1887

Chapter 7 : Pathogenomics: Genomes and Beyond

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Pathogenomics: Genomes and Beyond, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815530/9781555814519_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555815530/9781555814519_Chap07-2.gif

Abstract:

Members of the genus are defined as fastidious, microaerophilic, oxidase positive, nonfermentative, gram-negative bacteria. All predicted proteins from the five genomes were compared with data from other published microbial genomes by BLASTP. The chromosomes of all five strains in this comparative study were examined for the presence or absence of clustered regularly interspaced short palindromic repeats (CRISPR) elements in intergenic regions. In this study, a strain is considered CRISPR positive when it contains two or more direct repeats of a 21-bp or larger DNA segment separated by unique spacer sequences of a similar size. The species strains analyzed in this study have the Sec-dependent and Sec-independent protein export pathways for the secretion of proteins across the inner or periplasmic membrane. Of the 580 open reading frames (ORFs) conserved between the and species included in this study, 27 ORFs involved in flagellar biosynthesis and function were conserved between and . A research group applied in vitro -based transposition system to identify genes involved in motility in 81-176. They followed up this work to show that flagellar genes were regulated by σ, but not σ. Although some proteomic studies have been conducted for , these were limited to differential analysis of specific mutations, planktonic versus biofilm growth, and on NCTC 11168 stocks with different amounts of passaging.

Citation: Fouts D, Mongodin E, Nelson K. 2007. Pathogenomics: Genomes and Beyond, p 160-195. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch7

Key Concept Ranking

Two-Component Signal Transduction Systems
0.43746942
Severe Acute Respiratory Syndrome
0.43380857
Mobile Genetic Elements
0.42837137
Type IV Secretion Systems
0.4154726
0.43746942
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic illustration comparing the steps of invasion and pathogenesis of the gastrointestinal pathogens and . (A) Schematic representation of the human gastrointestinal tract and sites of colonization of , largely confined to the antrum (part of the stomach that lacks acid-secreting parietal cells) and , which targets the ileal-colonic epithelial cells. (B) Invasion mechanisms of . probably adheres first to microvilli-containing regions of gastric epithelial cells (step 1). After adherence, microvilli are denuded and tight junctions disrupted under the action of urease; the VacA toxin is probably also involved in this process (step 2). Cuplike projections and pedestals form, accompanied by actin polymerization and cytoskeletal rearrangements (steps 2 and 3). Bacterial genes involved in the steps immediately after adherence are still poorly understood, and it is not clear at what stage rare bacteria become internalized (step 4a). Genes from the (cytotoxin-associated gene) pathogenicity island are implicated in the postadherence mechanism of infection (step 4b) and are responsible for the induction of an intense inflammatory reaction. (C) pathogenesis. adheres to the apical cell surface of the perijunctional region of the intestinal epithelium (step 1). Among the multiple bacterial adhesions that are thought to be involved in adherence to intestinal epithelial cells are the 37k-Da adhesin CadF (which is believed to target the host fibronectin receptors), PEB1, JlpA, and a 43-kDa major outer membrane protein. Attached bacteria then secrete invasion effectors into the host cells (step 2), among which the 73-kDa secreted protein CiaB, resulting in the phosphorylation of host proteins and the release of Ca from intracellular stores. Host signaling cascades trigger a localized disruption of cortical actin filaments and an extension of microtubules to form a membrane extension (step 3), resulting in the endocytosis of the cells (step 4). The vacuole-engulfed bacterium (step 5) then moves via dynein along the microtubules to the baso-lateral surface for exocytosis (step 6). Infected cells release interleukin-8 basolaterally, which enlists lymphocytes from the lamina propria. The two schematic illustrations in (B) and (C) were modified from ( ) and ( ).

Citation: Fouts D, Mongodin E, Nelson K. 2007. Pathogenomics: Genomes and Beyond, p 160-195. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Phylogenetic analysis. Consensus maximum-likelihood trees are depicted using multiple alignments of 16S rRNA (A) or 12 concatenated protein data sets (B). The numbers along the branches denote percent occurrence of nodes among 100 bootstrap replicates. The scale bar represents the number of nucleotide (A) or amino acid (B) substitutions.

Citation: Fouts D, Mongodin E, Nelson K. 2007. Pathogenomics: Genomes and Beyond, p 160-195. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Main pathways for metabolism derived from an analysis of five genomes. The tricarboxylic (TCA) cycle has major variations based on comparative analysis across the strains (see text). Differences in substrate respiration are based on an analysis of Biolog data, and species-specific pathways are presented in the text.

Citation: Fouts D, Mongodin E, Nelson K. 2007. Pathogenomics: Genomes and Beyond, p 160-195. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815530.ch07
1. Aabenhus, R.,, H. Permin,, S. L. On, and, L. P. Andersen. 2002. Prevalence of Campylobacter concisus in diarrhoea of immunocompromised patients. Scand. J. Infect. Dis. 34:248252.
2. Abuoun, M.,, G. Manning,, S. A. Cawthraw,, A. Ridley,, I. H. Ahmed,, T. M. Wassenaar, and, D. G. Newell. 2005. Cytolethal distending toxin (CDT)-negative Campylobacter jejuni strains and anti-CDT neutralizing antibodies are induced during human infection but not during colonization in chickens. Infect. Immun. 73:30533062.
3. Ahmed, I. H.,, G. Manning,, T. M. Wassenaar,, S. Cawthraw, and, D. G. Newell. 2002. Identification of genetic differences between two Campylobacter jejuni strains with different colonization potentials. Microbiology 148:12031212.
4. Alderton, M. R.,, V. Korolik,, P. J. Coloe,, F. E. Dewhirst, and, B. J. Paster. 1995. Campylobacter hyoilei sp. nov., associated with porcine proliferative enteritis. Int. J. Syst. Bacteriol. 45:6166.
5. Allos, B. M. 1997. Association between Campylobacter infection and Guillain-Barré syndrome. J. Infect. Dis. 176:S125S128.
6. Alm, R. A.,, L. S. Ling,, D. T. Moir,, B. L. King,, E. D. Brown,, P. C. Doig,, D. R. Smith,, B. Noonan,, B. C. Guild,, B. L. deJonge,, G. Carmel,, P. J. Tummino,, A. Caruso,, M. Uria-Nickelsen,, D. M. Mills,, C. Ives,, R. Gibson,, D. Merberg,, S. D. Mills,, Q. Jiang,, D. E. Taylor,, G. F. Vovis, and, T. J. Trust. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176180.
7. Altschul, S. F.,, W. Gish,, W. Miller,, E. W. Myers, and, D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403410.
8. Andersen, M. T.,, L. Brondsted,, B. M. Pearson,, F. Mulholland,, M. Parker,, C. Pin,, J. M. Wells, and, H. Ingmer. 2005. Diverse roles for HspR in Campylobacter jejuni revealed by the proteome, transcriptome and phenotypic characterization of an hspR mutant. Microbiology 151:905915.
9. Baar, C.,, M. Eppinger,, G. Raddatz,, J. Simon,, C. Lanz,, O. Klimmek,, R. Nandakumar,, R. Gross,, A. Rosinus,, H. Keller,, P. Jagtap,, B. Linke,, F. Meyer,, H. Lederer, and, S. C. Schuster. 2003. Complete genome sequence and analysis of Wolinella succinogenes. Proc. Natl. Acad. Sci. USA 100:1169011695.
10. Baba, T.,, F. Takeuchi,, M. Kuroda,, H. Yuzawa,, K. Aoki,, A. Oguchi,, Y. Nagai,, N. Iwama,, K. Asano,, T. Naimi,, H. Kuroda,, L. Cui,, K. Yamamoto, and, K. Hiramatsu. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:18191827.
11. Bacon, D. J.,, R. A. Alm,, L. Hu,, T. E. Hickey,, C. P. Ewing,, R. A. Batchelor,, T. J. Trust, and, P. Guerry. 2002. DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81-176. Infect. Immun. 70:62426250.
12. Bacon, D. J.,, C. M. Szymanski,, D. H. Burr,, R. P. Silver,, R. A. Alm, and, P. Guerry. 2001. A phase-variable capsule is involved in virulence of Campylobacter jejuni 81–176. Mol. Microbiol. 40:769777.
13. Bansal, A. K., and, T. E. Meyer. 2002. Evolutionary analysis by whole-genome comparisons. J. Bacteriol. 184:22602272.
14. Benjamin, J.,, S. Leaper,, R. J. Owen, and, M. B. Skirrow. 1983. Description of Campylobacter laridis, a new species comprising the nalidixic acid resistant thermophilic Camplybacter (NARTC) group. Curr. Microbiol. 8:231238.
15. Beres, S. B.,, G. L. Sylva,, K. D. Barbian,, B. Lei,, J. S. Hoff,, N. D. Mammarella,, M. Y. Liu,, J. C. Smoot,, S. F. Porcella,, L. D. Parkins,, D. S. Campbell,, T. M. Smith,, J. K. Mc-Cormick,, D. Y. Leung,, P. M. Schlievert, and, J. M. Musser. 2002. Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc. Natl. Acad. Sci. USA 99:1007810083.
16. Berg, R. L.,, J. W. Jutila, and, B. D. Firehammer. 1971. A revised classification of Vibrio fetus. Am. J. Vet. Res. 32:1122.
17. Birkenhead, D.,, P. M. Hawkey,, J. Heritage,, D. M. Gascoyne-Binzi, and, P. Kite. 1993. PCR for the detection and typing of campylobacters. Lett. Appl. Microbiol. 17:235237.
18. Black, R. E.,, M. M. Levine,, M. L. Clements,, T. P. Hughes, and, M. J. Blaser. 1988. Experimental Campylobacter jejuni infection in humans. J. Infect. Dis. 157:472479.
19. Blaser, M. J. 1998. Campylobacter fetus—emerging infection and model system for bacterial pathogenesis at mucosal surfaces. Clin. Infect. Dis. 27:256258.
20. Blaser, M. J.,, G. P. Perez,, P. F. Smith,, C. Patton,, F. C. Tenover,, A. J. Lastovica, and, W. I. Wang. 1986. Extraintestinal Campylobacter jejuni and Campylobacter coli infections: host factors and strain characteristics. J. Infect. Dis. 153:552559.
21. Blaser, M. J.,, P. F. Smith,, J. A. Hopkins,, I. Heinzer,, J. H. Bryner, and, W. L. Wang. 1987. Pathogenesis of Campylobacter fetus infections: serum resistance associated with high-molecular-weight surface proteins. J. Infect. Dis. 155:696706.
22. Blaser, M. J.,, P. F. Smith,, J. E. Repine, and, K. A. Joiner. 1988. Pathogenesis of Campylobacter fetus infections. Failure of encapsulated Campylobacter fetus to bind C3b explains serum and phagocytosis resistance. J. Clin. Invest. 81:14341444.
23. Bolton, F. J.,, D. N. Hutchinson, and, D. Coates. 1984. Blood-free selective medium for isolation of Campylobacter jejuni from feces. J. Clin. Microbiol. 19:169171.
24. Brás, A. M.,, S. Chatterjee,, B. W. Wren,, D. G. Newell, and, J. M. Ketley. 1999. A novel Campylobacter jejuni two-component regulatory system important for temperature-dependent growth and colonization. J. Bacteriol. 181:32983302.
25. Brown, J. R.,, C. J. Douady,, M. J. Italia,, W. E. Marshall, and, M. J. Stanhope. 2001. Universal trees based on large combined protein sequence data sets. Nat. Genet. 28:281285.
26. Butzler, J. P.,, M. De Boeck, and, H. Goossens. 1983. New selective medium for isolation of Campylobacter jejuni from faecal specimens. Lancet i:818.
27. Carbone, K. M.,, M. C. Heinrich, and, T. C. Quinn. 1985. Thrombophlebitis and cellulitis due to Campylobacter fetus ssp. fetus. Report of four cases and a review of the literature. Medicine (Baltimore) 64:244250.
28. Carlone, G. M., and, J. Lascelles. 1982. Aerobic and anaerobic respiratory systems in Campylobacter fetus subsp. jejuni grown in atmospheres containing hydrogen. J. Bacteriol. 152:306314.
29. Carrillo, C. D.,, E. Taboada,, J. H. Nash,, P. Lanthier,, J. Kelly,, P. C. Lau,, R. Verhulp,, O. Mykytczuk,, J. Sy,, W. A. Findlay,, K. Amoako,, S. Gomis,, P. Willson,, J. W. Austin,, A. Potter,, L. Babiuk,, B. Allan, and, C. M. Szymanski. 2004. Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J. Biol. Chem. 279:2032720338.
30. Chaudhuri, R. R., and, M. J. Pallen. 2006. xBASE, a collection of online databases for bacterial comparative genomics. Nucleic Acids Res. 34:D335D337.
31. Chopra, I., and, M. Roberts. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65:232260.
32. Coenye, T., and, P. Vandamme. 2004. Use of the genomic signature in bacterial classification and identification. Syst. Appl. Microbiol. 27:175185.
33. Cox, C. J.,, K. E. Kempsell, and, J. S. Gaston. 2003. Investigation of infectious agents associated with arthritis by reverse transcription PCR of bacterial rRNA. Arthritis Res. Ther. 5:R1R8.
34. Davies, J. S., and, J. B. Penfold. 1979. Campylobacter urinary infection. Lancet i:10911092.
35. Dedieu, L.,, J. M. Pages, and, J. M. Bolla. 2004. Use of the omp50 gene for identification of Campylobacter species by PCR. J. Clin. Microbiol. 42:23012305.
36. Delcher, A. L.,, A. Phillippy,, J. Carlton, and, S. L. Salzberg. 2002. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30:24782483.
37. Desiere, F.,, W. M. McShan,, D. van Sinderen,, J. J. Ferretti, and, H. Brüssow. 2001. Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic Streptococci: evolutionary implications for prophage-host interactions. Virology 288:325341.
38. Dingle, K. E.,, F. M. Colles,, D. Falush, and, M. C. Maiden. 2005. Sequence typing and comparison of population biology of Campylobacter coli and Campylobacter jejuni. J. Clin. Microbiol. 43:340347.
39. Dingle, K. E.,, F. M. Colles,, R. Ure,, J. A. Wagenaar,, B. Duim,, F. J. Bolton,, A. J. Fox,, D. R. Wareing, and, M. C. Maiden. 2002. Molecular characterization of Campylobacter jejuni clones: a basis for epidemiologic investigation. Emerg. Infect. Dis. 8:949955.
40. Dingle, K. E.,, F. M. Colles,, D. R. Wareing,, R. Ure,, A. J. Fox,, F. E. Bolton,, H. J. Bootsma,, R. J. Willems,, R. Urwin, and, M. C. Maiden. 2001. Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol. 39:1423.
41. Ding, Z.,, K. Atmakuri, and, P. J. Christie. 2003. The outs and ins of bacterial type IV secretion substrates. Trends Microbiol. 11:527535.
42. Dorrell, N.,, J. A. Mangan,, K. G. Laing,, J. Hinds,, D. Linton,, H. Al-Ghusein,, B. G. Barrell,, J. Parkhill,, N. G. Stoker,, A. V. Karlyshev,, P. D. Butcher, and, B. W. Wren. 2001. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res. 11:17061715.
43. Doyle, L. 1944. A Vibrio associated with swine dysentery. Am. J. Vet. Res. 5:35.
44. Doyle, L. 1948. The etiology of swine dysentery. Am. J. Vet. Res. 9:5051.
45. Dykes, G. A.,, B. Sampathkumar, and, D. R. Korber. 2003. Planktonic or biofilm growth affects survival, hydrophobicity and protein expression patterns of a pathogenic Campylobacter jejuni strain. Int. J. Food Microbiol. 89:110.
46. Eisen, J. A.,, J. F. Heidelberg,, O. White, and, S. L. Salzberg. 2000. Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol. 1: RESEARCH0011.
47. Elvers, K. T., and, S. F. Park. 2002. Quorum sensing in Campylobacter jejuni: detection of a luxS encoded signalling molecule. Microbiology 148:14751481.
48. Elvers, K. T.,, S. M. Turner,, L. M. Wainwright,, G. Marsden,, J. Hinds,, J. A. Cole,, R. K. Poole,, C. W. Penn, and, S. F. Park. 2005. NssR, a member of the Crp-Fnr superfamily from Campylobacter jejuni, regulates a nitrosative stress-responsive regulon that includes both a single-domain and a truncated haemoglobin. Mol. Micro-biol. 57:735750.
49. Endtz, H. P.,, J. S. Vliegenthart,, P. Vandamme,, H. W. Weverink,, N. P. van den Braak,, H. A. Verbrugh, and, A. van Belkum. 1997. Genotypic diversity of Campylobacter lari isolated from mussels and oysters in The Netherlands. Int. J. Food Microbiol. 34:7988.
50. Engvall, E. O.,, B. Brandstrom,, L. Andersson,, V. Baverud,, G. Trowald-Wigh, and, L. Englund. 2003. Isolation and identification of thermophilic Campylobacter species in faecal samples from Swedish dogs. Scand. J. Infect. Dis. 35:713718.
51. Eppinger, M.,, C. Baar,, G. Raddatz,, D. H. Huson, and, S. C. Schuster. 2004. Comparative analysis of four Campylobacterales. Nat. Rev. Micro-biol. 2:872885.
52. Etoh, Y.,, F. E. Dewhirst,, B. J. Paster,, A. Yamamoto, and, N. Goto. 1993. Campylobacter showae sp. nov., isolated from the human oral cavity. Int. J. Syst. Bacteriol. 43:631639.
53. Ewing, B., and, P. Green. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8:186194.
54. Ewing, B.,, L. Hillier,, M. C. Wendl, and, P. Green. 1998. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8:175185.
55. Fields, S., and, O. Song. 1989. A novel genetic system to detect protein-protein interactions. Nature 340:245246.
56. Fisher, M. 1956. An unusual variant of acute idiopathic polyneuritis (syndrome of ophthalmoplegia, ataxia and areflexia). N. Engl. J. Med. 255:5765.
57. Fogg, G. C.,, L. Y. Yang,, E. Wang, and, M. J. Blaser. 1990. Surface array proteins of Campylobacter fetus block lectin-mediated binding to type A lipopolysaccharide. Infect. Immun. 58:27382744.
58. Foster, G.,, B. Holmes,, A. G. Steigerwalt,, P. A. Lawson,, P. Thorne,, D. E. Byrer,, H. M. Ross,, J. Xerry,, P. M. Thompson, and, M. D. Collins. 2004. Campylobacter insulaenigrae sp. nov., isolated from marine mammals. Int. J. Syst. Evol. Microbiol. 54:23692373.
59. Fouts, D. E.,, R. B. Abramovitch,, J. R. Alfano,, A. M. Baldo,, C. R. Buell,, S. Cartinhour,, A. K. Chatterjee,, M. D’Ascenzo,, M. L. Gwinn,, S. G. Lazarowitz,, N. C. Lin,, G. B. Martin,, A. H. Rehm,, D. J. Schneider,, K. van Dijk,, X. Tang, and, A. Collmer. 2002. Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc. Natl. Acad. Sci. USA 99:22752280.
60. Fouts, D. E.,, E. F. Mongodin,, R. E. Mandrell,, W. G. Miller,, D. A. Rasko,, J. Ravel,, L. M. Brinkac,, R. T. Deboy,, C. T. Parker,, S. C. Daugherty,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, S. A. Sullivan,, J. U. Shetty,, M. A. Ayodeji,, A. Shvartsbeyn,, M. C. Schatz,, J. H. Badger,, C. M. Fraser, and, K. E. Nelson. 2005. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol. 3: e15.
61. Fox, J. G.,, A. B. Rogers,, M. T. Whary,, Z. Ge,, N. S. Taylor,, S. Xu,, B. H. Horwitz, and, S. E. Erdman. 2004. Gastroenteritis in NF-kappaB-deficient mice is produced with wild-type Campylobacter jejuni but not with C. jejuni lacking cytolethal distending toxin despite persistent colonization with both strains. Infect. Immun. 72: 1116#x2013;1125.
62. Friedman, C. R.,, J. Neimann,, H. C. Wegener, and, R.V. Tauxe. 2000. Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations, p. 121–138. In I. Nachamkin and, M. J. Blaser (ed.), Campylobacter. ASM Press, Washington, DC.
63. Fuglsang, A. 2003. The genome of Campylobacter jejuni: codon and amino acid usage. APMIS 111:605618.
64. Fujimoto, S.,, A. Takade,, K. Amako, and, M. J. Blaser. 1991. Correlation between molecular size of the surface array protein and morphology and antigenicity of the Campylobacter fetus S layer. Infect. Immun. 59:20172022.
65. Gaynor, E. C.,, S. Cawthraw,, G. Manning,, J. K. MacKichan,, S. Falkow, and, D. G. Newell. 2004. The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J. Bacteriol. 186:503517.
66. Gaynor, E. C.,, D. H. Wells,, J. K. MacKichan, and, S. Falkow. 2005. The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol. Micro-biol. 56:827.
67. Gebhart, C. J.,, P. Edmonds,, G. E. Ward,, H. J. Kurtz, and, D. J. Brenner. 1985. Campylobacter hyointestinalis” sp. nov.: a new species of Campylobacter found in the intestines of pigs and other animals. J. Clin. Microbiol. 21:715720.
68. Gera, J. F.,, T. R. Hazbun, and, S. Fields. 2002. Array-based methods for identifying protein-protein and protein-nucleic acid interactions. Methods Enzymol. 350:499512.
69. Gibreel, A., and, O. Skold. 1999. Sulfonamide resistance in clinical isolates of Campylobacter jejuni: mutational changes in the chromosomal dihydropteroate synthase. Antimicrob. Agents Chemother. 43:21562160.
70. Gilbert, M.,, J. R. Brisson,, M. F. Karwaski,, J. Michniewicz,, A. M. Cunningham,, Y. Wu,, N. M. Young, and, W. W. Wakarchuk. 2000. Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-mhz (1)h and (13)c NMR analysis. J. Biol. Chem. 275:38963906.
71. Gilbert, M.,, P. C. R. Godschalk,, C.T. Parker,, H. P. Endtz, and, W. W. Wakarchuk. Genetic basis for the variation in the lipooligosaccharide outer core of Campylobacter jejuni and possible association of glycosyltransferase genes with post-infectious neurophathies, p. 219–248. In J. Ketley and, M. E. Konkel (ed.), Campylobacter jejuni: New Perspectives in Molecular and Cellular Biology, in press. Horizon Scientific Press, Norfolk, United Kingdom.
72. Godschalk, P. C.,, A. P. Heikema,, M. Gilbert,, T. Komagamine,, C. W. Ang,, J. Glerum,, D. Brochu,, J. Li,, N. Yuki,, B. C. Jacobs,, A. van Belkum, and, H. P. Endtz. 2004. The crucial role of Campylobacter jejuni genes in anti-ganglio-side antibody induction in Guillain-Barré syndrome. J. Clin. Invest. 114:16591665.
73. Golden, N. J., and, D.W. Acheson. 2002. Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect. Immun. 70:17611771.
74. Golden, N. J.,, A. Camilli, and, D.W. Acheson. 2000. Random transposon mutagenesis of Campylobacter jejuni. Infect. Immun. 68:54505453.
75. Goossens, H.,, M. De Boeck,, H. Coignau,, L. Vlaes,, C. Van den Borre, and, J. P. Butzler. 1986. Modified selective medium for isolation of Campylobacter spp. from feces: comparison with Preston medium, a blood-free medium, and a filtration system. J. Clin. Microbiol. 24:840843.
76. Goossens, H.,, L. Vlaes,, I. Galand,, C. Van den Borre, and, J. P. Butzler. 1989. Semisolid blood-free selective-motility medium for the isolation of campylobacters from stool specimens. J. Clin. Microbiol. 27:10771080.
77. Grant, A. J.,, C. Coward,, M. A. Jones,, C. A. Woodall,, P. A. Barrow, and, D. J. Maskell. 2005. Signature-tagged transposon mutagenesis studies demonstrate the dynamic nature of cecal colonization of 2-week-old chickens by Campylobacter jejuni. Appl. Environ. Microbiol. 71:80318041.
78. Gross, C. H.,, J. D. Parsons,, T. H. Grossman,, P. S. Charifson,, S. Bellon,, J. Jernee,, M. Dwyer,, S. P. Chambers,, W. Markland,, M. Botfield, and, S. A. Raybuck. 2003. Active-site residues of Escherichia coli DNA gyrase required in coupling ATP hydrolysis to DNA supercoiling and amino acid substitutions leading to novobiocin resistance. Antimicrob. Agents Chemother. 47:10371046.
79. Guerry, P.,, C. P. Ewing,, T. E. Hickey,, M. M. Prendergast, and, A. P. Moran. 2000. Sialylation of lipooligosaccharide cores affects immunogenicity and serum resistance of Campylobacter jejuni. Infect. Immun. 68:66566662.
80. Guerry, P.,, C. M. Szymanski,, M. M. Prendergast,, T. E. Hickey,, C. P. Ewing,, D. L. Pattarini, and, A. P. Moran. 2002. Phase variation of Campylobacter jejuni 81-176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro. Infect. Immun. 70:787793.
81. Guillain, G.,, J. A. Barré, and, A. Strohl. 1916. Sur un syndrome de radiculonévrite avec hyperalbuminose du liquide céphalo-rachidien sans réaction cellulaire. Remarques sur les caractères cliniques et graphiques des réflexes tendineux. Bull. Soc. Med. Hop. Paris 40:14621470.
82. Hafer-Macko, C.,, S. T. Hsieh,, C. Y. Li,, T. W. Ho,, K. Sheikh,, D. R. Cornblath,, G. M. McKhann,, A. K. Asbury, and, J. W. Griffin. 1996. Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann. Neurol. 40:635644.
83. Hald, B., and, M. Madsen. 1997. Healthy puppies and kittens as carriers of Campylobacter spp., with special reference to Campylobacter upsaliensis. J. Clin. Microbiol. 35:33513352.
84. Heep, M.,, D. Beck,, E. Bayerdorffer, and, N. Lehn. 1999. Rifampin and rifabutin resistance mechanism in Helicobacter pylori. Antimicrob. Agents Chemother. 43:14971499.
85. Hendrix, R. W.,, J. G. Lawrence,, G. F. Hatfull, and, S. Casjens. 2000. The origins and ongoing evolution of viruses. Trends Microbiol. 8:504508.
86. Hendrixson, D. R.,, B. J. Akerley, and, V. J. DiRita. 2001. Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol. Microbiol. 40:214224.
87. Hendrixson, D. R., and, V. J. DiRita. 2004. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52:471484.
88. Hendrixson, D. R., and, V. J. DiRita. 2003. Transcription of σ54-dependent but not σ28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secre-tory apparatus. Mol. Microbiol. 50:687702.
89. Hensel, M.,, J. E. Shea,, C. Gleeson,, M. D. Jones,, E. Dalton, and, D.W. Holden. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400403.
90. Ho, T. W.,, B. Mishu,, C.Y. Li,, C.Y. Gao,, D. R. Cornblath,, J. W. Griffin,, A. K. Asbury,, M. J. Blaser, and, G. M. McKhann. 1995. Guillain-Barré syndrome in northern China. Relationship to Campylobacter jejuni infection and anti-glycolipid antibodies. Brain 118(Pt. 3):597605.
91. Holmes, K.,, F. Mulholland,, B. M. Pearson,, C. Pin,, J. McNicholl-Kennedy,, J. M. Ketley, and, J. M. Wells. 2005. Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology 151:243257.
92. Hood, D. W.,, M. E. Deadman,, M. P. Jennings,, M. Bisercic,, R. D. Fleischmann,, J. C. Venter, and, E. R. Moxon. 1996. DNA repeats identify novel virulence genes in Haemophilus influenzae. Proc. Natl. Acad. Sci. USA 93:1112111125.
93. Horswill, A. R., and, J. C. Escalante-Semerena. 1999. Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. J. Bacteriol. 181:56155623.
94. Hubsman, M.,, G. Yudkovsky, and, A. Aronheim. 2001. A novel approach for the identification of protein-protein interaction with integral membrane proteins. Nucleic Acids Res. 29:E18.
95. Hughes, N. J.,, C. L. Clayton,, P. A. Chalk, and, D. J. Kelly. 1998. Helicobacter pylori por-CDAB and oorDABC genes encode distinct pyruvate:flavodoxin and 2-oxoglutarate:acceptor oxidoreductases which mediate electron transport to NADP. J. Bacteriol. 180:11191128.
96. Isberg, R. R.,, D. L. Voorhis, and, S. Falkow. 1987. Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell 50:769778.
97. Jacob-Dubuisson, F.,, C. Locht, and, R. Antoine. 2001. Two-partner secretion in gram-negative bacteria: a thrifty, specific pathway for large virulence proteins. Mol. Microbiol. 40:306313.
98. Jennings, M. P.,, Y. N. Srikhanta,, E. R. Moxon,, M. Kramer,, J. T. Poolman,, B. Kuipers, and, P. van der Ley. 1999. The genetic basis of the phase variation repertoire of lipopolysaccharide immunotypes in Neisseria meningitidis. Microbiology 145(Pt. 11):30133021.
99. Jeon, B.,, K. Itoh,, N. Misawa, and, S. Ryu. 2003. Effects of quorum sensing on flaA transcription and autoagglutination in Campylobacter jejuni. Microbiol. Immunol. 47:833839.
100. Jeon, B.,, K. Itoh, and, S. Ryu. 2005. Promoter analysis of cytolethal distending toxin genes (cdtA, B, and C) and effect of a luxS mutation on CDT production in Campylobacter jejuni. Microbiol. Immunol. 49:599603.
101. Johnson, W. M., and, L. H. 1987. Response of Chinese hamster ovary cells to a cytolethal dis-tending toxin (CDT) of Escherichia coli and possible misinterpretation as heat labile (LB) enterotoxin. FEMS Microbiol. Lett. 3:1923.
102. Jones, F. S.,, M. Orcutt, and, R. B. Little. 1931. Vibrios (Vibrio jejuni n. sp.) associated with intestinal disorders of cows and calves. J. Exp. Med. 53:853864.
103. Jones, M. A.,, K. L. Marston,, C. A. Woodall,, D. J. Maskell,, D. Linton,, A. V. Karlyshev,, N. Dorrell,, B. W. Wren, and, P. A. Barrow. 2004. Adaptation of Campylobacter jejuni NCTC11168 to high-level colonization of the avian gastrointestinal tract. Infect. Immun. 72:37693776.
104. Karlyshev, A. V.,, J. M. Ketley, and, B. W. Wren. 2005. The Campylobacter jejuni glycome. FEMS Microbiol. Rev. 29:377390.
105. Karmali, M. A.,, A. E. Simor,, M. Roscoe,, P. C. Fleming,, S. S. Smith, and, J. Lane. 1986. Evaluation of a blood-free, charcoal-based, selective medium for the isolation of Campylobacter organisms from feces. J. Clin. Microbiol. 23:456459.
106. Keat, A. 1983. Reiter’s syndrome and reactive arthritis in perspective. N. Engl. J. Med. 309:16061615.
107. Keramas, G.,, D. D. Bang,, M. Lund,, M. Madsen,, H. Bunkenborg,, P. Telleman, and, C. B. Christensen. 2004. Use of culture, PCR analysis, and DNA microarrays for detection of Campylobacter jejuni and Campylobacter coli from chicken feces. J. Clin. Microbiol. 42:39853991.
108. Keramas, G.,, D. D. Bang,, M. Lund,, M. Madsen,, S. E. Rasmussen,, H. Bunkenborg,, P. Telleman, and, C. B. Christensen. 2003. Development of a sensitive DNA microarray suitable for rapid detection of Campylobacter spp. Mol. Cell. Probes 17:187196.
109. Ketley, J. M. 1997. Pathogenesis of enteric infection by Campylobacter. Microbiology 143(Pt. 1): 521.
110. Kim, C. C.,, E. A. Joyce,, K. Chan, and, S. Falkow. 2002. Improved analytical methods for microarray-based genome-composition analysis. Genome Biol. 3:RESEARCH0065.
111. Kobayashi, I. 2001. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29:37423756.
112. Koga, M.,, M. Gilbert,, J. Li,, S. Koike,, M. Takahashi,, K. Furukawa,, K. Hirata, and, N. Yuki. 2005. Antecedent infections in Fisher syndrome: a common pathogenesis of molecular mimicry. Neurology 64:16051611.
113. Konkel, M. E.,, S. G. Garvis,, S. L. Tipton,, D. E. Anderson, Jr., and, W. Cieplak, Jr. 1997. Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni. Mol. Microbiol. 24:953963.
114. Konkel, M. E.,, J. D. Klena,, V. Rivera-Amill,, M. R. Monteville,, D. Biswas,, B. Raphael, and, J. Mickelson. 2004. Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J. Bacteriol. 186:32963303.
115. Kopecko, D. J.,, L. Hu, and, K. J. Zaal. 2001. Campylobacter jejuni—microtubule-dependent invasion. Trends Microbiol. 9:389396.
116. Korlath, J. A.,, M. T. Osterholm,, L. A. Judy,, J. C. Forfang, and, R. A. Robinson. 1985. A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J. Infect. Dis. 152:592596.
117. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baba,, H. Yuzawa,, I. Kobayashi,, L. Cui,, A. Oguchi,, K. Aoki,, Y. Nagai,, J. Lian,, T. Ito,, M. Kanamori,, H. Matsumaru,, A. Maruyama,, H. Murakami,, A. Hosoyama,, Y. Mizutani-Ui,, N. K. Takahashi,, T. Sawano,, R. Inoue,, C. Kaito,, K. Sekimizu,, H. Hirakawa,, S. Kuhara,, S. Goto,, J. Yabuzaki,, M. Kanehisa,, A. Yamashita,, K. Oshima,, K. Furuya,, C. Yoshino,, T. Shiba,, M. Hattori,, N. Ogasawara,, H. Hayashi, and, K. Hiramatsu. 2001. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:12251240.
118. Kusunoki, S.,, A. Chiba, and, I. Kanazawa. 1999. Anti-GQ1b IgG antibody is associated with ataxia as well as ophthalmoplegia. Muscle Nerve 22:10711074.
119. Lampe, D. J.,, B. J. Akerley,, E. J. Rubin,, J. J. Mekalanos, and, H. M. Robertson. 1999. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc. Natl. Acad. Sci. USA 96:1142811433.
120. Lastovica, A. J., and, J. L. Penner. 1983. Serotypes of Campylobacter jejuni and Campylobacter coli in bacteremic, hospitalized children. J. Infect. Dis. 147:592.
121. Lastovica, A. J., and, M. B. Skirrow. 2000. Clinical significance of Campylobacter and related species other than Campylobacter jejuni and C. coli, p. 89–120. In I. Nachamkin and, M. J. Blaser (ed.), Campylobacter. ASM Press, Washington, DC.
122. Lawson, A. J.,, S. L. On,, J. M. Logan, and, J. Stanley. 2001. Campylobacter hominis sp. nov., from the human gastrointestinal tract. Int. J. Syst. Evol. Microbiol. 51:651660.
123. Lawson, G. H. K.,, J. L. Leaver,, G. W. Petti-grew, and, A. C. Rowland. 1981. Some features of Campylobacter sputorum subsp. mucosalis subsp. nov., norm. rev., and their taxonomic significance. Int. J. Syst. Bacteriol. 31:385391.
124. le Roux, E., and, A. J. Lastovica. 1998. The Cape Town Protocol: how to isolate the most campylobacters for your dollar, pound, franc, yen, etc., p. 30–33. In A. J. Lastovica,, D. G. Newell, and, E. E. Lastovica (ed.), Campylobacter, Helicobacter and Related Organisms. Institute of Child Health, Cape Town, South Africa.
125. Lecuit, M.,, E. Abachin,, A. Martin,, C. Poyart,, P. Pochart,, F. Suarez,, D. Bengoufa,, J. Feuillard,, A. Lavergne,, J. I. Gordon,, P. Berche,, L. Guillevin, and, O. Lortholary. 2004. Immunoproliferative small intestinal disease associated with Campylobacter jejuni. N. Engl. J. Med. 350:239248.
126. Lee, R. B.,, D. C. Hassane,, D. L. Cottle, and, C. L. Pickett. 2003. Interactions of Campylobacter jejuni cytolethal distending toxin subunits CdtA and CdtC with HeLa cells. Infect. Immun. 71:48834890.
127. Leonard, E. E.,, II, T. Takata,, M. J. Blaser,, S. Falkow,, L. S. Tompkins, and, E. C. Gaynor. 2003. Use of an open-reading frame-specific Campylobacter jejuni DNA microarray as a new genotyping tool for studying epidemiologically related isolates. J. Infect. Dis. 187:691694.
128. Leonard, E. E.,, II, L. S. Tompkins,, S. Falkow, and, I. Nachamkin. 2004. Comparison of Campylobacter jejuni isolates implicated in Guillain-Barré syndrome and strains that cause enteritis by a DNA microarray. Infect. Immun. 72:11991203.
129. Linton, D.,, A. V. Karlyshev,, P. G. Hitchen,, H. R. Morris,, A. Dell,, N. A. Gregson, and, B. W. Wren. 2000. Multiple N-acetyl neuraminic acid synthetase (neuB) genes in Campylobacter jejuni: identification and characterization of the gene involved in sialylation of lipooligosaccharide. Mol. Microbiol. 35:11201134.
130. Logan, J. M. J.,, A. Burnens,, D. Linton,, A. J. Laswon, and, J. Stanley. 2000. Campylobacter lanienae sp. nov., a new species isolated from workers in an abattoir. Int. J. Syst. Evol. Microbiol. 50:865872.
131. Luban, J., and, S. P. Goff. 1995. The yeast two-hybrid system for studying protein-protein interactions. Curr. Opin. Biotechnol. 6:5964.
132. MacCallum, A.,, S. P. Hardy, and, P. H. Everest. 2005. Campylobacter jejuni inhibits the absorptive transport functions of Caco-2 cells and disrupts cellular tight junctions. Microbiology 151:24512458.
133. MacKichan, J. K.,, E. C. Gaynor,, C. Chang,, S. Cawthraw,, D. G. Newell,, J. F. Miller, and, S. Falkow. 2004. The Campylobacter jejuni dccRS two-component system is required for optimal in vivo colonization but is dispensable for in vitro growth. Mol. Microbiol. 54:12691286.
134. Madden, R. H.,, L. Moran, and, P. Scates. 1996. Sub-typing of animal and human Campy-lobacter spp. using RAPD. Lett. Appl. Microbiol. 23:167170.
135. Manser, P. A., and, R.W. Dalziel. 1985. A survey of Campylobacter in animals. J. Hyg. (Lond.) 95:1521.
136. McCormick, B. A.,, A. Nusrat,, C. A. Parkos,, L. D’Andrea,, P. M. Hofman,, D. Carnes,, T. W. Liang, and, J. L. Madara. 1997. Unmasking of intestinal epithelial lateral membrane beta1 integrin consequent to transepithelial neutrophil migration in vitro facilitates inv-mediated invasion by Yersinia pseudotuberculosis. Infect. Immun. 65:14141421.
137. Meinersmann, R. J.,, L. O. Helsel,, P. I. Fields, and, K. L. Hiett. 1997. Discrimination of Campylobacter jejuni isolates by fla gene sequencing. J. Clin. Microbiol. 35:28102814.
138. Meinersmann, R. J.,, C. M. Patton,, G. M. Evins,, I. K. Wachsmuth, and, P. I. Fields. 2002. Genetic diversity and relationships of Campylobacter species and subspecies. Int. J. Syst. Evol. Microbiol. 52:17891797.
139. Miller, W. G.,, A. H. Bates,, S. T. Horn,, M. T. Brandl,, M. R. Wachtel, and, R. E. Mandrell. 2000. Detection on surfaces and in Caco-2 cells of Campylobacter jejuni cells transformed with new gfp, yfp, and cfp marker plasmids. Appl. Environ. Microbiol. 66:54265436.
140. Miller, W. G., and, R. E. Mandrell. 2005. Prevalence of Campylobacter in the food and water supply: incidence, outbreaks, isolation, and detection, p. 101–163. In M. E. Konkel and, J. M. Ketley (ed.), Campylobacter: Molecular and Cellular Biology. Horizon Scientific Press, Norwich, United Kingdom.
141. Reference deleted.
142. Miller, W. G.,, B. M. Pearson,, J. M. Wells,, C. T. Parker,, V. V. Kapitonov, and, R. E. Mandrell. 2005. Diversity within the Campylobacter jejuni type I restriction-modification loci. Micro-biology 151:337351.
143. Moen, B.,, A. Oust,, O. Langsrud,, N. Dorrell,, G. L. Marsden,, J. Hinds,, A. Kohler,, B. W. Wren, and, K. Rudi. 2005. Explorative multifactor approach for investigating global survival mechanisms of Campylobacter jejuni under environmental conditions. Appl. Environ. Microbiol. 71:20862094.
144. Mohammed, K. A.,, R. J. Miles, and, M. A. Halablab. 2004. The pattern and kinetics of substrate metabolism of Campylobacter jejuni and Campylobacter coli. Lett. Appl. Microbiol. 39:261266.
145. Monteville, M. R., and, M. E. Konkel. 2002. Fibronectin-facilitated invasion of T84 eukaryotic cells by Campylobacter jejuni occurs preferentially at the basolateral cell surface. Infect. Immun. 70:66656671.
146. Monteville, M. R.,, J. E. Yoon, and, M. E. Konkel. 2003. Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology 149:153165.
147. Moran, A. P.,, B. J. Appelmelk, and, G. O. Aspinall. 1996. Molecular mimicry of host structures by lipopolysaccharides of Campylobacter and Helicobacter spp: implications in pathogenesis. J. Endotoxin Res. 3:521531.
148. Morgan, G. J.,, G. F. Hatfull,, S. Casjens, and, R. W. Hendrix. 2002. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J. Mol. Biol. 317:337359.
149. Moser, I.,, B. Rieksneuwohner,, P. Lentzsch,, P. Schwerk, and, L. H. Wieler. 2001. Genomic heterogeneity and O-antigenic diversity of Campylobacter upsaliensis and Campylobacter helveticus strains isolated from dogs and cats in Germany. J. Clin. Microbiol. 39:25482557.
150. Muza-Moons, M. M.,, A. Koutsouris, and, G. Hecht. 2003. Disruption of cell polarity by enteropathogenic Escherichia coli enables basolateral membrane proteins to migrate apically and to potentiate physiological consequences. Infect. Immun. 71:70697078.
151. Myers, E. W.,, G. G. Sutton,, A. L. Delcher,, I. M. Dew,, D. P. Fasulo,, M. J. Flanigan,, S. A. Kravitz,, C. M. Mobarry,, K. H. Reinert,, K. A. Remington,, E. L. Anson,, R. A. Bolanos,, H. H. Chou,, C. M. Jordan,, A. L. Halpern,, S. Lonardi,, E. M. Beasley,, R. C. Brandon,, L. Chen,, P. J. Dunn,, Z. Lai,, Y. Liang,, D. R. Nusskern,, M. Zhan,, Q. Zhang,, X. Zheng,, G. M. Rubin,, M. D. Adams, and, J. C. Venter. 2000. A whole-genome assembly of Drosophila. Science 287:21962204.
152. Nachamkin, I. 2002. Chronic effects of Campylobacter infection. Microbes Infect. 4:399403.
153. Nachamkin, I.,, J. Liu,, M. Li,, H. Ung,, A. P. Moran,, M. M. Prendergast, and, K. Sheikh. 2002. Campylobacter jejuni from patients with Guillain-Barré syndrome preferentially expresses a GD(1a)-like epitope. Infect. Immun. 70:52995303.
154. Nelson, K. E.,, D. E. Fouts,, E. F. Mongodin,, J. Ravel,, R. T. DeBoy,, J. F. Kolonay,, D. A. Rasko,, S. V. Angiuoli,, S. R. Gill,, I. T. Paulsen,, J. Peterson,, O. White,, W. C. Nelson,, W. Nierman,, M. J. Beanan,, L. M. Brinkac,, S. C. Daugherty,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, D. H. Haft,, J. Selengut,, S. Van Aken,, H. Khouri,, N. Fedorova,, H. Forberger,, B. Tran,, S. Kathariou,, L. D. Wonderling,, G. A. Uhlich,, D. O. Bayles,, J. B. Luchansky, and, C. M. Fraser. 2004. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res. 32:23862395.
155. Nitta, H.,, S. C. Holt, and, J. L. Ebersole. 1997. Purification and characterization of Campylobacter rectus surface layer proteins. Infect. Immun. 65:478483.
156. Ohno, H.,, H. Sakai,, T. Washio, and, M. Tomita. 2001. Preferential usage of some minor codons in bacteria. Gene 276:107115.
157. On, S. L., and, C. S. Harrington. 2000. Identification of taxonomic and epidemiological relationships among Campylobacter species by numerical analysis of AFLP profiles. FEMS Microbiol. Lett. 193:161169.
158. Oust, A.,, B. Moen,, H. Martens,, K. Rudi,, T. Naes,, C. Kirschner, and, A. Kohler. 2006. Analysis of covariance patterns in gene expression data and FT-IR spectra. J. Microbiol. Methods 65:573584.
159. Owen, R. J. 1983. Nucleic acids in the classification of campylobacters. Eur J. Clin. Microbiol. 2:367377.
160. Parker, C. T.,, S. T. Horn,, M. Gilbert,, W. G. Miller,, D. L. Woodward, and, R. E. Mandrell. 2005. Comparison of Campylobacter jejuni lipooligosaccharide biosynthesis loci from a variety of sources. J. Clin. Microbiol. 43:27712781.
161. Parkhill, J.,, B. W. Wren,, K. Mungall,, J. M. Ketley,, C. Churcher,, D. Basham,, T. Chill-ingworth,, R. M. Davies,, T. Feltwell,, S. Holroyd,, K. Jagels,, A. V. Karlyshev,, S. Moule,, M. J. Pallen,, C. W. Penn,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, A. H. van Vliet,, S. Whitehead, and, B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665668.
162. Parsonnet, J., and, P. G. Isaacson. 2004. Bacterial infection and MALT lymphoma. N. Engl. J. Med. 350:213215.
163. Perez, G. I.,, J. A. Hopkins, and, M. J. Blaser. 1985. Antigenic heterogeneity of lipopolysaccharides from Campylobacter jejuni and Campylobacter fetus. Infect. Immun. 48:528533.
164. Perna, N. T.,, G. Plunkett, 3rd,, V. Burland,, B. Mau,, J. D. Glasner,, D. J. Rose,, G. F. Mayhew,, P. S. Evans,, J. Gregor,, H. A. Kirkpatrick,, G. Posfai,, J. Hackett,, S. Klink,, A. Boutin,, Y. Shao,, L. Miller,, E. J. Grotbeck,, N.W. Davis,, A. Lim,, E.T. Dimalanta,, K. D. Potamousis,, J. Apodaca,, T. S. Anantharaman,, J. Lin,, G. Yen,, D. C. Schwartz,, R. A. Welch, and, F. R. Blattner. 2001. Genome sequence of entero-haemorrhagic Escherichia coli O157:H7. Nature 409:529533.
165. Peterson, M. C. 1994. Clinical aspects of Campylobacter jejuni infections in adults. West. J. Med. 161:148152.
166. Phongsisay, V.,, V. N. Perera, and, B. N. Fry. 2006. Exchange of lipooligosaccharide synthesis genes creates potential Guillain-Barré syndrome—inducible strains of Campylobacter jejuni. Infect. Immun. 74:13681372.
167. Piddock, L. J.,, V. Ricci,, L. Pumbwe,, M. J. Everett, and, D. J. Griggs. 2003. Fluoroquino-lone resistance in Campylobacter species from man and animals: detection of mutations in topoisomerase genes. J. Antimicrob. Chemother. 51:1926.
168. Poly, F.,, D. Threadgill, and, A. Stintzi. 2005. Genomic diversity in Campylobacter jejuni: identification of C. jejuni 81-176-specific genes. J. Clin. Microbiol. 43:23302338.
169. Poly, F.,, D. Threadgill, and, A. Stintzi. 2004. Identification of Campylobacter jejuni ATCC 43431–specific genes by whole microbial genome comparisons. J. Bacteriol. 186:47814795.
170. Pop, M.,, D. S. Kosack, and, S. L. Salzberg. 2004. Hierarchical scaffolding with Bambus. Genome Res. 14:149159.
171. Prendergast, M. M.,, D. R. Tribble,, S. Baqar,, D. A. Scott,, J. A. Ferris,, R. I. Walker, and, A. P. Moran. 2004. In vivo phase variation and serologic response to lipooligosaccharide of Campylobacter jejuni in experimental human infection. Infect. Immun. 72:916922.
172. Prévot, A. R. 1940. Etude de la systématique bactérienne. V—Essai de classification des vibrions anaérobies. Ann. Inst. Pasteur 64:117125.
173. Rain, J. C.,, L. Selig,, H. De Reuse,, V. Battaglia,, C. Reverdy,, S. Simon,, G. Lenzen,, F. Petel,, J. Wojcik,, V. Schachter,, Y. Chemama,, A. Labigne, and, P. Legrain. 2001. The protein-protein interaction map of Helicobacter pylori. Nature 409:211215.
174. Romaniuk, P. J., and, T. J. Trust. 1989. Rapid identification of Campylobacter species using oligonucleotide probes to 16S ribosomal RNA. Mol. Cell. Probes 3:133142.
175. Roop, R. M. I.,, R. M. Smibert,, J. L. Johnson, and, N. R. Krieg. 1985. Campylobacter mucosalis (Lawson, Leaver, Pettigrew, and Rowland 1981) comb. nov.: emended description. Int. J. Syst. Bacteriol. 35:189192.
176. Sanchez, M. X.,, W. M. Fluckey,, M. M. Bras-hears, and, S. R. McKee. 2002. Microbial profile and antibiotic susceptibility of Campylobacter spp. and Salmonella spp. in broilers processed in air-chilled and immersion-chilled environments. J. Food Prot. 65:948956.
177. Sandstedt, K., and, J. Ursing. 1991. Description of Campylobacter upsaliensis sp. nov. previously known as the CNW group. Syst. Appl. Microbiol. 14:3945.
178. Sandstedt, K.,, J. Ursing, and, M. Walder. 1983. Thermotolerant Campylobacter with no or weak catalase activity isolated from dogs. Curr. Microbiol. 8:209213.
179. Santos, S. R., and, H. Ochman. 2004. Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ. Microbiol. 6:754759.
180. Schouls, L. M.,, S. Reulen,, B. Duim,, J. A. Wagenaar,, R. J. Willems,, K. E. Dingle,, F. M. Colles, and, J. D. Van Embden. 2003. Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multi-locus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination. J. Clin. Microbiol. 41:1526.
181. Schurig, G. D.,, C. E. Hall,, K. Burda,, L. B. Corbeil,, J. R. Duncan, and, A. J. Winter. 1973. Persistent genital tract infection with Vibrio fetus intestinalis associated with serotypic alteration of the infecting strain. Am. J. Vet. Res. 34:13991403.
182. Sebald, M., and, M. Véron. 1963. Teneur en bases de l’ADN et classification des vibrions. Ann. Inst. Pasteur 105:897910.
183. Sergeev, N.,, M. Distler,, S. Courtney,, S. F. Al-Khaldi,, D. Volokhov,, V. Chizhikov, and, A. Rasooly. 2004. Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens. Bioelectron. 20:684698.
184. Serino, L., and, M. Virji. 2002. Genetic and functional analysis of the phosphorylcholine moiety of commensal Neisseria lipopolysaccha-ride. Mol. Microbiol. 43:437448.
185. Sheikh, K. A.,, I. Nachamkin,, T. W. Ho,, H. J. Willison,, J. Veitch,, H. Ung,, M. Nicholson,, C.Y. Li,, H. S. Wu,, B. Q. Shen,, D. R. Corn-blath,, A. K. Asbury,, G. M. McKhann, and, J. W. Griffin. 1998. Campylobacter jejuni lipopolysaccharides in Guillain-Barré syndrome: molecular mimicry and host susceptibility. Neurology 51:371378.
186. Shen, Z.,, Y. Feng,, F. E. Dewhirst, and, J. G. Fox. 2001. Coinfection of enteric Helicobacter spp. and Campylobacter spp. in cats. J. Clin. Micro-biol. 39:21662172.
187. Shih, H. M.,, P. S. Goldman,, A. J. DeMaggio,, S. M. Hollenberg,, R. H. Goodman, and, M. F. Hoekstra. 1996. A positive genetic selection for disrupting protein-protein interactions: identification of CREB mutations that prevent association with the coactivator CBP. Proc. Natl. Acad. Sci. USA 93:1389613901.
188. Smibert, R. M. 1984. Campylobacter, p. 111– 118. In J. G. Holt and, N. R. Krieg (ed.), Bergey’s Manual of Systematic Bacteriology, vol. 1. Williams & Wilkins, Baltimore, MD.
189. Smith, T., and, M. S. Taylor. 1919. Some morphological and biochemical characters of the spirilla (Vibrio fetus, n. sp.) associated with disease of the fetal membranes in cattle. J. Exp. Med. 30:299311.
190. Stanley, J.,, A. P. Burnens,, D. Linton,, S. L. On,, M. Costas, and, R. J. Owen. 1992. Campylobacter helveticus sp. nov., a new thermophilic species from domestic animals: characterization, and cloning of a species-specific DNA probe. J. Gen. Microbiol. 138:22932303.
191. Steele, T. W., and, R. J. Owen. 1988. Campylobacter jejuni subsp. doylei sub sp. nov., a subspecies of nitrate-negative campylobacters isolated from human clinical specimens. Int. J. Syst. Bacteriol. 38:316318.
192. Stern, N. J., and, J. E. Line. 2000. Campylobacter, p. 1040–1056. In B. M. Lund,, A. C. Baird-Parker, and, G. W. Gould (ed.), The Microbiological Safety and Quality of Food, vol. 2. Aspen Publishers, Gaithersburg, MD.
193. Stintzi, A. 2003. Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J. Bacteriol. 185:20092016.
194. Stintzi, A.,, D. Marlow,, K. Palyada,, H. Naikare,, R. Panciera,, L. Whitworth, and, C. Clarke. 2005. Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni. Infect. Immun. 73:17971810.
195. St. Michael, F.,, C. M. Szymanski,, J. Li,, K. H. Chan,, N. H. Khieu,, S. Larocque,, W. W. Wakarchuk,, J. R. Brisson, and, M. A. Monteiro. 2002. The structures of the lipooligosaccharide and capsule polysaccharide of Campylobacter jejuni genome sequenced strain NCTC 11168. Eur. J. Biochem. 269:51195136.
196. Suerbaum, S.,, C. Josenhans,, T. Sterzen-bach,, B. Drescher,, P. Brandt,, M. Bell,, M. Droge,, B. Fartmann,, H. P. Fischer,, Z. Ge,, A. Horster,, R. Holland,, K. Klein,, J. Konig,, L. Macko,, G. L. Mendz,, G. Nyakatura,, D. B. Schauer,, Z. Shen,, J. Weber,, M. Frosch, and, J. G. Fox. 2003. The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus. Proc. Natl. Acad. Sci. USA 100:79017906.
197. Suerbaum, S.,, M. Lohrengel,, A. Sonnevend,, F. Ruberg, and, M. Kist. 2001. Allelic diversity and recombination in Campylobacter jejuni. J. Bacteriol. 183:25532559.
198. Taboada, E. N.,, R. R. Acedillo,, C. D. Carrillo,, W. A. Findlay,, D. T. Medeiros,, O. L. Mykytczuk,, M. J. Roberts,, C. A. Valencia,, J. M. Farber, and, J. H. Nash. 2004. Large-scale comparative genomics meta-analysis of Campylobacter jejuni isolates reveals low level of genome plasticity. J. Clin. Microbiol. 42:45664576.
199. Tanner, A. C. R.,, S. Badger,, C. H. Lai,, M. A. Listgarten,, R. A. Visconti, and, S. S. Socransky. 1981. Wolinella gen. nov., Wolinella succino-genes (Vibrio succinogenes Wolin et al.) comb. nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from humans with periodontal disease. Int. J. Syst. Bacteriol. 31:432445.
200. Tanner, A. C. R.,, M. A. Listgarten, and, J. L. Ebersole. 1984. Wollinella curva sp. nov.: “Vibrio succinogenes” of human origin. Int. J. Syst. Bacteriol. 34:275282.
201. Tauxe, R. V.,, C. M. Patton,, P. Edmonds,, T. J. Barrett,, D. J. Brenner, and, P. A. Blake. 1985. Illness associated with Campylobacter laridis, a newly recognized Campylobacter species. J. Clin. Microbiol. 21:222225.
202. Taylor, D. E.,, Z. Ge,, D. Purych,, T. Lo, and, K. Hiratsuka. 1997. Cloning and sequence analysis of two copies of a 23S rRNA gene from Helicobacter pylori and association of clarithromycin resistance with 23S rRNA mutations. Antimicrob. Agents Chemother. 41:26212628.
203. Testerman, T. L.,, D. J. McGee, and, H. L. T. Mobley. 2001. Adherence and colonization, p. 381–405. In H. L. T. Mobley,, G. L. Mendz, and, S. L. Hazell (ed.), Helicobacter pylori: Physiology and Genetics. ASM Press, Washington, DC.
204. Thibault, P.,, S. M. Logan,, J. F. Kelly,, J. R. Brisson,, C. P. Ewing,, T. J. Trust, and, P. Guerry. 2001. Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem. 276:3486234870.
205. Thompson, S. A., and, M. J. Blaser. 2000. Pathogenesis of Campylobacter fetus infections, p. 321–347. In I. Nachamkin and, M. J. Blaser (ed.), Campylobacter. ASM Press, Washington, DC.
206. Tomb, J. F.,, O. White,, A. R. Kerlavage,, R. A. Clayton,, G. G. Sutton,, R. D. Fleischmann,, K. A. Ketchum,, H. P. Klenk,, S. Gill,, B. A. Dougherty,, K. Nelson,, J. Quackenbush,, L. Zhou,, E. F. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dodson,, H. G. Khalak,, A. Glodek,, K. McKenney,, L. M. Fitze-gerald,, N. Lee,, M. D. Adams,, J. C. Venter, et al. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539547.
207. Trieber, C. A., and, D. E. Taylor. 2002. Mutations in the 16S rRNA genes of Helicobacter pylori mediate resistance to tetracycline. J. Bacteriol. 184:21312140.
208. Tu, Z. C.,, F. E. Dewhirst, and, M. J. Blaser. 2001. Evidence that the Campylobacter fetus sap locus is an ancient genomic constituent with origins before mammals and reptiles diverged. Infect. Immun. 69:22372244.
209. Uetz, P.,, L. Giot,, G. Cagney,, T. A. Mans-field,, R. S. Judson,, J. R. Knight,, D. Lock-shon,, V. Narayan,, M. Srinivasan,, P. Pochart,, A. Qureshi-Emili,, Y. Li,, B. Godwin,, D. Conover,, T. Kalbfleisch,, G. Vijayadamodar,, M. Yang,, M. Johnston,, S. Fields, and, J. M. Rothberg. 2000. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623627.
210. Vandamme, P. 2000. Taxonomy of the family Campylobacteraceae, p. 3–26. In I. Nachamkin and, M. J. Blaser (ed.), Campylobacter. ASM Press, Washington, DC.
211. Vandamme, P.,, M. I. Daneshvar,, F. E. Dewhirst,, B. J. Paster,, K. Kersters,, H. Goossens, and, C. W. Moss. 1995. Chemotaxonomic analyses of Bacteroides gracilis and Bacteroides ureolyticus and reclassification of B. gracilis as Campylobacter gracilis comb. nov. Int. J. Syst. Bacteriol. 45:145152.
212. Vandamme, P.,, E. Falsen,, R. Rossau,, B. Hoste,, P. Segers,, R. Tytgat, and, J. De Ley. 1991. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int. J. Syst. Bacteriol.. 41:88103.
213.