1887

Chapter 6 : Comparative Pathogenomics of Spirochetes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Comparative Pathogenomics of Spirochetes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815530/9781555814519_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555815530/9781555814519_Chap06-2.gif

Abstract:

This chapter reports on three pathogenic spirochetes: , causative agent of syphilis, and other treponemes; , causative agent of Lyme disease, and related species; and species, responsible for leptospirosis. The spirochetes are quite different from many of the other well-studied pathogens that are principally found in the proteobacteria and gram-positive groups. is not pathogenic for humans and causes veneral spirochetosis in rabbits. Differences in the chromosome sequence can be used for molecular diagnostic testing of treponemal subspecies and strains and for epidemiological studies. The genome sequence information enables new approaches to be developed to determine the function of genes and their possible role in pathogenesis. To identify antigens important in the human immune response to syphilis, the serum antibody reactivity of patients with syphilis was examined with 908 proteins by using the same techniques as those for the rabbit sera. The genus comprises spirochetes with loose wavelike coils that survive exclusively by transmission back and forth between vertebrate and arthropod hosts. The chromosome of encodes most of the housekeeping genes required for in vitro survival and growth, as demonstrated by strain B313, which has lost most of the plasmids. is found in many animal species, and this broad reservoir provides a continuous source for infection, making this one of the most widespread zoonotic infections.

Citation: Weinstock G, Šmajs D, Matějková P, Palzkill T, Norris S. 2007. Comparative Pathogenomics of Spirochetes, p 141-159. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch6

Key Concept Ranking

Mobile Genetic Elements
0.5473043
Outer Membrane Proteins
0.4601335
Enzyme-Linked Immunosorbent Assay
0.4216267
Humoral Immune Response
0.41922906
0.5473043
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Comparison of genome differences found in subsp. Samoa D and in Cuniculi A genomes when compared with the subsp. Nichols and SS14 genomes. Numbers in boxes represent the number of additional or missing restriction target sites in Samoa D and Cuniculi A genomes compared with the Nichols genome. Four chromosomal regions with indels present in SS14, Samoa D, and Cuniculi A genomes are not shown.

Citation: Weinstock G, Šmajs D, Matějková P, Palzkill T, Norris S. 2007. Comparative Pathogenomics of Spirochetes, p 141-159. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Mapping stage of CGS strategy. Results obtained for subsp. SS14, subsp. Samoa D, and Cuniculi A are shown. Oligonucleotides showing significantly lower hybridization in the tested genome are shown as vertical bars and indicate sequence heterogeneity in these regions when compared with the Nichols reference genome. Note the increasing amount of sequence diversity in the order SS14, Samoa D, and Cuniculi A strains. ORFs of Nichols (both strands) are shown at the top.

Citation: Weinstock G, Šmajs D, Matějková P, Palzkill T, Norris S. 2007. Comparative Pathogenomics of Spirochetes, p 141-159. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Univector plasmid fusion system. Cre-–mediated site-specific recombination fuses the pUNI and pHOST plasmids at the site. As a result, the gene of interest is placed under the control of the pHOST promoter and fused to any Tag sequences present in the pHOST plasmid. Figure adapted from references and .

Citation: Weinstock G, Šmajs D, Matějková P, Palzkill T, Norris S. 2007. Comparative Pathogenomics of Spirochetes, p 141-159. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Identification of antigenic proteins in the proteome. The proteins arrayed for the immunoassay are presented numerically along the axis according to their ORF number, TP0001 to TP1041. Chemiluminescence from a secondary anti-rabbit antibody conjugated to horseradish peroxidase was used to monitor rabbit antibody binding to GST fusion proteins and is measured in relative light units, shown along the axis. fusion proteins that exhibited the highest levels of antibody binding are labeled. Figure adapted from reference .

Citation: Weinstock G, Šmajs D, Matějková P, Palzkill T, Norris S. 2007. Comparative Pathogenomics of Spirochetes, p 141-159. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Transmission cycle and protein expression changes of the Lyme disease spirochete, . The expression of many proteins is upregulated or downregulated in the transition between arthropod and mammalian hosts, as exemplified by OspA, OspC, DbpA, and DbpB. From reference , used with permission.

Citation: Weinstock G, Šmajs D, Matějková P, Palzkill T, Norris S. 2007. Comparative Pathogenomics of Spirochetes, p 141-159. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Complex genome structure of species, as exemplified by B31 ( ). Extrachromosomal elements include both linear plasmids (lp) and circular plasmids; the approximate sizes in kilobase pairs are specified in the plasmid names. Closely related sequences are indicated by dark shading and patterns. The cp32 plasmids resemble prophages, and an additional copy of a cp32-related sequence is embedded in lp54. Similarly, lp21 contains a complete copy of lp5 bifurcated by an intervening sequence.

Citation: Weinstock G, Šmajs D, Matějková P, Palzkill T, Norris S. 2007. Comparative Pathogenomics of Spirochetes, p 141-159. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815530.ch06
1. Abremski, K.,, R. Hoess, and, N. Sternberg. 1983. Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32:13011311.
2. Albert, T. J.,, D. Dailidiene,, G. Dailide,, J. E. Norton,, A. Kalia,, T. A. Richmond,, M. Molla,, J. Singh,, R. D. Green, and, D. E. Berg. 2005. Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori. Nat. Methods 2:951953.
3. Alitalo, A.,, T. Meri,, L. Ramo,, T. S. Jokiranta,, T. Heikkila,, I. J. Seppala,, J. Oksi,, M. Viljanen, and, S. Meri. 2001. Complement evasion by Borrelia burgdorferi: serum-resistant strains promote C3b inactivation. Infect. Immun. 69:36853691.
4. Aron, L.,, M. Alekshun,, L. Perlee,, I. Schwartz,, H. P. Godfrey, and, F. C. Cabello. 1994. Cloning and DNA sequence analysis of bmpC, a gene encoding a potential membrane lipoprotein of Borrelia burgdorferi. FEMS Microbiol. Lett. 123:7582.
5. Bankhead, T., and, G. Chaconas. 2004. Mixing active-site components: a recipe for the unique enzymatic activity of a telomere resolvase. Proc. Natl. Acad. Sci. USA 101:1376813773.
6. Barbour, A. G. 2003. Antigenic variation in Borrelia: relapsing fever and Lyme borreliosis, p. 319–356. In A. Craig and, A. Scherf (ed.), Antigenic Variation. Academic Press, Ltd., London, United Kingdom.
7. Bergstrom, S.,, V. G. Bundoc, and, A. G. Barbour. 1989. Molecular analysis of linear plasmid-encoded major surface proteins, OspA and OspB, of the Lyme disease spirochaete Borrelia burgdorferi. Mol. Microbiol. 3:479486.
8. Blanco, D. R.,, J. N. Miller, and, M. A. Lovett. 1997. Surface antigens of the syphilis spirochete and their potential as virulence determinants. Emerg. Infect. Dis. 3:1120.
9. Bono, J. L.,, A. F. Elias,, J. J. Kupko III,, B. Stevenson,, K. Tilly, and, P. Rosa. 2000. Efficient targeted mutagenesis in Borrelia burgdorferi. J. Bacteriol. 182:24452452.
10. Botkin, D. J.,, A. N. Abbott,, P. E. Stewart,, P. A. Rosa,, H. Kawabata,, H. Watanabe, and, S. J. Norris. 2006. Identification of potential virulence determinants by Himar1 transposition of infectious Borrelia burgdorferi B31. Infect. Immun. 74:66906699.
11. Brinkman, M. B.,, M. McKevitt,, M. McLoughlin,, C. Perez,, J. K. Howell,, G. M. Weinstock,, S. J. Norris, and, T. Palzkill. 2006. Reactivity of antibodies from syphilis patients to a protein array representing the Treponema pallidum proteome. J. Clin. Microbiol. 44:888891.
12. Brooks, C. S.,, S. R. Vuppala,, A. M. Jett,, A. Alitalo,, S. Meri, and, D. R. Akins. 2005. Complement regulator-acquiring surface protein 1 imparts resistance to human serum in Borrelia burgdorferi. J. Immunol. 175:32993308.
13. Bulach, D. M.,, R. L. Zuerner,, P. Wilson,, T. Seemann,, A. McGrath,, P. A. Cullen,, J. Davis,, M. Johnson,, E. Kuczek,, D. P. Alt,, B. Peterson-Burch,, R. L. Coppel,, J. I. Rood,, J. K. Davies, and, B. Adler. 2006. Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proc. Natl. Acad. Sci. USA 103:1456014565.
14. Casjens, S.,, N. Palmer,, R. van Vugt,, W. M. Huang,, B. Stevenson,, P. Rosa,, R. Lathigra,, G. Sutton,, J. Peterson,, R. J. Dodson,, D. Haft,, E. Hickey,, M. Gwinn,, O. White, and, C. M. Fraser. 2000. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35:490516.
15. Chaconas, G.,, P. E. Stewart,, K. Tilly,, J. L. Bono, and, P. 2001. Telomere resolution in the Lyme disease spirochete. EMBO J. 20:32293237.
16. Coburn, J.,, W. Chege,, L. Magoun,, S. C. Bodary, and, J. M. Leong. 1999. Characterization of a candidate Borrelia burgdorferi beta3-chain integrin ligand identified using a phage display library. Mol. Microbiol. 34:926940.
17. Coburn, J., and, C. Cugini. 2003. Targeted mutation of the outer membrane protein P66 disrupts attachment of the Lyme disease agent, Borrelia burgdorferi, to integrin alphavbeta3. Proc. Natl. Acad. Sci. USA 100:73017306.
18. Elias, A. F.,, J. L. Bono,, J. J. Kupko III,, P. E. Stewart,, J. G. Krum, and, P. A. Rosa. 2003. New antibiotic resistance cassettes suitable for genetic studies in Borrelia burgdorferi. J. Mol. Microbiol. Biotechnol. 6:2940.
19. Elias, A. F.,, P. E. Stewart,, D. Grimm,, M. J. Caimano,, C. H. Eggers,, K. Tilly,, J. L. Bono,, D. R. Akins,, J. D. Radolf,, T. G. Schwan, and, P. Rosa. 2002. Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for muta-genesis in an infectious strain background. Infect. Immun. 70:21392150.
20. Fikrig, E.,, M. Chen,, S. W. Barthold,, J. Anguita,, W. Feng,, S. R. Telford III, and, R. A. Flavell. 1999. Borrelia burgdorferi erpT expression in the arthropod vector and murine host. Mol. Microbiol. 31:281290.
21. Fikrig, E.,, W. Feng,, J. Aversa,, R. T. Schoen, and, R. A. Flavell. 1998. Differential expression of Borrelia burgdorferi genes during erythema migrans and Lyme arthritis. J. Infect. Dis. 178:11981201.
22. Fisher, M. A.,, D. Grimm,, A. K. Henion,, A. F. Elias,, P. E. Stewart,, P. A. Rosa, and, F. C. Gherardini. 2005. Borrelia burgdorferi sigma54 is required for mammalian infection and vector transmission but not for tick colonization. Proc. Natl. Acad. Sci. USA 102:51625167.
23. Fraser, C. M.,, S. Casjens,, W. M. Huang,, G. G. Sutton,, R. Clayton,, R. Lathigra,, O. White,, K. A. Ketchum,, R. Dodson,, E. K. Hickey,, M. Gwinn,, B. Dougherty,, J. F. Tomb,, R. D. Fleischmann,, D. Richardson,, J. Peterson,, A. R. Kerlavage,, J. Quackenbush,, S. Salzberg,, M. Hanson,, R. van Vugt,, N. Palmer,, M. D. Adams,, J. Gocayne,, J. Weidman,, T. Utter-back,, L. Watthey,, L. McDonald,, P. Artiach,, C. Bowman,, S. Garland,, C. Fujii,, M. D. Cotton,, K. Horst,, K. Roberts,, B. Hatch,, H. O. Smith, and, J. C. Venter. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580586.
24. Fraser, C. M.,, S. J. Norris,, G. M. Weinstock,, O. White,, G. G. Sutton,, R. Dodson,, M. Gwinn,, E. K. Hickey,, R. Clayton,, K. A. Ketchum,, E. Sodergren,, J. M. Hardham,, M. P. McLeod,, S. Salzberg,, J. Peterson,, H. Khalak,, D. Richardson,, J. K. Howell,, M. Chidambaram,, T. Utterback,, L. McDonald,, P. Artiach,, C. Bowman,, M. D. Cotton,, C. Fujii,, S. Garland,, B. Hatch,, K. Horst,, K. Roberts,, M. Sandusky,, J. Weidman,, H. O. Smith, and, J. C. Venter. 1998. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281:375388.
25. Glöckner, G.,, R. Lehmann,, A. Romualdi,, S. Pradella,, U. Schulte-Spechtel,, M. Schilhabel,, B. Wilske,, J. Sühnel, and, M. Platzer. 2004. Comparative analysis of the Borrelia garinii genome. Nucleic Acids Res. 32:60386046.
26. Gorbacheva, V. Y.,, H. P. Godfrey, and, F. C. Cabello. 2000. Analysis of the bmp gene family in Borrelia burgdorferi sensu lato. J. Bacteriol. 182:20372042.
27. Grimm, D.,, C. H. Eggers,, M. J. Caimano,, K. Tilly,, P. E. Stewart,, A. F. Elias,, J. D. Radolf, and, P. A. Rosa. 2004. Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infect. Immun. 72:59385946.
28. Grimm, D.,, K. Tilly,, R. Byram,, P. E. Stewart,, J. G. Krum,, D. M. Bueschel,, T. G. Schwan,, P. F. Policastro,, A. F. Elias, and, P.A. Rosa. 2004. Outer-surface protein C of the Lyme disease spiro-chete: a protein induced in ticks for infection of mammals. Proc. Natl. Acad. Sci. USA 101:31423147.
29. Guo, B. P.,, E. L. Brown,, D. W. Dorward,, L. C. Rosenberg, and, M. Hook. 1998. Decorin-binding adhesins from Borrelia burgdorferi. Mol. Microbiol. 30:711723.
30. Hellwage, J.,, T. Meri,, T. Heikkila,, A. Alitalo,, J. Panelius,, P. Lahdenne,, I. J. Seppala, and, S. Meri. 2001. The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J. Biol. Chem. 276:84278435.
31. Heyman, J. A.,, J. Cornthwaite,, L. Foncerrada,, J. R. Gilmore,, E. Gontang,, K. J. Hartman,, C. L. Hernandez,, R. Hood,, H. M. Hull,, W.-Y. Lee,, R. Marcil,, E. J. Marsh,, K. M. Mudd,, M. J. Patino,, T. J. Purcell,, J. J. Rowland,, M. L. Sindici, and, J. P. Hoeffler. 1999. Genome-scale cloning and expression of individual open reading frames using topoisomerase I–mediated ligation. Genome Res. 9:383392.
32. Hinnebusch, J.,, S. Bergstrom, and, A. G. Barbour. 1990. Cloning and sequence analysis of linear plasmid telomeres of the bacterium Borrelia burgdorferi. Mol. Microbiol. 4:811820.
33. Hübner, A.,, A. T. Revel,, D. M. Nolen,, K. E. Hagman, and, M.V. Norgard. 2003. Expression of a luxS gene is not required for Borrelia burgdorferi infection of mice via needle inoculation. Infect. Immun. 71:28922896.
34. Hübner, A.,, X. Yang,, D. M. Nolen,, T. G. Popova,, F. C. Cabello, and, M. V. Norgard. 2001. Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc. Natl. Acad. Sci. USA 98:1272412729.
35. Juncker, A. S.,, H. Willenbrock,, G. Von Heijne,, S. Brunak,, H. Nielsen, and, A. Krogh. 2003. Prediction of lipoprotein signal peptides in gram-negative bacteria. Protein Sci. 12:16521662.
36. Kawabata, H.,, S. J. Norris, and, H. Watanabe. 2004. BBE02 disruption mutants of Borrelia burgdorferi B31 have a highly transformable, infectious phenotype. Infect. Immun. 72:71477154.
37. Kobryn, K., and, G. Chaconas. 2002. ResT, a telomere resolvase encoded by the Lyme disease spirochete. Mol. Cell 9:195201.
38. Kobryn, K., and, G. Chaconas. 2001. The circle is broken: telomere resolution in linear replicons. Curr. Opin. Microbiol. 4:558564.
39. Kraiczy, P.,, C. Skerka,, M. Kirschfink,, V. Brade, and, P. F. Zipfel. 2001. Immune evasion of Borrelia burgdorferi by acquisition of human complement regulators FHL-1/reconectin and factor H. Eur. J. Immunol. 31:16741684.
40. Labandeira-Rey, M.,, E. Baker, and, J. Skare. 2001. Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect. Immun. 69:446455.
41. Labandeira-Rey, M.,, J. Seshu, and, J.T. Skare. 2003. The absence of linear plasmid 25 or 28-1 of Borrelia burgdorferi dramatically alters the kinetics of experimental infection via distinct mechanisms. Infect. Immun. 71:46084613.
42. Lawrenz, M. B.,, H. Kawabata,, J. E. Purser, and, S. J. Norris. 2002. Decreased electroporation efficiency in Borrelia burgdorferi containing linear plasmids lp25 and lp56: impact on transformation of infectious B. burgdorferi. Infect. Immun. 70:47984804.
43. Levett, P. N. 2001. Leptospirosis. Clin. Rev. Microbiol. 14:296326.
44. Li, X.,, X. Liu,, D. S. Beck,, F. S. Kantor, and, E. Fikrig. 2006. Borrelia burgdorferi lacking BBK32, a fibronectin-binding protein, retains full pathogenicity. Infect Immun. 74:33053313.
45. Liu, Q.,, M. Z. Li,, D. Leibham,, D. Cortez, and, S. J. Elledge. 1998. The univector plasmid-fusion system, a method for rapid construction of recombinant DNA without restriction enzymes. Curr. Biol. 8:13001309.
46. Margolis, N.,, D. Hogan,, K. Tilly, and, P. A. Rosa. 1994. Plasmid location of Borrelia purine biosynthesis gene homologs. J. Bacteriol. 176:64276432.
47. Margulies, M.,, M. Egholm,, W. E. Altman,, S. Attiya,, J. S. Bader,, L. A. Bemben,, J. Berka,, M. S. Braverman,, Y. J. Chen,, Z. Chen,, S. B. Dewell,, L. Du,, J. M. Fierro,, X. V. Gomes,, B. C. Godwin,, W. He,, S. Helgesen,, C. H. Ho,, G. P. Irzyk,, S. C. Jando,, M. L. Alenquer,, T. P. Jarvie,, K. B. Jirage,, J. B. Kim,, J. R. Knight,, J. R. Lanza,, J. H. Leamon,, S. M. Lefkowitz,, M. Lei,, J. Li,, K. L. Lohman,, H. Lu,, V. B. Makhijani,, K. E. McDade,, M. P. McKenna,, E. W. Myers,, E. Nickerson,, J. R. Nobile,, R. Plant,, B. P. Puc,, M. T. Ronan,, G. T. Roth,, G. J. Sarkis,, J. F. Simons,, J. W. Simpson,, M. Srinivasan,, K. R. Tartaro,, A. Tomasz,, K. A. Vogt,, G. A. Volkmer,, S. H. Wang,, Y. Wang,, M. P. Weiner,, P. Yu,, R. F. Begley, and, J. M. Rothberg. 2005. Genome sequencing in micro-fabricated high-density picolitre reactors. Nature 437:376380.
48. McKevitt, M.,, M. B. Brinkman,, M. McLoughlin,, C. Perez,, J. K. Howell,, G. M. Weinstock,, S. J. Norris, and, T. Palzkill. 2005. Genome scale identification of Treponema pallidum antigens. Infect. Immun. 73:44454450.
49. McKevitt, M.,, K. Patel,, D. Smajs,, M. Marsh,, M. McLoughlin,, S. J. Norris,, G. M. Wein-stock, and, T. Palzkill. 2003. Systematic cloning of Treponema pallidum open reading frames for protein expression and antigen discovery. Genome Res. 13:16651674.
50. Metcalf, W. W.,, W. Jiang, and, B. L. Wanner. 1994. Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6K gamma origin plasmids at different copy numbers. Gene 138:17.
51. Morozova, O. V.,, L. P. Dubytska,, L. B. Ivanova,, C. X. Moreno,, A. V. Bryksin,, M. L. Sartakova,, E. Y. Dobrikova,, H. P. Godfrey, and, F. C. Cabello. 2005. Genetic and physiological characterization of 23S rRNA and ftsJ mutants of Borrelia burgdorferi isolated by mariner transposition. Gene 357:6372.
52. Nascimento, A. L.,, A. I. Ko,, E. A. Martins,, C. B. Monteiro-Vitorello,, P. L. Ho,, D. A. Haake,, S. Verjovski-Almeida,, R. A. Hartskeerl,, M. V. Marques,, M. C. Oliveira,, C. F. Menck,, L. C. Leite,, H. Carrer,, L. L. Coutinho,, W. M. Degrave,, O. A. Dellagostin,, H. El-Dorry,, E. S. Ferro,, M. I. Ferro,, L. R. Furlan,, M. Gamberini,, E. A. Giglioti,, A. Goes-Neto,, G. H. Goldman,, M. H. Goldman,, R. Harakava,, S. M. Jeronimo,, I. L. Junqueira-de-Azevedo,, E. T. Kimura,, E. E. Kuramae,, L. E. G. Lemos,, M. V. Lemos,, C. L. Marino,, L. R. Nunes,, R. C. de Oliveira,, G. G. Pereira,, M. S. Reis,, A. Schriefer,, W. J. Siqueira,, P. Sommer,, S. M. Tsai,, A. J. Simpson,, J. A. Ferro,, L. E. Camargo,, J. P. Kitajima,, J. C. Setubal, and, M. A. Van Sluys. 2004. Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J. Bacteriol. 186:21642172.
53. Norris, S. J. 1993. Polypeptides of Treponema pallidum: progress toward understanding their structural, functional, and immunologic roles. Microbiol. Rev. 57:750779.
54. Norris, S. J. 2006. The dynamic proteome of Lyme disease Borrelia. Genome Biol. 7:209.
55. Norris, S. J.,, C. J. Carter,, J. K. Howell, and, A. G. Barbour. 1992. Low-passage-associated proteins of Borrelia burgdorferi B31: characterization and molecular cloning of OspD, a surface-exposed, plasmid-encoded lipoprotein. Infect. Immun. 60:46624672.
56. Pal, U.,, X. Yang,, M. Chen,, L. K. Bockenstedt,, J. F. Anderson,, R. A. Flavell,, M. V. Norgard, and, E. Fikrig. 2004. OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J. Clin. Invest. 113:220230.
57. Probert, W. S., and, B. J. Johnson. 1998. Identification of a 47 kDa fibronectin-binding protein expressed by Borrelia burgdorferi isolate B31. Mol. Microbiol. 30:10031015.
58. Purser, J. E.,, M. B. Lawrenz,, M. J. Caimano,, J. K. Howell,, J. D. Radolf, and, S. J. Norris. 2003. A plasmid-encoded nicotinamidase (PncA) is essential for infectivity of Borrelia burgdorferi in a mammalian host. Mol. Microbiol. 48:753764.
59. Purser, J. E., and, S. J. Norris. 2000. Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 97:1386513870.
60. Qiu, W. G.,, S. E. Schutzer,, J. F. Bruno,, O. Attie,, Y. Xu,, J. J. Dunn,, C. M. Fraser,, S. R. Casjens, and, B. J. Luft. 2004. Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. Proc. Natl. Acad. Sci. USA 101:1415014155.
61. Radolf, J. D. 1995. Treponema pallidum and the quest for outer membrane proteins. Mol. Microbiol. 16:10671073.
62. Ramamoorthy, R., and, M. T. Philipp. 1998. Differential expression of Borrelia burgdorferi proteins during growth in vitro. Infect. Immun. 66:51195124.
63. Ren, S. X.,, G. Fu,, X. G. Jiang,, R. Zeng,, Y. G. Miao,, H. Xu,, Y. X. Zhang,, H. Xiong,, G. Lu,, L. F. Lu,, H. Q. Jiang,, J. Jia,, Y. F. Tu,, J. X. Jiang,, W.Y. Gu,, Y. Q. Zhang,, Z. Cai,, H. H. Sheng,, H. F. Yin,, Y. Zhang,, G. F. Zhu,, M. Wan,, H. L. Huang,, Z. Qian,, S. Y. Wang,, W. Ma,, Z. J. Yao,, Y. Shen,, B. Q. Qiang,, Q. C. Xia,, X. K. Guo,, A. Danchin,, I. Saint Girons,, R. L. Somerville,, Y. M. Wen,, M. H. Shi,, Z. Chen,, J. G. Xu, and, G. P. Zhao. 2003. Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422:888893.
64. Revel, A. T.,, J. S. Blevins,, C. Almazan,, L. Neil,, K. M. Kocan,, J. de la Fuente,, K. E. Hagman, and, M. V. Norgard. 2005. bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector. Proc. Natl. Acad. Sci. USA 102:69726977.
65. Rosa, P. A.,, K. Tilly, and, P. E. Stewart. 2005. The burgeoning molecular genetics of the Lyme disease spirochaete. Nat. Rev. Microbiol. 3:129143.
66. Sadziene, A.,, D. D. Thomas, and, A. G. Barbour. 1995. Borrelia burgdorferi mutant lacking Osp: biological and immunological characterization. Infect. Immun. 63:15731580.
67. Samuels, D. S. 1995. Electrotransformation of the spirochete Borrelia burgdorferi, p. 253–259. In J. A. Nickoloff (ed.), Methods in Molecular Biology, vol. 47. Humana Press, Inc., Ottawa, Ontario, Canada.
68. Samuels, D. S.,, K. E. Mach, and, C. F. Garon. 1994. Genetic transformation of the Lyme disease agent Borrelia burgdorferi with coumarin-resistant gyrB. J. Bacteriol. 176:60456049.
69. Sartakova, M. L.,, E. Y. Dobrikova,, D. A. Terekhova,, R. Devis,, J. V. Bugrysheva,, O. V. Morozova,, H. P. Godfrey, and, F. C. Cabello. 2003. Novel antibiotic-resistance markers in pGK12-derived vectors for Borrelia burgdorferi. Gene 303:131137.
70. Scharn, D.,, H. Wenschuh,, U. Reineke,, J. Schneider-Mergener, and, L. Germeroth. 2000. Spatially addressed synthesis of amino- and amino-oxy-substituted 1,3,5-triazine arrays on polymeric membranes. J. Comb. Chem. 2:361369.
71. Schwan, T. G., and, J. Piesman. 2000. Temporal changes in outer surface proteins A and C of the Lyme disease–associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J. Clin. Microbiol. 38:382388.
72. Seshu, J.,, M. D. Esteve-Gassent,, M. Laban-deira-Rey,, J. H. Kim,, J. P. Trzeciakowski,, M. Hook, and, J.T. Skare. 2006. Inactivation of the fibronectin-binding adhesin gene bbk32 significantly attenuates the infectivity potential of Borrelia burgdorferi. Mol. Microbiol. 59:15911601.
73. Shuman, S. 1994. Novel approach to molecular cloning and polynucleotide synthesis using vaccinai DNA topoisomerase. J. Biol. Chem. 269:3267832684.
74. Simpson, W. J.,, W. Cieplak,, M. E. Schrumpf,, A. G. Barbour, and, T. G. Schwan. 1994. Nucleotide sequence and analysis of the gene in Borrelia burgdorferi encoding the immunogenic P39 antigen. FEMS Microbiol. Lett. 119:381387.
75. Smajs, D.,, M. McKevitt,, J. K. Howell,, S. J. Norris,, W. W. Cai,, T. Palzkill, and, G. M. Weinstock. 2005. Transcriptome of Treponema pallidum: gene expression profile during experimental rabbit infection. J. Bacteriol. 187:18661874.
76. Steere, A. C. 2001. Lyme disease. N. Engl. J. Med. 345:115125.
77. Steere, A. C.,, J. Coburn, and, L. Glickstein. 2004. The emergence of Lyme disease. J. Clin. Invest. 113:10931101.
78. Sternberg, N.,, D. Hamilton,, S. Austin,, M. Yarmolinsky, and, R. Hoess. 1981. Site-specific recombination and its role in the life cycle of P1. Cold Spring Harbor Symp. Quant. Biol. 45:297309.
79. Stevenson, B., and, K. Babb. 2002. LuxS-mediated quorum sensing in Borrelia burgdorferi, the Lyme disease spirochete. Infect. Immun. 70:40994105.
80. Stevenson, B.,, L. K. Bockenstedt, and, S. W. Barthold. 1994. Expression and gene sequence of outer surface protein C of Borrelia burgdorferi reisolated from chronically infected mice. Infect. Immun. 62:35683571.
81. Stevenson, B.,, N. El-Hage,, M. A. Hines,, J. C. Miller, and, K. Babb. 2002. Differential binding of host complement inhibitor factor H by Borrelia burgdorferi Erp surface proteins: a possible mechanism underlying the expansive host range of Lyme disease spirochetes. Infect. Immun. 70:491497.
82. Stewart, P. E.,, J. Hoff,, E. Fischer,, J. G. Krum, and, P. A. Rosa. 2004. Genome-wide transposon mutagenesis of Borrelia burgdorferi for identification of phenotypic mutants. Appl. Environ. Micro-biol. 70:59735979.
83. Stewart, P. E.,, R. Thalken,, J. L. Bono, and, P. Rosa. 2001. Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious Borrelia burgdorferi. Mol. Microbiol. 39:714721.
84. Stewart, P. E.,, X. Wang,, D. M. Bueschel,, D. R. Clifton,, D. Grimm,, K. Tilly,, J. A. Carroll,, J. J. Weis, and, P. A. Rosa. 2006. Delineating the requirement for the Borrelia burgdorferi virulence factor OspC in the mammalian host. Infect. Immun. 74:35473553.
85. Strugnell, R.,, A. Cockayne, and, C. W. Penn. 1990. Molecular and antigenic analysis of treponemes. Crit. Rev. Microbiol. 17:231250.
86. Tilly, K.,, J. G. Krum,, A. Bestor,, M. W. Jewett,, D. Grimm,, D. Bueschel,, R. Byram,, D. Dor-ward,, M. J. Vanraden,, P. Stewart, and, P. Rosa. 2006. Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Infect. Immun. 74:35543564.
87. Tourand, Y.,, T. Bankhead,, S. L. Wilson,, A. D. Putteet-Driver,, A. G. Barbour,, R. Byram,, P. A. Rosa, and, G. Chaconas. 2006. Differential telomere processing by Borrelia telomere resolvases in vitro but not in vivo. J Bacteriol. 188:73787386.
88. Tourand, Y.,, K. Kobryn, and, G. Chaconas. 2003. Sequence-specific recognition but position-dependent cleavage of two distinct telomeres by the Borrelia burgdorferi telomere resolvase, ResT. Mol. Microbiol. 48:901911.
89. von Lackum, K.,, K. Babb,, S. P. Riley,, R. L. Wattier,, T. Bykowski, and, B. Stevenson. 2006. Functionality of Borrelia burgdorferi LuxS: the Lyme disease spirochete produces and responds to the pheromone autoinducer-2 and lacks a complete activated-methyl cycle. Int. J. Med. Microbiol. 296(Suppl. 40):92102.
90. Wallich, R.,, C. Brenner,, M. D. Kramer, and, M. M. Simon. 1995. Molecular cloning and immunological characterization of a novel linear-plasmid-encoded gene, pG, of Borrelia burgdorferi expressed only in vivo. Infect Immun. 63:33273335.
91. Weinstock, G. M.,, J. M. Hardham,, M. P. McLeod,, E. J. Sodergren, and, S. J. Norris. 1998. The genome of Treponema pallidum: new light on the agent of syphilis. FEMS Microbiol. Rev. 22:323332.
92. Weinstock, G. M.,, S. J. Norris,, E. Sodergren, and, D. Smajs. 2000. Identification of virulence genes in silico: infectious disease genomics, p. 251–261. In K. Brogden (ed.), Virulence Mechanisms of Bacterial Pathogens, 3rd ed. ASM Press, Washington, DC.
93. Xu, Y.,, C. Kodner,, L. Coleman, and, R. C. Johnson. 1996. Correlation of plasmids with infectivity of Borrelia burgdorferi sensu stricto type strain B31. Infect. Immun. 64:38703876.
94. Yang, X. F.,, M. C. Lybecker,, U. Pal,, S. M. Alani,, J. Blevins,, A. T. Revel,, D. S. Samuels, and, M. V. Norgard. 2005. Analysis of the ospC regulatory element controlled by the RpoN-RpoS regulatory pathway in Borrelia burgdorferi. J. Bacteriol. 187:48224829.
95. Yang, X. F.,, U. Pal,, S. M. Alani,, E. Fikrig, and, M.V. Norgard. 2004. Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J. Exp. Med. 199:641648.
96. Zhang, J. R.,, J. M. Hardham,, A. G. Barbour, and, S. J. Norris. 1997. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89:275285.

Tables

Generic image for table
TABLE 1

Pathogenic spirochetes and diseases they cause

Citation: Weinstock G, Šmajs D, Matějková P, Palzkill T, Norris S. 2007. Comparative Pathogenomics of Spirochetes, p 141-159. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch6
Generic image for table
TABLE 2

species

Citation: Weinstock G, Šmajs D, Matějková P, Palzkill T, Norris S. 2007. Comparative Pathogenomics of Spirochetes, p 141-159. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch6
Generic image for table
TABLE 3

Potential virulence determinants of (partial listing)

Citation: Weinstock G, Šmajs D, Matějková P, Palzkill T, Norris S. 2007. Comparative Pathogenomics of Spirochetes, p 141-159. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch6
Generic image for table
TABLE 4

genomes Genome size (Mb) No. of CDS

Citation: Weinstock G, Šmajs D, Matějková P, Palzkill T, Norris S. 2007. Comparative Pathogenomics of Spirochetes, p 141-159. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error