1887

Chapter 4 : Ethanol, Biomass, and Clostridia

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Ethanol, Biomass, and Clostridia, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap04-2.gif

Abstract:

A vigorous debate on gradual substitution of petroleum by use of renewable alternatives such as starch or sugar to ethanol or cellulosic biofuels dominates the political and economic agenda worldwide. Ethanol has been produced from sugarcane since the 1990s; an aggressive program has achieved the use of neat ethanol in new cars. There are various reports on lignocellulosic ethanol production using biomass. These indicate that ethanol from lignocellulosic biomass reduces “greenhouse gases” (GHG) emissions by about 80% compared to gasoline, whereas ethanol from corn reduces them by 20 to 30%. The cellulase system in comprises multiple enzyme complexes. In the case of hemicellulose, enzymatic saccharification by occurs, generating xylose and xylobiose; both are utilized by for production of ethanol, lactic acid, and acetic acid. The combination of both microorganisms in the production of ethanol has been central in the development of the consolidated bioprocessing concept of researchers. Although the coculture system is very promising, several barriers exist such as end product inhibition by the produced ethanol. This disadvantage can almost be counterbalanced by the process of ethanol distillation from dilute broths. The work by researchers on the structure of the cell surface multisubunit complex called the cellulosome has been very important for understanding the detailed interactions between the organism and its enzymes and the binding affinity to cellulose through the cellulosic binding domain.

Citation: Báez-Vásquez M, Demain A. 2008. Ethanol, Biomass, and Clostridia, p 49-54. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch4

Key Concept Ranking

Trichoderma reesei
0.5086207
Saccharomyces cerevisiae
0.5086207
Trichoderma reesei
0.5086207
Saccharomyces cerevisiae
0.5086207
Trichoderma reesei
0.5086207
Saccharomyces cerevisiae
0.5086207
Clostridium thermocellum
0.47594196
0.5086207
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Production of ethanol from U.S. corn.

Citation: Báez-Vásquez M, Demain A. 2008. Ethanol, Biomass, and Clostridia, p 49-54. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

A comparison of estimated selling prices of bioethanol from lignocellulosic biomass and bioethanol from corn.

Citation: Báez-Vásquez M, Demain A. 2008. Ethanol, Biomass, and Clostridia, p 49-54. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Ethanol production with a coculture system of and (modified from ).

Citation: Báez-Vásquez M, Demain A. 2008. Ethanol, Biomass, and Clostridia, p 49-54. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch04
1. Allen, S. G.,, D. Schulman, J. Lichwa, M. J. Antal, E. Jennings, and, R. Elander. 2001. A comparison of aqueous and dilute-acid single-temperature pretreatment of yellow poplar sawdust. Ind. Eng. Chem. Res. 40:23522361.
2. Bayer, E. A., and, R. Lamed. 1986. Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. J. Bacteriol. 167:828836.
3. Bayer, E. A.,, L. J. W. Shimon, Y. Shoham, and, R. Lamed. 1998. Cellulosomes—structure and ultrastructure. J. Struct. Biol. 124:221234.
4. Beguin, P., and, J. P. Aubert. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13:2558.
5. Beguin, P., and, M. Lemaire. 1996. The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. Crit. Rev. Biochem. Mol. Biol. 31:201236.
6. Bothast, R.,, N. N. Nichols, and, B. S. Dien. 1999. Fermentations with new recombinant organisms. Biotechnol. Prog. 75:867875.
7. Bumazkin, B. K.,, G. A. Velikodsorsakaya, K. Tuka, M. A. Mogutov, and, A. Strongin. 1990. Cloning of Clostridium thermocellum endoglucanase genes in Escherichia coli. Biochem. Biophys. Res. Commun. 168:13261327.
8. Demain, A. L., and, J. H. D. Wu. 1989. The cellulose complex of Clostridium thermocellum, p. 6886. In T. K. Ghose (ed.), First Generation of Bioprocess Engineering. Ellis Horwood, Chichester, United Kingdom.
9. Demain, A. L.,, M. Newcombe, and, J. H. D. Wu. 2005. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 69:124154.
10. Desai, S. G.,, M. L. Guerinot, and, L. R. Lynd. 2004. Cloning of the L-lactate dehydrogenase gene and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl. Microbiol. Biotechnol. 65:600605.
11. Farrell, A. E.,, R. J. Plevin, B. T. Turner, A. D. Jones, M. O’Hare, and, D. M. Kammen. 2006. Ethanol can contribute to energy and environmental goals. Science 311:506508.
12. Fox,, J. L. 2002. Legislation, technology boosting renewable fuel, materials uses. ASM News 68:480481.
13. Galbe, M., and, G. Zacchi. 2002. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59:618628.
14. Gerngross, U. T.,, M. P. M. Romaniec, N. S. Huskisson, and, A. L. Demain. 1993. Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol. Microbiol. 8:325334.
15. Gorhmann, K.,, R. Torget, and, M. Himmel. 1985. Optimization of dilute acid pretreatment of biomass. Biotechnol. Bioeng. Symp. 15:5980.
16. Gray, K. A.,, L. Zhao, and, M. Emptage. 2006. Bioethanol. Curr. Opin. Chem. Biol. 10:141146.
17. Greene, N., et al. 2004. Growing energy. How biofuels can help end America’s oil dependence. Nat. Res. Def. Council Rep. 2004:186.
18. Greene, N., and, R. Roth. 2006. Ethanol: energy well spent. A review of corn and cellulosic energy balances in the scientific literature to date. Ind. Biotechnol. 2:3639.
19. Greer, D. May 2005. Creating cellulosic ethanol: spinning straw into fuel. http://www.harvestcleanenergy.org/enews/enews_0505/enews_0505_Cellulosic_Ethanol.htm.
20. Guimaraes, B. G.,, H. Soucho, B. L. Lytle, J. H. D. Wu, and, P. M. Alzari. 2002. The crystal structure and catalytic mechanism of the cellobiohydrolase CelS, the major enzymatic component of the Clostridium themocellum cellulosome. J. Mol. Biol. 320:578596.
21. Herrero, A. A.,, R. F. Gomez, and, M. F. Roberts. 1985. 35P-NMR studies of Clostridium thermocellum. Mechanism of end product inhibition by ethanol. J. Biol. Chem. 260:74427451.
22. Hess, G. 2006a. Bush promotes alternative fuel. Chem. Eng. News 84(10):5056.
23. Hess, G. 2006b. Push for biofuels seen in farm bill. Chem. Eng. News 84 (21):2931.
24. Lynd, L. R.,, J. H. Cushman,, R. J. Nichols, and, C. E. Wyman. 1991. Fuel ethanol from cellulosic biomass. Science 251:13181323.
25. Lynd, L. R. 1996. Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment and policy. Annu. Rev. Energy Environ. 21:403465.
26. Lynd, L. R.,, P. J. Weimer, W. H. van Zyl, and, I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66:506577.
27. Lynd, L. R.,, J. Jin,, J. G. Michels,, C. E. Wyman, and, B. E. Dale. 2003. Bioenergy: background, potential, and policy. A policy briefing prepared for the Center for Strategic & International Studies, Washington, DC. http://i-farmtools.org/ref/Lynd_et_al_2002.pdf.
28. Lynd, L. R.,, W. H. van Zyl,, J. E. McBride, and, M. Laser. 2005. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16:577583.
29. Meilenz,, J. R. 2001. Ethanol production from biomass: technology and commercialization status. Curr. Opin. Microbiol. 4:324329.
30. Moriera, N. 2005. Growing expectations. New technology could turn fuel into a bumper crop. Sci. News 168:216218.
31. Perlack, R. D.,, L. L. Wright, A. F. Turhollow, R. L. Graham, B. J. Stokes, and, D. C. Erbach. 2005. Biomass as Feedstock for a Bio-energy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply. Oak Ridge Natl. Lab. 1–78. http://feedstockreview.ornl.gov/pdf/billion_ton_visio.pdf.
32. Philippidis, G.,, T. K. Smith, and, C. E. Wyman. 1993. Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by simultaneous saccharification and fermentation process. Biotechnol. Bioeng. 41:846853.
33. Sanderson,, K. W. 2007. Are ethanol and other biofuels technologies part of the answer for energy independence? Cereal Food World 52:57.
34. Shoham, Y.,, R. Lamed, and, E. A. Bayer. 1999. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7:275281.
35. Soetoert, W., and, E. Vandamme. 2006. The impact of industrial biotechnology. Biotechnol. J. 1:756769.
36. Sticklen, M. 2006. Plant genetic engineering to improve biomass characteristics for biofuels. Curr. Opin. Biotechnol. 17:315319.
37. Tyurin, M.,, S. G. Desai, and, L. R. Lynd. 2004. Electrotrans-formation studies in Clostridium thermocellum. Appl. Environ. Microbiol. 70:883890.
38. Tyurin, M. V.,, L. R. Lynd, and, J. Weigel. 2006. Gene transfer systems for obligately anaerobic thermophilic bacteria. Methods Microbiol. 35:309330.
39. U.S. Department of Energy. 2005. DOE report. Genomics: GTL Roadmap: Systems Biology for Energy and Environment. U.S. Department of Energy Office of Science. http://genomicsgtl.energy.gov/roadmap/.
40. U.S. Department of Energy. 2006. DOE report. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda. A Research Roadmap Resulting from the Biomass to Biofuel Workshop, Dec. 7–9, 2005 at Rockville, MD. U.S. Department of Energy. Office of Science and Office of Energy Efficiency and Renewable Energy. http://genomicsgtl.energy.gov/biofuels/b2bworkshop.shtml.
41. U.S. Department of Energy and Argonne Labs. 2005. Ethanol study. DOE Office of Energy Efficiency and Renewable Energy. http://www.ncga.com/public_policy/PDF/03_26_05ArgonneNatlLabEthanolStudy.pdf.
42. Wirth, T. E.,, C. B. Gray, and, J. D. Podesta. 2003. The future of energy policy. Foreign Affairs 82:132155.
43. Wyman, C. E., and, N. D. Hinman. 1990. Ethanol. Fundamentals of production from renewable feedstocks and use as a transportation fuel. Appl. Biochem. Biotechnol. 24-25: 735–753.
44. Wyman,, C. E. 1994. Alternative fuels from biomass and their impact on carbon dioxide accumulation. Appl. Biochem. Biotechnol. 45-46:897915.
45. Wyman, C. E.,, B. E. Dale, R. T. Elander, M. Hotzapple, M. R. Ladisch, and, Y. Y. Lee. 2005. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 96:19591966.
46. Zhang, Y.-H. P., and, L. R. Lynd. 2004. Kinetics and relative importance of phosphorylytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum. Appl. Environ. Microbiol. 70:15631569.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error