, P. Puccetti,, F. Fallarino, and, L. Romani. 2007. Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO-dependent inhibition of Rorc. J. Immunol. 179: 59996008.
17. Denning, D. W.,, B. R. O’Driscoll,, C. M. Hogaboam,, P. Bowyer, and, R. M. Niven. 2006. The link between fungi and severe asthma: a summary of the evidence. Eur. Respir. J. 27: 615626.
18. Diebold, S. S.,, M. Montoya,, H. Unger,, L. Alexopoulou,, P. Roy,, L. E. Haswell,, A. Al-Shamkhani,, R. Flavell,, P. Borrow, and, C. Reis e Sousa. 2003. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 424: 324328.
19. Dong, C. 2006. Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat. Rev. Immunol. 6: 329333.
20. Fallarino, F.,, U. Grohmann,, K. W. Hwang,, C. Orabona,, C. Vacca,, R. Bianchi,, M. L. Belladonna,, M. C. Fioretti,, M. L. Alegre, and, P. Puccetti. 2003. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4: 12061212.
21. Fallarino, F.,, U. Grohmann,, S. You,, B. C. McGrath,, D. R. Cavener,, C. Vacca,, C. Orabona,, R. Bianchi,, M. L. Belladonna,, C. Volpi,, P. Santamaria,, M. C. Fioretti, and, P. Puccetti. 2006. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory pheno-type in naive T cells. J. Immunol. 176: 67526761.
22. Garlanda, C.,, E. Hirsch,, S. Bozza,, A. Salustri,, M. De Acetis,, R. Nota,, A. Maccagno,, F. Riva,, B. Bottazzi,, G. Peri,, A. Doni,, L. Vago,, M. Botto,, R. De Santis,, P. Carminati,, G. Siracusa,, F. Altruda,, A. Vecchi,, L. Romani, and, A. Mantovani. 2002. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 420: 182186.
23. Graca, L.,, B. Silva-Santos, and, A. Coutinho. 2006. The blind-spot of regulatory T cells. Eur. J. Immunol. 36: 802805.
24. Grazziutti, M.,, D. Przepiorka,, J. H. Rex,, I. Braunschweig,, S. Vadhan-Raj, and, C. A. Savary. 2001. Dendritic cell-mediated stimulation of the in vitro lymphocyte response to Aspergillus. Bone Marrow Transplant. 27: 647652.
25. Grohmann, U.,, F. Fallarino, and, P. Puccetti. 2003. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol. 24: 242248.
26. Grohmann, U.,, C. Volpi,, F. Fallarino,, S. Bozza,, R. Bianchi,, C. Vacca,, C. Orabona,, M. L. Belladonna,, E. Ayroldi,, G. Nocentini,, L. Boon,, F. Bistoni,, M. C. Fioretti,, L. Romani,, C. Riccardi, and, P. Puccetti. 2007. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat. Med. 13: 579586.
27. Gutcher, I., and, B. Becher. 2007. APC-derived cytokines and T cell polarization in autoimmune inflammation. J. Clin. Investig. 117: 11191127.
28. Hayashi, T.,, L. Beck,, C. Rossetto,, X. Gong,, O. Takikawa,, K. Takabayashi,, D. H. Broide,, D. A. Carson, and, E. Raz. 2004. Inhibition of experimental asthma by indoleamine 2,3-dioxygenase. J. Clin. Investig. 114: 270279.
29. Hessel, E. M.,, M. Chu,, J. O. Lizcano,, B. Chang,, N. Herman,, S. A. Kell,, M. Wills-Karp, and, R. L. Coffman. 2005. Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction. J. Exp. Med. 202: 15631573.
30. Hohl, T. M., and, M. Feldmesser. 2007. Aspergillus fumigatus: principles of pathogenesis and host defense. Eukaryot. Cell 6: 19531963.
31. Hohl, T. M.,, H. L. Van Epps,, A. Rivera,, L. A. Morgan,, P. L. Chen,, M. Feldmesser, and, E. G. Pamer. 2005. Aspergillus fumigatus triggers inflammatory responses by stage-specific beta-glucan display. PLoS Pathog. 1: e30.
32. Holland, S. M.,, F. R. DeLeo,, H. Z. Elloumi,, A. P. Hsu,, G. Uzel,, N. Brodsky,, A. F. Freeman,, A. Demidowich,, J. Davis,, M. L. Turner,, V. L. Anderson,, D. N. Darnell,, P. A. Welch,, D. B. Kuhns,, D. M. Frucht,, H. L. Malech,, J. I. Gallin,, S. D. Kobayashi,, A. R. Whitney,, J. M. Voyich,, J. M. Musser,, C. Woellner,, A. A. Schaffer,, J. M. Puck, and, B. Grimbacher. 2007. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 357: 16081619.
33. Hunter, C. A. 2005. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat. Rev. Immunol. 5: 521531.
34. Jiang, S.,, J. Tsang,, D. S. Game,, S. Stevenson,, G. Lombardi, and, R. I. Lechler. 2006. Generation and expansion of human CD4+ CD25 + regulatory T cells with indirect allospecificity: potential reagents to promote donor-specific transplantation tolerance. Transplantation 82: 17381743.
35. Judson, M. A., and, D. A. Stevens. 2001. Current pharmacotherapy of allergic bronchopulmonary aspergillosis. Expert Opin. Pharma-cother. 2: 10651071.
36. Kwidzinski, E.,, J. Bunse,, O. Aktas,, D. Richter,, L. Mutlu,, F. Zipp,, R. Nitsch, and, I. Bechmann. 2005. Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. FASEB J. 19: 13471349.
37. Langrish, C. L.,, B. S. McKenzie,, N. J. Wilson,, R. de Waal Malefyt,, R. A. Kastelein, and, D. J. Cua. 2004. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol. Rev. 202: 96105.
38. Lanzavecchia, A., and, F. Sallusto. 2001. Regulation of T cell immunity by dendritic cells. Cell 106: 263266.
39. Latgé, J. P. 1999. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 12: 310350.
40. Leibundgut-Landmann, S.,, O. Gross,, M. J. Robinson,, F. Osorio,, E. C. Slack,, S. V. Tsoni,, E. Schweighoffer,, V. Tybulewicz,, G. D. Brown,, J. Ruland, and, C. Reis e Sousa. 2007. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8: 630638.
41. Linden, A.,, M. Laan, and, G. P. Anderson. 2005. Neutrophils, interleukin-17A and lung disease. Eur. Respir.J. 25: 159172.
42. Ljungman, P.,, D. Engelhard,, R. de la Camara,, H. Einsele,, A. Locasciulli,, R. Martino,, P. Ribaud,, K. Ward, and, C. Cordonnier. 2005. Vaccination of stem cell transplant recipients: recommendations of the Infectious Diseases Working Party of the EBMT. Bone Marrow Transplant. 35: 737746.
43. Madan, T.,, S. Kaur,, S. Saxena,, M. Singh,, U. Kishore,, S. Thiel,, K. B. Reid, and, P. U. Sarma. 2005. Role of collectins in innate immunity against aspergillosis. Med. Mycol. 43 (Suppl. 1): S155S163.
44. Marr, K. A.,, T. Patterson, and, D. Denning. 2002. Aspergillosis. Pathogenesis, clinical manifestations, and therapy. Infect. Dis. Clin. North Am. 16: 875894.
45. Martinic, M. M., and, M. G. von Herrath. 2006. Control of graftversus-host disease by regulatory T cells: which level of antigen specificity? Eur. J. Immunol. 36: 22992303.
46. Mason, D. 1998. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19: 395404.
47. McCormack, F. X., and, J. A. Whitsett. 2002. The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J. Clin. Investig. 109: 707712.
48. Mellor, A. L., and, D. H. Munn. 2004. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4: 762774.
49. Miceli, M. H.,, J. Maertens,, K. Buve,, M. Grazziutti,, G. Woods,, M. Rahman,, B. Barlogie, and, E. J. Anaissie. 2007. Immune reconstitution inflammatory syndrome in cancer patients with pulmonary aspergillosis recovering from neutropenia: proof of principle, description, and clinical and research implications. Cancer 110: 112120.
50. Montagnoli, C,, S. Bozza,, R. Gaziano,, T. Zelante,, P. Bonifazi,, S. Moretti,, S. Bellocchio,, L. Pitzurra, and, L. Romani. 2006a. Immunity and tolerance to Aspergillus fumigatus. Novartis Found. Symp. 279: 6677.
51. Montagnoli, C,, F. Fallarino,, R. Gaziano,, S. Bozza,, S. Bellocchio,, T. Zelante,, W. P. Kurup,, L. Pitzurra,, P. Puccetti, and, L. Romani. 2006b. Immunity and tolerance to Aspergillus involve functionally distinct regulatory T cells and tryptophan catabolism. J. Immunol. 176: 17121723.
52. Montagnoli, C,, K. Perruccio,, S. Bozza,, P. Bonifazi,, T. Zelante,, A. De Luca,, S. Moretti,, C. D’Angelo,, F. Bistoni,, M. Martelli,, F. Aversa,, A. Velardi, and, L. Romani. 2008. Provision of antifungal immunity and concomitant alloantigen tolerization by conditioned dendritic cells in experimental hematopoietic transplantation. Blood Cells Mol. Dis. 40: 5562.
53. Moretti, S.,, S. Bellocchio,, P. Bonifazi,, S. Bozza,, T. Zelante,, F. Bistoni, and, L. Romani. 2008. The contribution of PARs to inflammation and immunity to fungi. Mucosal Immunol. 1: 156168.
54. Nakae, S.,, Y. Komiyama,, A. Nambu,, K. Sudo,, M. Iwase,, I. Homma,, K. Sekikawa,, M. Asano, and, Y. Iwakura. 2002. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17: 375387.
55. Ortega, M.,, M. Rovira,, X. Filella,, J. A. Martinez,, M. Almela,, J. Puig,, E. Carreras, and, J. Mensa. 2006. Prospective evaluation of procalcitonin in adults with nonneutropenic fever after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 37: 499502.
56. Pantenburg, B.,, F. Heinzel,, L. Das,, P. S. Heeger, and, A. Valujskikh. 2002. T cells primed by Leishmania major infection cross-react with alloantigens and alter the course of allograft rejection. J. Immunol. 169: 36863693.
57. Phadke, A. P., and, B. Mehrad. 2005. Cytokines in host defense against Aspergillus: recent advances. Med. Mycol. 43 (Suppl. 1): S173S176.
58. Puccetti, P., and, U. Grohmann. 2007. IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-ĸB activation. Nat. Rev. Immunol. 7: 817823.
59. Pulendran, B. 2004. Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol. Rev. 199: 227250.
60. Reis e Sousa, C. 2006. Dendritic cells in a mature age. Nat. Rev. Immunol. 6: 476483.
61. Romani, L. 2008. Cell mediated immunity to fungi: a reassessment. Med. Mycol. 12: 115.
62. Romani, L. 2004. Immunity to fungal infections. Nat. Rev. Immunol. 4: 123.
63. Romani, L.,, F. Bistoni,, R. Gaziano,, S. Bozza,, C. Montagnoli,, K. Perruccio,, L. Pitzurra,, S. Bellocchio,, A. Velardi,, G. Rasi,, P. Di Francesco, and, E. Garaci. 2004. Thymosin alpha 1 activates dendritic cells for antifungal Th1 resistance through toll-like receptor signaling. Blood 103: 42324239.
64. Romani, L.,, F. Bistoni,, K. Perruccio,, C. Montagnoli,, R. Gaziano,, S. Bozza,, P. Bonifazi,, G. Bistoni,, G. Rasi,, A. Velardi,, F. Fallarino,, E. Garaci, and, P. Puccetti. 2006. Thymosin a 1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood 108: 22652274.
65. Romani, L.,, F. Bistoni, and, P. Puccetti. 2002. Fungi, dendritic cells and receptors: a host perspective of fungal virulence. Trends Microbiol. 10: 508514.
66. Romani, L.,, F. Fallarino,, A. De Luca,, C. Montagnoli,, C. D’Angelo,, T. Zelante,, C. Vacca,, F. Bistoni,, M. C. Fioretti,, U. Grohmann,, B. H. Segal, and, P. Puccetti. 2008. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451: 211215.
67. Romani, L., and, P. Puccetti. 2007. Controlling pathogenic inflammation to fungi. Expert Rev. Anti Infect. Ther. 5: 10071017.
68. Romani, L., and, P. Puccetti. Immune regulation and tolerance to fungi in the lungs and skin. Chem. Immunol., in press.
69. Romani, L., and, P. Puccetti. 2006. Protective tolerance to fungi: the role of IL-10 and tryptophan catabolism. TrendsMicrobiol. 14: 183189.
70. Sakaguchi, S. 2005. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6: 345352.
71. Sambatakou, H.,, V. Pravica,, I. V. Hutchinson, and, D. W. Denning. 2006. Cytokine profiling of pulmonary aspergillosis. Int. J. Immunogenet. 33: 297302.
72. Schubert, M. S. 2006. Allergic fungal sinusitis. Clin. Rev. Allergy Immunol. 30: 205216.
73. Segal, B. H.,, T. L. Leto,, J. I. Gallin,, H. L. Malech, and, S. M. Holland. 2000. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 79: 170200.
74. Serrano-Gomez, D.,, A. Dominguez-Soto,, J. Ancochea,, J. A. Jimenez-Heffernan,, J. A. Leal, and, A. L. Corbi. 2004. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidiaby dendritic cells and macrophages. J. Immunol. 173: 56355643.
75. Serrano-Gomez, D.,, R. T. Martinez-Nunez,, E. Sierra-Filardi,, N. Izquierdo,, M. Colmenares,, J. Pla,, L. Rivas,, J. Martinez-Picado,, J. Jimenez-Barbero,, J. L. Alonso-Lebrero,, S. Gonzalez, and, A. L. Corbi. 2007. AM3 modulates dendritic cell pathogen recognition capabilities by targeting DC-SIGN. Antimicrob. Agents Chemother. 51: 23132323.
76. Shao, C,, J. Qu,, L. He,, Y. Zhang,, J. Wang,, H. Zhou,, Y. Wang, and, X. Liu. 2005. Dendritic cells transduced with an adenovirus vector encoding interleukin-12 are a potent vaccine for invasive pulmonary aspergillosis. Genes Immun. 6: 103114.
77. Singh, N., and, J. R. Perfect. 2007. Immune reconstitution syndrome associated with opportunistic mycoses. Lancet Infect. Dis. 7: 395401.
78. Steinman, R. M. 2008. Dendritic cells and vaccines. Baylor Univ. Med. Ctr. Proc. 21: 38.
79. Steinman, R. M. 2007. Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nat. Med. 13: 11551159.
80. Steinman, R. M., and, J. Banchereau. 2007. Taking dendritic cells into medicine. Nature 449: 419426.
81. Steinman, R. M., and, Z. A. Cohn. 1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137: 11421162.
82. Steinman, R. M., and, M. Pope. 2002. Exploiting dendritic cells to improve vaccine efficacy. J. Clin. Investig. 109: 15191526.
83. Trinchieri, G,, S. Pflanz, and, R. A. Kastelein. 2003. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19: 641644.
84. Trinchieri, G., and, A. Sher. 2007. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7: 179190.
85. Virnig, C., and, R. K. Bush. 2007. Allergic bronchopulmonary aspergillosis: a US perspective. Curr. Opin. Pulm. Med. 13: 6771.
86. von Bubnoff, D.,, R. Fimmers,, M. Bogdanow,, H. Matz,, S. Koch, and, T. Bieber. 2004. Asymptomatic atopy is associated with increased indoleamine 2,3-dioxygenase activity and interleukin-10 production during seasonal allergen exposure. Clin. Exp. Allergy 34: 10561063.
87. Waldmann, H., and, S. Cobbold. 2004. Exploiting tolerance processes in transplantation. Science 305: 209212.
88. Walsh, T. J.,, E. Roilides,, K. Cortez,, S. Kottilil,, J. Bailey, and, C. A. Lyman. 2005. Control, immunoregulation, and expression of innate pulmonary host defenses against Aspergillus fumigatus. Med. Mycol. 43 (Suppl. 1): S165S172.
89. Weigel, B. J.,, N. Nath,, P. A. Taylor,, A. Panoskaltsis-Mortari,, W. Chen,, A. M. Krieg,, K. Brasel, and, B. R. Blazar. 2002. Comparative analysis of murine marrow-derived dendritic cells generated by Flt3L or GM-CSF/IL-4 and matured with immune stimulatory agents on the in vivo induction of antileukemia responses. Blood 100: 41694176.
90. Wills-Karp, M.,, J. Santeliz, and, C. L. Karp. 2001. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat. Rev. Immunol. 1: 6975.
91. Zelante, T.,, A. De Luca,, P. Bonifazi,, C. Montagnoli,, S. Bozza,, S. Moretti,, M. L. Belladonna,, C. Vacca,, C. Conte,, P. Mosci,, F. Bistoni,, P. Puccetti,, R. A. Kastelein,, M. Kopf, and, L. Romani. 2007. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur. J. Immunol. 37: 26952706.
92. Zuniga, E. I.,, D. B. McGavern,, J. L. Pruneda-Paz,, C. Teng, and, M. B. Oldstone. 2004. Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection. Nat. Immunol. 5: 12271234.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error