1887

Chapter 1 : Production of Ethanol from Corn and Sugarcane

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Production of Ethanol from Corn and Sugarcane, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap01-2.gif

Abstract:

Cornstarch is processed to ethanol by either the dry-grind or wet-milling process. The two processes differ in how the kernel is initially treated to access starch for enzymatic hydrolysis. In addition to the use of sugar in ethanol production, wet-milled starch can also be sold as dried or modified corn starch, or converted enzymatically to dextrins and sweeteners, or fermented to any number of products. Alternate fermentation products include amino acids, vitamins, citric acid, and lactic acid. Some wet mills also produce vitamins, enzymes, pharmaceuticals, nutraceuticals, films, solvents, pigments, polyols, or fibers. Wet-milled corn fiber can also be converted to ethanol. As with corn, ethanol is produced from cane in two primary types of facilities, integrated sugar/ethanol production facilities and autonomous distilleries. Integrated sugar/ethanol production facilities are capable of switching cane processing between sugar and ethanol depending on economic driving forces, whereas autonomous plants are designed to process sugarcane solely for the production of ethanol. As with corn-based ethanol production facilities, sugar plants employ conventional distillation to concentrate ethanol to near-azeotropic (96%) concentrations for subsequent dehydration. Future biorefineries that process the whole corn plant (starch, fiber, and stover) or the whole sugarcane plant (sugars and bagasse) could produce liquid fuel, edible oil or sugars, animal feed, power, and polymers or chemical intermediates. Starch and sugars will continue to play an important role in ethanol production, even as lignocellulosic feedstocks come into production.

Citation: Nichols N, Monceaux D, Dien B, Bothast R. 2008. Production of Ethanol from Corn and Sugarcane, p 3-15. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Structure of the corn kernel. Reproduced from Nichols et al., 2006.

Citation: Nichols N, Monceaux D, Dien B, Bothast R. 2008. Production of Ethanol from Corn and Sugarcane, p 3-15. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Scanning electron micrograph images of native corn starch granules. Bar, 20 μm. (A) Granules visible in a germinating corn kernel; (B) starch has undergone partial hydrolysis by day 7 of germination; (C) untreated purified starch granules; (D) purified granules treated with alpha-amylase and glucoamylase ( ). Images courtesy of David Johnston and Peter Cooke, U.S. Department of Agriculture, Agricultural Research Service; and Jay Shetty, Genencor International, Inc.

Citation: Nichols N, Monceaux D, Dien B, Bothast R. 2008. Production of Ethanol from Corn and Sugarcane, p 3-15. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

The glucose-to-ethanol fermentation pathway.

Citation: Nichols N, Monceaux D, Dien B, Bothast R. 2008. Production of Ethanol from Corn and Sugarcane, p 3-15. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Comparison of the dry-grind and wet-mill processes for production of ethanol. Courtesy of National Corn-to-Ethanol Research Center. Reproduced from .

Citation: Nichols N, Monceaux D, Dien B, Bothast R. 2008. Production of Ethanol from Corn and Sugarcane, p 3-15. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Simplified flow diagram of sugar and ethanol production at an integrated cane-processing facility.

Citation: Nichols N, Monceaux D, Dien B, Bothast R. 2008. Production of Ethanol from Corn and Sugarcane, p 3-15. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Simplified flow diagram of ethanol production from cane at an autonomous distillery.

Citation: Nichols N, Monceaux D, Dien B, Bothast R. 2008. Production of Ethanol from Corn and Sugarcane, p 3-15. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch01
1. Alper, H.,, J. Moxley,, E. Nevoigt,, G. R. Fink, and, G. Stephanopoulos. 2006. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:15651568.
2. Badotti, F., A. S. Batista, and, B. U. Stambuk. 2005. Sucrose active transport and fermentation by Saccharomyces cerevisiae. Braz. Arch. Biol. Technol. 48:119127.
3. Bals, B.,, B. Dale, and, V. Balan. 2006. Enzymatic hydrolysis of distiller’s dry grain and solubles using ammonia fiber expansion pre-treatment. Energy Fuels 20:27322736.
4. Batista, A. S.,, L. C. Miletti, and, B. U. Stambuk. 2004. Sucrose fermentation by Saccharomyces cerevisiae lacking hexose transport. J. Mol. Microbiol. Biotechnol. 8:2633.
5. Bayrock, D. P., and, W. M. Ingledew. 2004. Inhibition of yeast by lactic acid bacteria in continuous culture: nutrient depletion and/or acid toxicity? J. Ind. Microbiol. Biotechnol. 31:362368.
6. Bayrock, D. P.,, K. C. Thomas, and, W. M. Ingledew. 2003. Control of Lactobacillus contaminants in continuous fuel ethanol fermentations by constant or pulsed addition of penicillin G. Appl. Microbiol. Biotechnol. 62:498502.
7. Bideaux, C.,, S. Alfenore,, X. Cameleyre,, C. Molina-Jouve,, J.-L. Uribelarrea, and, S. E. Guillouet. 2006. Minimization of glycerol production during the high-performance fed-batch ethanolic fermentation process in Saccharomyces cerevisiae, using a metabolic model as a prediction tool. Appl. Environ. Microbiol. 72:21342140.
8. Bothast, R. J., and, M. A. Schlicher. 2005. Biotechnological processes for conversion of corn into ethanol. Appl. Microbiol. Biotechnol. 67:1925.
9. Casey, G. P., and, W. M. Ingledew. 1986. Ethanol tolerance in yeasts. Crit. Rev. Microbiol. 13:219280.
10. Chen, J. C. P., and, C. Chou. 1993. Cane Sugar Handbook, 12th ed. John Wiley and Sons, Inc., New York, NY.
11. Collins, K. 2007. Statement of Keith Collins, Chief Economist, U.S. Department of Agriculture, Before the U.S. Senate Committee on Agriculture, Nutrition, and Forestry, January 10, 2007. U.S. GPO, Washington, DC.
12. Connelly, C. 1999. Bacterial contaminants and their effects on alcohol production, p. 317334. In K. A. Jacques,, T. P. Lyons, and, D. R. Kelsall (ed.), The Alcohol Textbook, 3rd ed. Nottingham University Press, Nottingham, United Kingdom.
13. Cotta, M. A.,, B. S. Dien,, X.-L. Li,, M. Ladisch,, N. Mosier,, W. Tyner,, R. Woodson,, H. Blaschek,, B. Dale,, B. Shanks, and, J. Verkade. 2006. Pretreatment and hydrolysis of distiller’s grains to fermentable sugars: an integrated approach by the Midwest Consortium for Sustainable Biobased Products and Energy. In M. Tumbleson (ed.), Corn: Nature’s Sustainable Resource. Proceedings of the Corn Utilization and Technology Conference, Dallas, TX. National Corn Growers Association, Chesterfield, MO.
14. Crabb, D. W., and, J. Shetty. 2003. Improving the properties of amylolytic enzymes by protein engineering. Trends Glycosci. Glycotechnol. 15:115126.
15. Craig, J. A.,, J. Batie,, W. Chen,, S. B. Freeland,, M. Kinkima, and, M. B. Lanahan. 2004. Expression of starch hydrolyzing enzymes in corn. In M. Tumbleson (ed.), Corn: Feedstock of the Future. Proceedings of the Corn Utilization and Technology Conference, Indianapolis, IN. National Corn Growers Association and Corn Refiners Association, Washington, DC.
16. Dailey, O. D., Jr.,, M. K. Dowd, and, J. C. Mayorga. 2000. Influence of lactic acid on the solubilization of protein during corn steeping. J. Agric. Food Chem. 48:13521357.
17. D’Amore, T.,, C. J. Panchal,, I. Russell, and, G. G. Stewart. 1990. A study of ethanol tolerance in yeast. Crit. Rev. Biotechnol. 9:287304.
18. Dien, B. S.,, M. A. Cotta, and, T. W. Jeffries. 2003. Bacteria engineered for fuel ethanol production: current status. Appl. Micro-biol. Biotechnol. 63:258266.
19. Dien, B. S., X.-L. Li,, L. B. Iten,, D. B. Jordan,, N. N. Nichols,, P. J. O’Bryan, and, M. A. Cotta. 2006. Enzymatic saccharification of hot-water pretreated corn fiber for production of monosaccha-rides. Enzyme Microb. Technol. 39:11371144.
20. Fujita, K.,, A. Matsuyama,, Y. Kobayashi, and, H. Iwahashi. 2006. The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res. 6:744750.
21. Galvez, A. 2005. Analyzing cold enzyme starch hydrolysis technology in new ethanol plant design. Ethanol Producer Magazine 2005 (January).
22. Hahn-Hägerdal, B.,, M. Galbe,, M. F. Gorwa-Grauslund,, G. Lidén, and, G. Zacchi. 2006. Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol. 24:549556.
23. Hull, S. R.,, E. Peters,, C. Cox, and, R. Montgomery. 1996. Composition of corn steep water during experimental steeping. J. Agric. Food Chem. 44:35213527.
24. Ingledew,, W. M. 1999a. Yeast—could you build a business on this bug? p. 27–50. In T. P., Lyons and, K. A. Jacques (ed.), Under the Microscope. Focal Points for the New Millennium. Biotechnology in the Feed Industry. Nottingham University Press, Thrompton, United Kingdom.
25. Ingledew,, W. M. 1999b. Alcohol production by Saccharomyces cerevisiae: a yeast primer, p. 4987. In K. A. Jacques,, T. P. Lyons, and, D. R. Kelsall (ed.), The Alcohol Textbook, 3rd ed. Nottingham University Press, Nottingham, United Kingdom.
26. Jeffries,, T. W. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17:320326.
27. Jessen,, H. 2006a. Quality traits: linking the chain from farmer to producer. Ethanol Producer Magazine 2006 (October).
28. Jessen,, H. 2006b. Expanding fractionation horizons from food to fuel. Ethanol Producer Magazine 2006 (October):7075.
29. Johnson, L. A., and, J. B. May. 2003. Wet milling: the basis for corn biorefineries, p. 449494. In P. J. White and, L. A. Johnson (ed.), Corn: Chemistry and Technology, 2nd ed. American Association of Cereal Chemists, St. Paul, MN.
30. Jones, A. M., and, W. M. Ingledew. 1994. Fuel alcohol production: optimization of temperature for efficient very-high-gravity fermentation. Appl. Environ. Microbiol. 60:10481051.
31. Kelsall, D. R., and, T. P. Lyons. 2003. Grain dry milling and cooking procedures: extracting sugars in preparation for fermentation, p. 921. In P. J. White and, L. A. Johnson (ed.), The Alcohol Textbook, 4th ed. Nottingham University Press, Nottingham, United Kingdom.
32. Khaw, T. S.,, Y. Katakura,, J. Koh,, A. Kondo,, M. Ueda, and, S. Shioya. 2006. Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch. Appl. Microbiol. Biotechnol. 70:573579.
33. Lewis,, S. M. 2006. BPX™ and BFRAC™: innovation in biorefining. In M. Tumbleson (ed.), Corn: Nature’s Sustainable Resource. Proceedings of the Corn Utilization and Technology Conference, Dallas, TX. National Corn Growers Association, Indianapolis, IN.
34. Lohrmann, T. 2006. Rethinking ethanol coproducts. Distillers Grains Q. Fourth Quarter:2324.
35. Machovič, M., and, S. Janeček. 2006. Starch-binding domains in the post-genome era. Cell. Mol. Life Sci. 63:27102724.
36. Matsumoto, N.,, O. Fukushi,, M. Miyanaga,, K. Kakihara,, E. Nakajima, and, H. Yoshizumi. 1982. Industrialization of a noncooking system for alcoholic fermentation from grains. Agric. Biol. Chem. 46:15491558.
37. Myers, A. M. 2006. Genetic modifications of maize starch structure and properties: opportunity for improved corn utilization. In M. Tumbleson (ed.), Corn: Nature’s Sustainable Resource. Proceedings of the Corn Utilization and Technology Conference, Dallas, TX. National Corn Growers Association, Chesterfield, MO.
38. Narendranath, N. V.,, S. H. Hynes,, K. C. Thomas, and, W. M. Ingledew. 1997. Effects of lactobacilli on yeast-catalyzed ethanol fermentations. Appl. Environ. Microbiol. 63:41584163.
39. Narendranath, N. V.,, K. C. Thomas, and, W. M. Ingledew. 2001. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J. Ind. Microbiol. Biotechnol. 26:171177.
40. Nichols, N. N.,, B. S. Dien,, R. J. Bothast, and, M. A. Cotta. 2006. The corn ethanol industry, p. 5978. In S. Minteer (ed.), Alcoholic Fuels. CRC Press, Boca Raton, FL.
41. Pandey, A.,, P. Nigam,, C. R. Soccol,, V. T. Soccol,, R. Mohan. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31:135152.
42. Power,, R. F. 2003. Enzymatic conversion of starch to fermentable sugars, p. 2332. In K. A. Jacques,, T. P. Lyons, and, D. R. Kelsall (ed.), The Alcohol Textbook, 4th ed. Nottingham University Press, Nottingham, United Kingdom.
43. Rausch, K. D., and, R. L. Belyea. 2006. The future of coproducts from corn processing. Appl. Biochem. Biotechnol. 128:4786.
44. Rípoli, T. C. C.,, W. F. Molina, and, M. L. C. Rípoli. 2000. Energy potential of sugar cane biomass in Brazil. Scientia Agricola 57:677–681.
45. Robertson, G. H.,, D. W. S. Wong, C. C. Lee, K. Wagschal, M. R. Smith, and, W. J. Orts. 2006. Native or raw starch digestion: a key step in energy efficient biorefining of grain. J. Agric. Food Chem. 54:353365.
46. Roels,, J. A. 1983. Energetics and Kinetics in Biotechnology, p. 2373. Elsevier Biomedical Press, Amsterdam, The Netherlands.
47. Rosentrater, K. A., and, K. Muthukumarappan. 2006. Corn ethanol coproducts: generation, properties, and future prospects. Int. SugarJ. 108:648657.
48. Russell, I. 2003. Understanding yeast fundamentals, p. 85119. In K. A. Jacques,, T. P. Lyons, and, D. R. Kelsall (ed.), The Alcohol Textbook, 4th ed. Nottingham University Press, Nottingham, United Kingdom.
49. Shetty, J. K.,, O. J. Lantero, and, N. Dunn-Coleman. 2005. Technological advances in ethanol production. Int. Sugar J. 107:605610.
50. Shigechi, H.,, J. Koh,, Y. Fujita,, T. Matsumoto,, Y. Bito,, M. Ueda,, E. Satoh,, H. Fukuda, and, A. Kondo. 2004. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase. Appl. Environ. Microbiol. 70:50375040.
51. Singh, V.,, D. B. Johnston,, K. Naidu,, K. D. Rausch,, R. L. Belyea, and, M. E. Tumbleson. 2005. Comparison of modified dry-grind processes for fermentation characteristics and DDGS composition. Cereal Chem. 82:187190.
52. Skinner, K. A., and, T. D. Leathers. 2004. Bacterial contaminants of fuel ethanol production. J. Ind. Microbiol. Biotechnol. 31:401408.
53. Skinner-Nemec, K. A.,, N. N. Nichols, and, T. D. Leathers. 2007. Biofilm formation by bacterial contaminants of fuel ethanol production. Biotechnol. Lett. 29:379383.
54. Strohm, B.,, J. Shetty,, O. J. Lantero, and, C. Pilgrim. 2006. Use of protease with raw starch hydrolyzing enzymes for dry grind corn processes to ethanol. In M. Tumbleson (ed.), Corn: Nature’s Sustainable Resource. Proceedings of the Corn Utilization and Technology Conference, Dallas, TX. National Corn Growers Association, Chesterfield, MO.
55. Tester, R. F.,, J. Karkalas, and, X. Qi. 2004. Starch—composition, fine structure and architecture. J. Cereal Sci. 39:151165.
56. Thomas,, K. C.,, S. H. Hynes, and, W. M. Ingledew. 1994. Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 60:15191524.
57. Thomas, K. C., and, W. M. Ingledew. 1990. Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Appl. Environ. Microbiol. 56:20462050.
58. U.S. Department of Agriculture. 2007. Crop Production 2006 Summary. U.S. Department of Agriculture National Agricultural Statistics Service, Washington, DC.
59. van Maris, A. J. A.,, D. A. Abbott,, E. Bellissimi,, J. van den Brink,, M. Kuyper,, M. A. H. Luttik,, H. W. Wisselink,, W. A. Scheffers,, J. P. van Dijken, and, J. T. Pronk. 2006. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Leeuwenhoek 90:391418.
60. Watson,, S. A. 2003. Description, development, structure, and composition of the corn kernel, p. 69106. In P. J. White and, L. A. Johnson (ed.), Corn: Chemistry and Technology, 2th ed. American Association of Cereal Chemists, St. Paul, MN.
61. Williams, J. 2006. Break it down now. Ethanol Producer Magazine 2006(January).
62. Wong, D. W. S.,, S. B. Batt,, C. C. Lee, and, G. H. Robertson. 2004. High-activity barley α-amylase by directed evolution. Protein J. 23:453460.
63. Yamasaki, I.,, S. Ueda, and, T. Shimada. 1963. Alcoholic fermentation of rice without previous cooking by using black-koji amylase. J. Ferm. Assoc. Jpn. 21:8386.
64. You, K. M., C.-L. Rosenfield, and, D. C. Knipple. 2003. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl. Environ. Microbiol. 69:14991503.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error