Chapter 9 : Modeling Microbial Virulence in a Genomic Era: Impact of Shared Genomic Tools and Data Sets

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Modeling Microbial Virulence in a Genomic Era: Impact of Shared Genomic Tools and Data Sets, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815530/9781555814519_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555815530/9781555814519_Chap09-2.gif


This chapter discusses the relevance of model host pathogenesis as a third general approach to studying microbial virulence, in which infections are studied in the context of nonvertebrate whole animal hosts. The chapter explains the combination of four key steps: (i) the development of the model host-pathogen system, (ii) the development of genomic tools in both the pathogen and host, (iii) the distribution and use of these tools by the greater research community beyond the laboratories involved in their initial development, and (iv) the collection and ultimate integration of experimental data from a wide variety of research groups made possible by the widespread use of a common resource and its accompanying Web-accessible public database. PA14 was chosen for the construction of a non-redundant mutant library because it is remarkably virulent in the greatest number of model hosts tested, as well as in a number of murine systems of infection. There are four major advantages to construction of a non-redundant mutant library approach as opposed to the traditional approach of screening a random collection of strains for avirulent or attenuated mutants. A microarray experiment in a mutant defective in a newly defined host defense response gene identified candidate downstream genes important in the response to pathogens.

Citation: Lee D, Liberati N, Urbach J, Wu G, Frederick M. 2007. Modeling Microbial Virulence in a Genomic Era: Impact of Shared Genomic Tools and Data Sets, p 213-231. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch9

Key Concept Ranking

Tumor Necrosis Factor
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Accumulation of in the intestine. Micrographs were taken of worms fed on lawns of bacteria on brain heart infusion agar for 3 days. Arrows point to the borders of the intestinal lumen. When feed on their normal laboratory food, strain OP50, very few, if any, intact bacterial cells accumulate in the intestinal lumen, which appears as a narrow channel (A and B). In contrast, there is dramatic distension of the intestine when are fed on , and numerous densely packed cells are visible. In the upper right-hand corner of (A) and (C), the round structure depicted is the pharyngeal grinder organ that physically disrupts ingested bacteria. (A) and (C) show the proximal portion of the intestine immediately following the pharyngeal grinder, and (B) and (D) show a middle portion of the intestinal tract.

Citation: Lee D, Liberati N, Urbach J, Wu G, Frederick M. 2007. Modeling Microbial Virulence in a Genomic Era: Impact of Shared Genomic Tools and Data Sets, p 213-231. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Immune signaling pathways in mammals and nematodes. In mammals, a family of TLRs mediates the recognition of PAMPs. Immune receptors have not yet been identified in Mammals and share a conserved p38 MAPK signaling module, but does not encode a transcription factor homologous to mammalian NF-κB. Interestingly, has a TIR domain-containing protein, TIR-1, that functions upstream of the p38 MAPK that is homologous to the mammalian SARM protein, but the role of the SARM protein in mammalian immunity is not known.

Citation: Lee D, Liberati N, Urbach J, Wu G, Frederick M. 2007. Modeling Microbial Virulence in a Genomic Era: Impact of Shared Genomic Tools and Data Sets, p 213-231. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Schematic of PA14 library and PA14NR construction. (A) PA14 master library production. Transposon mutagenesis of PA14 was performed and individual colonies were picked and grown overnight in 96-well plates. An aliquot of the overnight culture was set aside for arbitrary (ARB) PCR analysis to map each transposon insertion site. Glycerol was added to the remaining culture and mixed, and the sample was split into three aliquots for storage at –80°C. (B) ARB PCR. ARB PCR was used to map the site of insertion for each mutant. In the schematic diagram, the transposon is indicated by a white rectangle within the PA14 genome (wavy lines). The positions of four PCR primers are indicated in this schematic. An aliquot of the original overnight culture was used as a template for the first PCR reaction. The left primer for the first reaction (1L) anneals to the transposon. The right primer (1R) contains a variable sequence in the 3′ end that (randomly) anneals to the PA14 genome at some distance from the transposon; the 5′ end of the 1R primer has a constant region. A subset of PCR products from this reaction will contain the terminal sequence of the transposon and the flanking genomic sequence (varying lengths of genomic sequence for each mutant strain); other PCR products will be the result of pairs of 1R primers annealing to other regions of the PA14 genome. An aliquot of the first completed PCR reaction was used as a template for a second PCR reaction. The left primer for the second reaction (2L) is a nested primer annealing to the transposon sequence, and the right primer (2R) is identical to the constant 5′ end of the 1R primer. In this manner, only fragments that contain the transposon will be amplified as the dominant product in the second completed PCR reaction. The PCR reaction was processed to remove primers and free nucleotides, and the remaining double-stranded product was subjected to sequencing with a transposon-specific sequencing primer. The resulting sequences were batch processed to (i) trim off low-quality sequence, (ii) identify the transposon sequence, and (iii) check the remaining sequence against the PA14 genome via BLAST to map the site of insertion. (C) Selection of PA14NR set. The insertion sites for each mutant identified in step 3B were mapped onto the predicted PA14 ORFs. An automated script was designed to identify the best candidates for inclusion in the PA14 nonredundant set (PA14NR set). For predicted ORFs in which only one insertion was available, that mutant was selected. In cases where more than one insertion was available, all sequences were filtered to retain only those in which the BLAST match of the obtained high-quality sequence to the PA14 genome had a score of 80 or greater. Of the remaining cases, the insertion that was the most 5′ in the ORF was generally chosen. In some cases, two insertions were chosen, such that 5,459 mutants with insertions in 4,596 genes comprise the current version of the PA14NR set. Finally, the script identified the original position of each chosen mutant in the original master library and remapped the location onto a new set of 96-well plates for the NR set. (D) PA14NR set production. By using the list of mutants identified in step 3C, individual strains were manually picked from one of the three frozen copies of the PA14 master library. Each mutant was streaked onto selective media to isolate a pure colony, which was then used to inoculate overnight cultures in 96-well plates (using the remapped NR set locations in each plate). The overnight cultures were grown in deep-well plates to allow for a sufficient volume to freeze 10 copies of the PA14NR set. One of these copies will subsequently be used to create copies that will be distributed to other laboratories.

Citation: Lee D, Liberati N, Urbach J, Wu G, Frederick M. 2007. Modeling Microbial Virulence in a Genomic Era: Impact of Shared Genomic Tools and Data Sets, p 213-231. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Interface between model host pathogenesis and genomics. Elements that are the major focus of this chapter are indicated in bold. The basic premise of the model host pathogenesis system is that the bacterial pathogen (in this case, PA14) is used to infect a simple, genetically tractable host (in this case, ) under conditions in which many aspects of the host-pathogen interaction are thought to reflect those that occur during a human infection. Infections are traditionally performed using wild-type or mutant isolates of the host or pathogen. Screens have been carried out in our laboratory for pathogen mutants with reduced virulence and host mutants with enhanced susceptibility and enhanced resistance to pathogens (Esp and Erp phenotypes, respectively). However, the availability of genome-wide mutant libraries in both organisms (RNAi libraries in , and the PA14 nonredundant library of transposon insertions described in this chapter) allows these screens for novel pathogenesis-related genes to be performed to saturation. In the case of the PA14 nonredundant set (PA14NR set), the library is designed such that mutants can be assayed individually or in pools by TraSH techniques. The interaction of host and pathogen can also be examined by using microarrays or proteomic techniques to analyze changes in the transcriptome or proteome of either organism as a consequence of infection. The use of these additional genomic tools can be coupled with the available mutant libraries; transcriptional or proteomic profiling of candidate virulence mutants compared with their wild-type parent has been used to identify putative downstream targets. The collected experimental data will be deposited in a publicly accessible database. Initially, the database will focus on processing phenotypic data for mutants in the PA14NR set library, but it can ultimately be expanded to incorporate additional types of data gathered by other genomic tools.

Citation: Lee D, Liberati N, Urbach J, Wu G, Frederick M. 2007. Modeling Microbial Virulence in a Genomic Era: Impact of Shared Genomic Tools and Data Sets, p 213-231. In Pallen M, Nelson K, Preston G (ed), Bacterial Pathogenomics. ASM Press, Washington, DC. doi: 10.1128/9781555815530.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aballay, A., and, F. M. Ausubel. 2001. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium–mediated killing. Proc. Natl. Acad. Sci. USA 98:27352739.
2. Aballay, A.,, E. Drenkard,, L. R. Hilbun, and, F. M. Ausubel. 2003. Caenorhabditis elegans innate immune response triggered by Salmonella enterica requires intact LPS and is mediated by a MAPK signaling pathway. Curr. Biol. 13:4752.
3. Aballay, A.,, P. Yorgey, and, F. M. Ausubel. 2000. Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr. Biol. 10:15391542.
4. Badarinarayana, V.,, P. W. Estep III,, J. Shendure,, J. Edwards,, S. Tavazoie,, F. Lam, and, G. M. Church. 2001. Selection analyses of insertional mutants using subgenic-resolution arrays. Nat. Biotechnol. 19:10601065.
5. Barton, G. M., and, R. Medzhitov. 2003. Toll-like receptor signaling pathways. Science 300:15241525.
6. Begun, J.,, C. D. Sifri,, S. Goldman,, S. B. Calderwood, and, F. M. Ausubel. 2005. Staphylococcus aureus virulence factors identified by using a high-throughput Caenorhabditis elegans– killing model. Infect. Immun. 73:872877.
7. Beutler, B., and, M. Rehli. 2002. Evolution of the TIR, tolls and TLRs: functional inferences from computational biology. Curr. Top. Microbiol. Immunol. 270:121.
8. Caetano-Anolles, G., and, B. J. Bassam. 1993. DNA amplification fingerprinting using arbitrary oligonucleotide primers. Appl. Biochem. Biotechnol. 42:189200.
9. Caiazza, N. C., and, G. A. O’Toole. 2004. SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14. J. Bacteriol. 186:44764485.
10. Choe, K. M.,, T. Werner,, S. Stoven,, D. Hult-mark, and, K.V. Anderson. 2002. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296:359362.
11. Coleman, F. T.,, S. Mueschenborn,, G. Meluleni,, C. Ray,, V. J. Carey,, S. O. Vargas,, C. L. Cannon,, F. M. Ausubel, and, G. B. Pier. 2003. Hypersusceptibility of cystic fibrosis mice to chronic Pseudomonas aeruginosa oropharyngeal colonization and lung infection. Proc. Natl. Acad. Sci. USA 100:19491954.
12. Couillault, C.,, N. Pujol,, J. Reboul,, L. Sabatier,, J. F. Guichou,, Y. Kohara, and, J. J. Ewbank. 2004. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat. Immunol. 5:488494.
13. Darby, C.,, J. W. Hsu,, N. Ghori, and, S. Falkow. 2002. Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417:243244.
14. Dong, C.,, R. J. Davis, and, R.A. Flavell. 2002. MAP kinases in the immune response. Annu. Rev. Immunol. 20:5572.
15. Dunne, A., and, L. A. O’Neill. 2003. The inter-leukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE 2003:re3.
16. Ernst, R. K.,, D. A. D’Argenio,, J. K. Ichikawa,, M. G. Bangera,, S. Selgrade,, J. L. Burns,, P. Hiatt,, K. McCoy,, M. Brittnacher,, A. Kas,, D. H. Spencer,, M.V. Olson,, B.W. Ramsey,, S. Lory, and, S. I. Miller. 2003. Genome mosaicism is conserved but not unique in Pseudomonas aeruginosa isolates from the airways of young children with cystic fibrosis. Environ. Microbiol. 5:13411349.
17. Fortune, S. M.,, A. Jaeger,, D. A. Sarracino,, M. R. Chase,, C. M. Sassetti,, D. R. Sherman,, B. R. Bloom, and, E. J. Rubin. 2005. Mutually dependent secretion of proteins required for mycobacterial virulence. Proc. Natl. Acad. Sci. USA 102:1067610681.
18. Fraser, A. G.,, R. S. Kamath,, P. Zipperlen,, M. Martinez-Campos,, M. Sohrmann, and, J. Ahringer. 2000. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325330.
19. Garsin, D. A.,, C. D. Sifri,, E. Mylonakis,, X. Qin,, K. V. Singh,, B. E. Murray,, S. B. Calder-wood, and, F. M. Ausubel. 2001. A simple model host for identifying gram-positive virulence factors. Proc. Natl. Acad. Sci. USA 98:1089210897..
20. Garsin, D. A.,, J. M. Villanueva,, J. Begun,, D. H. Kim,, C. D. Sifri,, S. B. Calderwood,, G. Ruvkun, and, F. M. Ausubel. 2003. Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300:1921.
21. Georgel, P.,, S. Naitza,, C. Kappler,, D. Ferrandon,, D. Zachary,, C. Swimmer,, C. Kopczynski,, G. Duyk,, J. M. Reichhart, and, J. A. Hoff-mann. 2001. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell. 1:503514.
22. Gottar, M.,, V. Gobert,, T. Michel,, M. Belvin,, G. Duyk,, J. A. Hoffmann,, D. Ferrandon, and, J. Royet. 2002. The Drosophila immune response against gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416:640644.
23. Hendrickson, E. L.,, J. Plotnikova,, S. Mahajan-Miklos,, L. G. Rahme, and, F. M. Ausubel. 2001. Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice. J. Bacteriol. 183:71267134.
24. Hensel, M.,, J. E. Shea,, C. Gleeson,, M. D. Jones,, E. Dalton, and, D.W. Holden. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400403.
25. Hoffmann, J. A., and, J. M. Reichhart. 2002. Drosophila innate immunity: an evolutionary perspective. Nat. Immunol. 3:121126.
26. Jacobs, M. A.,, A. Alwood,, I. Thaipisuttikul,, D. Spencer,, E. Haugen,, S. Ernst,, O. Will,, R. Kaul,, C. Raymond,, R. Levy,, L. Chun-Rong,, D. Guenthner,, D. Bovee,, M. V. Olson, and, C. Manoil. 2003. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100:1433914344.
27. Jander, G.,, L. G. Rahme, and, F. M. Ausubel. 2000. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol. 182:38433845.
28. Janeway, C. A., Jr., and, R. Medzhitov. 2002. Innate immune recognition. Annu. Rev. Immunol. 20:197216.
29. Kamath, R. S., and, J. Ahringer. 2003. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30:313321.
30. Kamath, R. S.,, A. G. Fraser,, Y. Dong,, G. Poulin,, R. Durbin,, M. Gotta,, A. Kanapin,, N. Le Bot,, S. Moreno,, M. Sohrmann,, D. P. Welchman,, P. Zipperlen, and, J. Ahringer. 2003. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231237.
31. Kamath, R. S.,, M. Martinez-Campos,, P. Zipperlen,, A. G. Fraser, and, J. Ahringer. 2001. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2: RESEARCH0002.
32. Kim, C. C.,, E. A. Joyce,, K. Chan, and, S. Falkow. 2002. Improved analytical methods for microarray-based genome-composition analysis. Genome Biol. 3:RESEARCH0065.
33. Kim, D. H., and, F. M. Ausubel. 2005. Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Curr. Opin. Immunol. 17:410.
34. Kim, D. H.,, R. Feinbaum,, G. Alloing,, F. E. Emerson,, D. A. Garsin,, H. Inoue,, M. Tanaka-Hino,, N. Hisamoto,, K. Matsumoto,, M. W. Tan, and, F. M. Ausubel. 2002. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297:623626.
35. Kim, D. H.,, N. T. Liberati,, T. Mizuno,, H. Inoue,, N. Hisamoto,, K. Matsumoto, and, F. M. Ausubel. 2004. Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. Proc. Natl. Acad. Sci. USA 101:1099010994.
36. Kuchma, S. L.,, J. P. Connolly, and, G. A. O’Toole. 2005. A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J. Bacteriol. 187:14411454.
37. Kulesekara, H.,, V. Lee,, A. Brencic,, N. Liberati,, J. Urbach,, S. Miyata,, D. G. Lee,, A. N. Neely,, M. Hyodo,, Y. Hayakawa,, F. M. Ausubel, and, S. Lory. 2006. Analysis of Pseudo-monas aeruginosa diguanylate cyclases and phos-phodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc. Natl. Acad. Sci. USA 21:28392844.
38. Kurz, C. L.,, S. Chauvet,, E. Andres,, M. Aurouze,, I. Vallet,, G. P. Michel,, M. Uh,, J. Celli,, A. Filloux,, S. De Bentzmann,, I. Steinmetz,, J. A. Hoffmann,, B. B. Finlay,, J. P. Gorvel,, D. Ferrandon, and, J. J. Ewbank. 2003. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J. 22:14511460.
39. Kurz, C. L., and, J. J. Ewbank. 2003. Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat. Rev. Genet. 4:380390.
40. Kurz, C. L., and, M. W. Tan. 2004. Regulation of aging and innate immunity in C. elegans. Aging Cell 3:185193.
41. Kyriakis, J. M., and, J. Avruch. 2001. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81:807869.
42. Labrousse, A.,, S. Chauvet,, C. Couillault,, C. L. Kurz, and, J. J. Ewbank. 2000. Caenorhabditis elegans is a model host for Salmonella typhimurium. Curr. Biol. 10:15431545.
43. Lampe, D. J.,, T. E. Grant, and, H. M. Robertson. 1998. Factors affecting transposition of the Himar1 mariner transposon in vitro. Genetics 149:179187.
44. Lau, G. W.,, B. C. Goumnerov,, C. L. Walendziewicz,, J. Hewitson,, W. Xiao,, S. Mahajan-Miklos,, R. G. Tompkins,, L. A. Perkins, and, L. G. Rahme. 2003. The Drosophila melanogaster toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect. Immun. 71:40594066.
45. Lemaitre, B.,, E. Kromer-Metzger,, L. Michaut,, E. Nicolas,, M. Meister,, P. Georgel,, J. M. Reichhart, and, J. A. Hoffmann. 1995. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl. Acad. Sci. USA 92:94659469.
46. Liberati, N. T.,, K. A. Fitzgerald,, D. H. Kim,, R. Feinbaum,, D. T. Golenbock, and, F. M. Ausubel. 2004. Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc. Natl. Acad. Sci. USA 101:65936598.
47. Liberati, N. T.,, J. M. Urbach,, S. Miyata,, D. G. Lee,, E. Drenkard,, G. Wu,, J. Villanueva,, T. Wei, and, F. M. Ausubel. 2006. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. USA. 103:28332838.
48. Mahajan-Miklos, S.,, M. W. Tan,, L. G. Rahme, and, F. M. Ausubel. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa–Caenorhabditis elegans pathogenesis model. Cell 96:4756.
49. Mallo, G. V.,, C. L. Kurz,, C. Couillault,, N. Pujol,, S. Granjeaud,, Y. Kohara, and, J. J. Ew-bank. 2002. Inducible antibacterial defense system in C. elegans. Curr. Biol. 12:12091214.
50. Medzhitov, R.,and, C. Janeway, Jr. 2000. Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173:8997.
51. Medzhitov, R.,and, C. Janeway, Jr. 2000. The Toll receptor family and microbial recognition. Trends Microbiol. 8:452456.
52. Medzhitov, R., and, C. A. Janeway, Jr. 2002. Decoding the patterns of self and nonself by the innate immune system. Science 296:298300.
53. Medzhitov, R., and, C. A. Janeway, Jr. 2000. How does the immune system distinguish self from nonself? Semin. Immunol. 12:185188: discussion 257–344.
54. Millet, A. C., and, J. J. Ewbank. 2004. Immunity in Caenorhabditis elegans. Curr. Opin. Immunol. 16:49.
55. Miyata, S.,, M. Casey,, D. W. Frank,, F. M. Ausubel, and, E. Drenkard. 2003. Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect. Immun. 71:24042413.
56. Mylonakis, E.,, F. M. Ausubel,, J. R. Perfect,, J. Heitman, and, S. B. Calderwood. 2002. Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc. Natl. Acad. Sci. USA 99:1567515680.
57. Mylonakis, E.,, A. Idnurm,, R. Moreno,, J. El Khoury,, J. B. Rottman,, F. M. Ausubel,, J. Heitman, and, S. B. Calderwood. 2004. Cryptococcus neoformans Kin1 protein kinase homolog, identified through a Caenorhabditis elegans screen, promotes virulence in mammals. Mol. Microbiol. 54:407419.
58. O’Toole, G. A., and, R. Kolter. 1998. Flagellar and twitching motility are necessary for Pseudo-monas aeruginosa biofilm development. Mol. Micro-biol. 30:295304.
59. O’Toole, G. A., and, R. Kolter. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28:449461.
60. Price-Whelan, A.,, L. E. Dietrich, and, D. K. Newman. 2006. Rethinking “secondary” metabolism: physiological roles for phenazine antibiotics. Nat. Chem. Biol. 2:7178.
61. Pujol, N.,, E. M. Link,, L. X. Liu,, C. L. Kurz,, G. Alloing,, M. W. Tan,, K. P. Ray,, R. Solari,, C. D. Johnson, and, J. J. Ewbank. 2001. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr. Biol. 11:809821.
62. Pukatzki, S.,, R. H. Kessin, and, J. J. Mekalanos. 2002. The human pathogen Pseudo-monas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 99:31593164.
63. Pukatzki, S.,, A. T. Ma,, D. Sturtevant,, B. Krastins,, D. Sarracino,, W. C. Nelson,, J. F. Heidelberg, and, J. J. Mekalanos. 2006. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc. Natl. Acad. Sci. USA 103:15281533.
64. Qureshi, S. T., and, R. Medzhitov. 2003. Toll-like receptors and their role in experimental models of microbial infection. Genes Immun. 4:8794.
65. Rahme, L. G.,, E. J. Stevens,, S. F. Wolfort,, J. Shao,, R. G. Tompkins, and, F. M. Ausubel. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:18991902.
66. Ramet, M.,, P. Manfruelli,, A. Pearson,, B. Mathey-Prevot, and, R. A. Ezekowitz. 2002. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416:644648.
67. Raskin, D. M.,, R. Seshadri,, S. U. Pukatzki, and, J. J. Mekalanos. 2006. Bacterial genomics and pathogen evolution. Cell 124:703714.
68. Ratledge, C., and, L. G. Dover. 2000. Iron metabolism in pathogenic bacteria. Annu. Rev. Micro-biol. 54:881941.
69. Rubin, E. J.,, B. J. Akerley,, V. N. Novik,, D. J. Lampe,, R. N. Husson, and, J. J. Mekalanos. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc. Natl. Acad. Sci. USA 96:16451650.
70. Saenz, H. L., and, C. Dehio. 2005. Signature-tagged mutagenesis: technical advances in a negative selection method for virulence gene identification. Curr. Opin. Microbiol. 8:612619.
71. Sassetti, C. M.,, D. H. Boyd, and, E. J. Rubin. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. USA 98:1271212717.
72. Shah, P. H.,, R. C. MacFarlane,, D. Bhattacharya,, J. C. Matese,, J. Demeter,, S. E. Stroup, and, U. Singh. 2005. Comparative genomic hybridizations of Entamoeba strains reveal unique genetic fingerprints that correlate with virulence. Eukaryot. Cell 4:504515.
73. Shelburne, S. A.,, III, P. Sumby,, I. Sitkiewicz,, C. Granville,, F. R. DeLeo, and, J. M. Musser. 2005. Central role of a bacterial two-component gene regulatory system of previously unknown function in pathogen persistence in human saliva. Proc. Natl. Acad. Sci. USA 102:1603716042.
74. Sifri, C. D.,, J. Begun,, F. M. Ausubel, and, S. B. Calderwood. 2003. Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect. Immun. 71:22082217.
75. Sifri, C. D.,, E. Mylonakis,, K. V. Singh,, X. Qin,, D. A. Garsin,, B. E. Murray,, F. M. Ausubel, and, S. B. Calderwood. 2002. Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing locus fsr in Caenorhabditis elegans and mice. Infect. Immun. 70:56475650.
76. Singh, U.,, P. H. Shah, and, R. C. MacFarlane. 2004. DNA content analysis on microarrays. Methods Mol. Biol. 270:237248.
77. Spellman, P. T.,, M. Miller,, J. Stewart,, C. Troup,, U. Sarkans,, S. Chervitz,, D. Bernhart,, G. Sherlock,, C. Ball,, M. Lepage,, M. Swiatek,, W. L. Marks,, J. Goncalves,, S. Markel,, D. Iordan,, M. Shojatalab,, A. Pizarro,, J. White,, R. Hubley,, E. Deutsch,, M. Senger,, B. J. Aronow,, A. Robinson,, D. Bassett,, C. J. Stoeckert, Jr., and, A. Brazma. 2002. Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biol. 3:RESEARCH0046.
78. Stover, C. K.,, X. Q. Pham,, A. L. Erwin,, S. D. Mizoguchi,, P. Warrener,, M. J. Hickey,, F. S. Brinkman,, W. O. Hufnagle,, D. J. Kowalik,, M. Lagrou,, R. L. Garber,, L. Goltry,, E. Tolentino,, S. Westbrock-Wadman,, Y. Yuan,, L. L. Brody,, S. N. Coulter,, K. R. Folger,, A. Kas,, K. Larbig,, R. Lim,, K. Smith,, D. Spencer,, G. K. Wong,, Z. Wu,, I. T. Paulsen,, J. Reizer,, M. H. Saier,, R. E. Hancock,, S. Lory, and, M. V. Olson. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959964.
79. Takeda, K., and, S. Akira. 2003. Toll receptors and pathogen resistance. Cell. Microbiol. 5:143153.
80. Tan, M. W.,, S. Mahajan-Miklos, and, F. M. Ausubel. 1999. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. USA 96:715720.
81. Tan, M. W.,, L. G. Rahme,, J. A. Sternberg,, R. G. Tompkins, and, F. M. Ausubel. 1999. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA 96:24082413.
82. Tenor, J.,, B. A. McCormick,, F. M. Ausubel, and, A. Aballay. 2004. Caenorhabditis elegans– based screen identifies Salmonella virulence factors required for conserved host-pathogen interactions. Curr. Biol. 14:10181024.
83. Thompson, L. S.,, J. S. Webb,, S. A. Rice, and, S. Kjelleberg. 2003. The alternative sigma factor RpoN regulates the quorum sensing gene rhlI in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 220:187195.
84. Timmons, L.,, D. L. Court, and, A. Fire. 2001. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103112.
85. Timmons, L., and, A. Fire. 1998. Specific interference by ingested dsRNA. Nature 395:854.
86. Whitchurch, C. B.,, T. E. Erova,, J. A. Emery,, J. L. Sargent,, J. M. Harris,, A. B. Semmler,, M. D. Young,, J. S. Mattick, and, D. J. Wozniak. 2002. Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type IV fimbria-mediated twitching motility. J. Bacteriol. 184:45444554.
87. Wolfgang, M. C.,, B. R. Kulasekara,, X. Liang,, D. Boyd,, K. Wu,, Q. Yang,, C. G. Miyada, and, S. Lory. 2003. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100:84848489.
88. Wong, S. M., and, J. J. Mekalanos. 2000. Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 97:1019110196.
89. Zhang, G., and, S. Ghosh. 2001. Toll-like receptor–mediated NF-kappaB activation: a phylo-genetically conserved paradigm in innate immunity. J. Clin. Invest. 107:1319.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error