1887

Chapter 5 : Consolidated Bioprocessing of Cellulosic Biomass to Ethanol Using Thermophilic Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Consolidated Bioprocessing of Cellulosic Biomass to Ethanol Using Thermophilic Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap05-2.gif

Abstract:

This chapter considers use of thermophilic bacteria to produce ethanol in a consolidated bioprocessing (CBP) configuration. It mainly focuses on cellulose conversion, as it represents the largest technical challenge for development of CBP-enabling microorganisms, with an emphasis on recent developments pertaining to processing of cellulose by cellulolytic microorganisms. Thermophilic bacteria was first considered for CBP with respect to diversity and ecology, utilization of nonglucose sugars, and ethanol tolerance. Since some pretreatment processes solubilize essentially all of the hemicellulose, it may or may not be necessary that insoluble hemicellulose be enzymatically hydrolyzed in the context of industrial processing of cellulosic biomass. The major component of angiosperm hemicellulose is xylan that can be esterified or acylated by phenolic residues such as ferulic acid and -coumaric acid. Therefore, it is not surprising that hemicellulolytic bacteria must express a large set of cooperating enzymes in order to efficiently and completely hydrolyze hemicellulose and assimilate products of this hydrolysis. The authors concluded that a system similar to catabolite repression may be responsible for the apparent inhibition of cellulase synthesis and proposed that over time as cellobiose was metabolized, its concentration would drop below the point necessary to inhibit cellulase transcription. This work contradicted earlier studies which had concluded that the endoglucanase activity in was constitutive.

Citation: Lynd L, Currie D, Ciazza N, Herring C, Orem N. 2008. Consolidated Bioprocessing of Cellulosic Biomass to Ethanol Using Thermophilic Bacteria, p 55-74. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch5
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815547.ch05
1. Adams, J. J.,, G. Pal, Z. Jia, and, S. P. Smith. 2006. Mechanism of bacterial cell-surface attachment revealed by the structure of cellulosomal type II cohesin-dockerin complex. Proc. Natl. Acad. Sci. USA 103:305310.
2. Adelsberger, H.,, C. Hertel, E. Glawischnig, V. V. Zverlov, and, W. H. Schwarz. 2004. Enzyme system of Clostridium stercorarium for hydrolysis of arabinoxylan: reconstitution of the in vivo system from recombinant enzymes. Microbiology 150:22572266.
3. Aden, A.,, M. Ruth, K. Ibsen, J. Jechura, K. Neeves, J. Sheehan, B. Wallace, L. Montague, A. Slayton, and, J. Lukas. 2002. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover. NREL/TP-510-32438. National Renewable Energy Laboratory, Golden, CO.
4. Alper, H., and, G. Stephanopoulos. 2007. Global transcription machinery engineering: a new approach for improving cellular pheno-type. Metab. Eng. 9:258267.
5. Baba, T.,, R. Shinke, and, T. Nanmori. 1994. Identification and characterization of clustered genes for thermostable xylan-degrading enzymes, beta-xylosidase and xylanase, of Bacillus stearothermophilus 21. Appl. Environ. Microbiol. 60:22522258.
6. Baskaran, S.,, H. J. Ahn, and, L. R. Lynd. 1995. Investigation of the ethanol tolerance of Clostridium thermosaccharolyticum in continuous culture. Biotechnol. Prog. 11:276281.
7. Bayer, E. A.,, R. Kenig, and, R. Lamed. 1983. Adherence of Clostridium thermocellum to cellulose. J. Bacteriol. 156:818827.
8. Bazua, C. D., and, C. R. Wilke. 1977. Ethanol effects on the kinetics of a continuous fermentation with Saccharomyces cerevisiae. Biotechnol. Bioeng. Symp. 7:105118.
9. Bernardez, T. D.,, K. A. Lyford, and, L. R. Lynd. 1994. Kinetics of the extracellular cellulases of Clostridium thermocellum acting on pre-treated mixed hardwood and Avicel. Appl. Microbiol. Biotechnol. 41:620625.
10. Bredholt, S.,, J. Sonne-Hansen, P. Nielsen, I. Mathrani, and, B. K. Ahring. 1999. Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. Int. J. Syst. Bacteriol. 49:991996.
11. Bronnenmeier, K.,, H. Meissner, S. Stocker, and, W. Staudenbauer. 1995. alpha-D-glucuronidases from the xylanolytic thermophiles Clostridium stercorarium and Thermoanaerobacterium saccharolyticum. Microbiology 141:20332040.
12. Burdette, D. S.,, S. H. Jung,, G. J. Shen,, R. I. Hollingsworth, and, J. G. Zeikus. 2002. Physiological function of alcohol dehydrogenases and long-chain (C30) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus. Appl. Environ. Microbiol. 68:19141918.
13. Burke, D.,, P. Kaufman, M. McNeil, and, P. Albersheim. 1974. The structure of plant cell walls. VI. A survey of the walls of suspension-cultured monocots. Plant Physiol. 54:109115.
14. Cann, K. O.,, P. G. Stroot,, K. R. Mackie,, B. R. White, and, R. I. Mackie. 2001. Characterization of two novel saccharolytic anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium. Int. J. Syst. Bacteriol. 51:293302.
15. Carpita, N.,, M. McCann, and, L. R. Griffing. 1996. The plant extracellular matrix: news from the cell’s frontier. Plant Cell 8:14511463.
16. Chuvil’skya, N. A.,, N. P. Golovchenko,, B. F. Belokopytov, and, V. K. Akimenko. 1986. Isolation, identification and some physiological properties of Clostridium thermocellum. Prikl. Biokhim. Mikrobiol. 22:800805.
17. Chyi, Y. T., and, R. R. Dague. 1994. Effects of particulate size in anaerobic acidogenesis using cellulose as a sole carbon source. Water Environ. Res. 66:670678.
18. Collins, M. D.,, P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and, J. A. Farrow. 1994. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int.J. Syst. Bacteriol. 44:812826.
19. Coughlan, M. P., and, G. P. Hazlewood. 1993. beta-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17 (Pt. 3):259289.
20. D’Amore, T.,, C. J. Panchal, I. Russell, and, G. G. Stewart. 1990. A study of ethanol tolerance in yeast. Crit. Rev. Biotechnol. 9:287304.
21. Davidson, A. L., and, J. Chen. 2004. ATP-binding cassette transporters in bacteria. Annu. Rev. Biochem. 73:241268.
22. Deanda, K.,, M. Zhang, C. Eddy, and, S. Picataggio. 1996. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl. Environ. Microbiol. 62:44654470.
23. Demain, A. L.,, M. Newcomb, and, J. H. Wu. 2005. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 69:124154.
24. Derewenda, U.,, L. Swenson, R. Green, Y. Wei, R. Morosoli, F. Shareck, D. Kluepfel, and, Z. S. Derewenda. 1994. Crystal structure, at 2. 6 -A resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-D-glycanases. J. Biol. Chem. 269:2081120814.
25. Desai, S. G.,, M. L. Guerinot, and, L. R. Lynd. 2004. Cloning of L-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl. Microbiol. Biotechnol. 65: 600–605.
26. Donaghy, J. A.,, K. Bronnenmeier,, P. F. Soto-Kelly, and, A. M. McKay. 2000. Purification and characterization of an extracellular feruloyl esterase from the thermophilic anaerobe Clostridium stercorarium. J. Appl. Microbiol. 88:458466.
27. Dror, T. W.,, A. Rolider, E. A. Bayer, R. Lamed, and, Y. Shoham. 2003a. Regulation of expression of scaffoldin-related genes in Clostridium thermocellum. J. Bacteriol. 185:51095116.
28. Dror, T. W.,, E. Morag, A. Rolider, E. A. Bayer, R. Lamed, and, Y. Shoham. 2003b. Regulation of the cellulosomal CelS (cel48A) gene of Clostridium thermocellum is growth rate dependent. J. Bacteriol. 185:30423048.
29. Erbeznik, M.,, K. A. Dawson, and, H. J. Strobel. 1998a. Cloning and characterization of transcription of the xylAB operon in Thermoanaerobacter ethanolicus. J. Bacteriol. 180:11031109.
30. Erbeznik, M.,, H. J. Strobel,, K. A. Dawson, and, C. R. Jones. 1998b. The D-xylose-binding protein, XylF, from Thermoanaerobacter ethanolicus 39E: cloning, molecular analysis, and expression of the structural gene. J. Bacteriol. 180:35703577.
31. Erbeznik, M.,, S. E. Hudson,, A. B. Herrman, and, H. J. Strobel. 2004. Molecular analysis of the xylFGH operon, coding for xylose ABC transport, in Thermoanaerobacter ethanolicus. Curr. Microbiol. 48:299.
32. Esterbauer, H.,, W. Steiner, I. Labudova, A. Hermann, and, M. Hayn. 1991. Production of Trichoderma cellulase in laboratory and pilot scale. Bioresour. Technol. 36:5165.
33. Fan, Z.,, J. E. McBride, W. H. van Zyl, and, L. R. Lynd. 2005. Theoretical analysis of selection-based strain improvement for microorganisms with growth dependent on extracytoplasmic enzymes. Biotechnol. Bioeng. 92:3544.
34. Fardeau, M. L.,, B. Ollivier,, B. K. C. Patel,, M. Magot,, P. Thomas,, A. Rimbault,, F. Rocchiccioli, and, J. L. Garcia. 1997. Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int. J. Syst. Bacteriol. 47:10131019.
35. Fardeau, M. L.,, B. Ollivier,, J. L. Garcia, and, B. K. Patel. 2001. Transfer of Thermobacteroides leptospartum and Clostridium thermolacticum as Clostridium stercorarium subsp. leptospartum subsp. thermolacticum subsp. nov., comb. nov. and C. stercorarium subsp. thermolacticum subsp. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 51:11271131.
36. Fernandez-Bolanos, J.,, B. Felizon,, A. Heredia,, R. Rodriguez,, A. Jimenez. 2001. Steam-explosion of olive stones: hemicellu-lose solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresour. Technol. 79:61.
37. Garcia-Martinez, D. V.,, A. Shinmyo, A. Madia, and, A. L. Demain. 1980. Studies on cellulase production by Clostridium thermocellum. Eur. J. Appl. Microbiol. Biotechnol. 9:189197.
38. Ghose, P.,, N. B. Pamment, and, W. R. B. Martin. 1982. Simultaneous saccharification and fermentation of cellulose: effect of β-D-glucose activity and ethanol inhibition of cellulases. Enzyme Microb. Technol. 4:425430.
39. Ghose,, T. K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59:257268.
40. Ghose, T. K., and, R. D. Tyagi. 1979. Rapid ethanol fermentation of cellulose hydrolysate. 2. Product and substrate inhibition and optimization of fermentor design. Biotechnol. Bioeng. Symp. 21:14001420.
41. Greene, N.,, F. E. Celik, B. Dale, M. Jackson, K. Jayawardhana, H. Jin, E. D. Larson, M. Laser, L. Lynd, and, D. MacKenzie. 2004. Growing energy: how biofuels can help end America’s oil dependence. National Resources Defense Council, Washington, DC. http://www.nrdc.org/air/energy/biofuels/biofuels.pdf.
42. Guedon, E.,, M. Desvaux, and, H. Petitdemange. 2002. Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl. Environ. Microbiol. 68:5358.
43. Han, R.,, H. Min, M. Che, and, Y. Zhao. 2002. Isolation, identification and phylogenetic analysis of a thermophilic cellulolytic anaerobic bacterium. Wei Sheng Wu Xue Bao. 42:138144. (In Chinese.)
44. Harris,, G. W.,, J. A. Jenkins,, I. Connerton,, N. Cummings,, L. Lo Leggio,, M. Scott,, G. P. Hazlewood,, J. I. Laurie,, H. J. Gilbert, and, R. W. Pickersgill. 1994. Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites. Structure 2:11071116.
45. Haruta, S.,, Z. Cui,, Z. Huang,, M. Li,, Y. Igarashi. 2002. Construction of a stable microbial community with high cellulose-degradation ability. Appl. Microbiol. Biotechnol. 59:529534.
46. Herrero,, A. A., and R. F. Gomez. 1980. Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl. Environ. Microbiol. 40:571577.
47. Herrero, A. A.,, R. F. Gomez, and, M. F. Roberts. 1982. Ethanol induced changes in the membrane lipid composition of C. thermocellum. Biochim. Biophys. Acta 693:195204.
48. Herrero, A. A.,, R. F. Gomez, and, M. F. Roberts. 1985. 31P NMR studies of Clostridium thermocellum. Mechanism of end product inhibition by ethanol. J. Biol. Chem. 260:74427451.
49. Ho, N. W. Y.,, Z. Chen, A. Brainard, and, M. Sedlak. 1999. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv. Biochem. Eng. Biotechnol. 65:164192.
50. Huang, C.,, B. K. Patel,, R. A. Mah, and, L. Baresi. 1998. Caldicellulosiruptor owensensis sp. nov., an anaerobic, extremely thermophilic, xylanolytic bacterium. Int. J. Syst. Bacteriol. 48:9197.
51. Ingram,, L. O. 1990. Ethanol tolerance in bacteria. Crit. Rev. Biotechnol. 9:305319.
52. Ingram, L. O.,, P. F. Gomez,, X. Lai,, M. Moniruzzaman,, B. E. Wood,, L. P. Yomano, and, S. W. York. 1998. Metabolic engineering of bacteria for ethanol production. Biotechnol. Bioeng. 58:204214.
53. Izydorczyk, M. S., and, C. G. Biliaderis. 1995. Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr. Polymers 28: 48.
54. Jeffries,, T. W. 1996. Biochemistry and genetics of microbial xylanases. Curr. Opin. Biotechnol. 7:337342.
55. Jeffries, T. W., and, Y. S. Jin. 2000. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv. Appl. Microbiol. 47:221268.
56. Jenkins, J.,, L. Lo Leggio, G. Harris, and, R. Pickersgill. 1995. [beta]-Glucosidase, [beta]-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold [beta]/[alpha] architecture and with two conserved glutamates near the carboxy-terminal ends of [beta]-strands four and seven. FEBS Lett. 362:285.
57. Jin, F.,, K. Yamasato, and, K. Toda. 1988. Clostridium thermocopriae sp. nov., a cellulolytic thermophile from animal feces, compost, soil, and a hot spring in Japan. Int. J. Syst. Bacteriol. 38:279281.
58. Jin Z., K. S. Katsumata,, T. B. Lam, and, K. Iiyama. 2006. Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods. Biopolymers 83:103110.
59. Johnson,, E. A. 1983. Regulation of cellulase activity and synthesis in Clostridium thermocellum. Ph.D. dissertation. Massachusetts Institute of Technology, Cambridge.
60. Johnson, E. A.,, F. Bouchot, and, A. L. Demain. 1985. Regulation of cellulase formation in Clostridium thermocellum. J. Gen. Micro-biol. 131:23032308.
61. Johnson, E. A.,, M. Sakajoh, G. Halliwell, A. Madia, and, A. L. Demain. 1982. Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl. Environ. Microbiol. 43:11251132.
62. Jones, C.,, M. Ray, and, H. Strobel. 2002a. Cloning and transcriptional analysis of the Thermoanaerobacter ethanolicus strain 39E maltose ABC transport system. Extremophiles 6:299.
63. Jones, C. R.,, M. Ray, and, H. J. Strobel. 2002b. Transcriptional analysis of the xylose ABC transport operons in the thermophilic anaerobe Thermoanaerobacter ethanolicus. Curr. Microbiol. 45:62.
64. Jones, C. R.,, M. Ray,, K. A. Dawson, and, H. J. Strobel. 2000. High-affinity maltose binding and transport by the thermophilic anaerobe Thermoanaerobacter ethanolicus 39E. Appl. Environ. Micro-biol. 66:9951000.
65. Jones,, R. P. 1989. Biological principles for the effects of ethanol. Enzyme Microb. Technol. 11:130153.
66. Karita, S.,, K. Nakayama, M. Goto, K. Sakka, W. J. Kim, and, S. Ogawa. 2003. A novel cellulolytic, anaerobic, and thermophilic bacterium, Moorella sp. strain F21. Biosci. Biotechnol. Biochem. 67:183185.
67. Kato, S.,, S. Haruta, Z. J. Cui, M. Ishii, A. Yokota, and, Y. Igarashi. 2004. Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int. J. Syst. Evol. Micro-biol. 54:20432047.
68. Kim, Y.,, L. O. Ingram, and, K. T. Shanmugam. 2007. Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Appl. Environ. Microbiol. 73:17661771.
69. Klapatch, T. R.,, D. A. Hogsett, S. Baskaran, and, S. Pal. 1994. Organism development and characterization for ethanol production using thermophilic bacteria. Appl. Biochem. Biotechnol. 45/46:209223.
70. Klapatch, T. R.,, M. L. Guerinot, and, L. R. Lynd. 1996. Electrotrans-formation of Clostridium thermosaccharolyticum. J. Ind. Micro-biol. 16:342347.
71. Klaushofer, H., and, E. Parkkinen. 1965. Zur Frage der Bedeutung aerober und anaerober thermophiler Sporenbildner als Infektionsursache in Rubenzucker-Fabriken. I. Clostridium thermohydrosulfuricum, eine neue Art eines saccharoseabbauenden, thermophilen, schwefelwasserstoff bildenden Clostridiums. Zuckerind 15:445449.
72. Klinke, H. B.,, A. B. Thomsen, and, B. K. Ahring. 2004. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 66:1026.
73. Kormelink, F. J. M.,, H. Gruppen, and, A. G. J. Voragen. 1993. Mode of action of (1––4)-beta-D-arabinoxylan arabinofuranohydrolase (AXH) and alpha-L-arabinofuranosidases on alkali-extractable wheat-flour arabinoxylan. Carbohydr. Res. 249:353.
74. Kosugi, A.,, K. Murashima, and, R. H. Doi. 2002. Xylanase and acetyl xylan esterase activities of XynA, a key subunit of the Clostridium cellulovorans cellulosome for xylan degradation. Appl. Environ. Microbiol. 68:63996402.
75. Kuyper, M.,, A. A. Winkler, J. P. van Dijken, and, J. T. Pronk. 2004. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res. 4:655664.
76. Kuyper, M.,, M. J. Toirkens, J. A. Diderich, A. A. Winkler, J. P. van Dijken, and, J. T. Pronk. 2005. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5:925934.
77. Larsen, L.,, P. Nielsen, and, B. K. Ahring. 1997. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a Hot Spring in Iceland. Arch. Micro-biol. 168:114119.
78. Laureano-Perez, L.,, F. Teymouri, H. Alizadeh, and, B. E. Dale. 2005. Understanding factors that limit enzymatic hydrolysis of biomass: characterization of pretreated corn stover. Appl. Biochem. Biotechnol. 121–124:10811099.
79. Le, R. P.,, H. C. Dubourguier, G. Albagnac, and, G. Prensier. 1985. Characterization of Clostridium thermolacticum sp. n ov., a hydro-lytic thermophilic anaerobe producing high amoounts of lactate. Syst. Appl. Microbiol. 6:196202.
80. Lee, J. 1997. Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol. 56:124.
81. Lee, Y. E.,, M. K. Jain, C. Lee, S. E. Lowe, and, G. J. Zeikus. 1993. Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100–69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int. J. Syst. Bacteriol. 43:4151.
82. Lindsay, S. E.,, R. J. Bothast, and, L. O. Ingram. 1995. Improved strains of recombinant Escherichia coli for ethanol production from sugar mixtures. Appl. Microbiol. Biotechnol. 43:7075.
83. Liu, S. Y.,, F. A. Rainey, H. W. Morgan, F. Mayer, and, J. Wiegel. 1996. Thermoanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium. Int. J. Syst. Bacteriol. 46:388396.
84. Lovitt, R. W., G.-J. Shen, and, J. G. Zeikus. 1988. Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J. Bacteriol. 170:28092815.
85. Lovitt, R. W.,, R. Longin, and, J. G. Zeikus. 1984. Ethanol production by thermophilic bacteria: physiological comparison of solvent effects on parent and alcohol-tolerant strains of Clostridium thermohydrosulfuricum. Appl. Environ. Microbiol. 48:171177.
86. Lu, Y. P.,, Y. H. P. Zhang, and, L. R. Lynd. 2006. Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc. Natl. Acad. Sci. USA 103:1616516169.
87. Lynd,, L. R. 1989. Ethanol production from lignocellulosic substrates using thermophilic bacteria: critical evaluation of potential and review. Adv. Biochem. Eng. Biotechnol. 38:152.
88. Lynd, L. R.,, H. J. Ahn, G. Anderson, P. Hill, S. D. Kersey, and, T. Klapatch. 1991. Thermophilic ethanol production: investigation of ethanol yield and tolerance in continuous culture. Appl. Biochem. Biotechnol. 28/29:549570.
89. Lynd, L. R.,, M. S. Laser,, D. Bransby,, B. E. Dale,, B. Davison,, R. Hamilton,, M. Himmel,, M. Keller,, J. D. McMillan,, J. Sheehan, and, C. E. Wyman. 2008. How biotech can transform biofuels. Nat. Biotechnol. 26:169172.
90. Lynd, L. R.,, W. H. van Zyl, J. E. McBride, and, M. Laser. 2005. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16:577583.
91. Lynd, L. R.,, P. J. Weimer, W. H. van Zyl, and, I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66:506577.
92. Lynd, L. R.,, P. J. Weimer, G. Wolfaardt, and, Y. H. P. Zhang. 2007. Cellulose hydrolysis by Clostridium thermocellum: a microbial perspective, p. 95117. In V. Uversky and, I. A. Kataeva (ed.), Molecular Anatomy and Physiology of Proteins Cellulosome. Nova Science Publishers Inc., Hauppage, NY.
93. Lynd, L. R., and, Y. H. Zhang. 2002. Quantitative determination of cellulase concentration as distinct from cell concentration in studies of microbial cellulose utilization: analytical framework and methodological approach. Biotechnol. Bioeng. 77:467475.
94. Madden,, R. H. 1983. Isolation and characterization of Clostridium stercorarium sp. nov., cellulolytic thermophile. Int. J. Syst. Bacteriol. 33:837840.
95. Mai, V., and, J. Wiegel. 2000. Advances in development of a genetic system for Thermoanaerobacterium spp.: expression of genes encoding hydrolytic enzymes, development of a second shuttle vector, and integration of genes into the chromosome. Appl. Environ. Microbiol. 66:48174821.
96. Mai, V.,, W. W. Lorenz, and, J. Wiegel. 1997. Transformation of Thermoanaerobacterium sp. strain JW/SL-YS485 with plasmid pIKM1 conferring kanamycin resistance. FEMS Microbiol. Lett. 148:163167.
97. Matthews, J. F.,, C. E. Skopec,, P. E. Mason,, P. Zuccato,, R. W. Torget,, J. Sugiyama,, M. E. Himmel, and, J. W. Brady. 2006. Computer simulation studies of microcrystalline cellulose I beta. Carbohydr. Res. 341:138152.
98. McBee,, R. H. 1950. The anaerobic thermophilic cellulolytic bacteria. Bacteriol. Rev. 14:5163.
99. McBee,, R. H. 1954. The characteristics of Clostridium thermocellum. J. Bacteriol. 67:505506.
100. McMillan,, J. D. 1993. Pretreatment of lignocellulosic biomass, p. 292323. In M. E. Himmel,, J. O. Baker, and, R. P. Overend (ed.), Enzymatic Conversion of Biomass for Fuel Production. American Chemical Society, Washington, DC.
101. Miao, S.,, L. Ziser, R. Aebersold, and, S. G. Withers. 1994. Identification of glutamic acid 78 as the active site nucleophile in Bacillus subtilis xylanase using electrospray tandem mass spec-trometry. Biochemistry 33:70277032.
102. Millar, D. G.,, K. Griffiths-Smith, E. Algar, and, R. K. Scopes. 1982. Activity and stability of glycolytic enzymes in the presence of ethanol. Biotechnol. Lett. 4:601606.
103. Miranda-Tello, E.,, M. L. Fardeau,, P. Thomas,, F. Ramirez,, L. Cassalot,, J. L. Cayol,, J. L. Garcia, and, B. Ollivier. 2004. Pertoga mexicana sp. nov., a novel thermophilic anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int. J. Syst. Evol. Microbiol. 54:169174.
104. Miron, J.,, D. Ben-Ghedalia, and, M. Morrison. 2001. Adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci. 84:12941309.
105. Mishra, S.,, P. Beguin, and, J. P. Aubert. 1991. Transcription of Clostridium thermocellum endoglucanase genes celF and celD. J. Bacteriol. 173:8085.
106. Mitchell,, W. J. 1998. Physiology of carbohydrate to solvent conversion by clostridia. Adv. Microb. Physiol. 39:31130.
107. Mladenovska, Z., and, I. Mathrani. 1995. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium. Arch. Microbiol. 163:223230.
108. Morag, E.,, E. A. Bayer, and, R. Lamed. 1992. Affinity digestion for the near-total recovery of purified cellulosome from Clostridium thermocellum. Enzyme Microb. Technol. 14:289292.
109. Mosier, N.,, C. Wyman,, B. Dale,, R. Elander,, Y. Y. Lee,, M. Holtzapple, and, M. Ladisch. 2005. Features of promising technologies for pre-treatment of lignocellulosic biomass. Bioresour. Technol. 96:686.
110. Mourino, F. M.,, R. Akkarawongsa, and, P. J. Weimer. 2001. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro. J. Dairy Sci. 84:848859.
111. Muir, M.,, L. Williams, and, T. Ferenci. 1985. Influence of transport energization on the growth yield of Escherichia coli. J. Bacteriol. 163:12371242.
112. Nagy, T.,, K. Emami,, C. M. G. A. Fontes,, L. M. A. Ferreira,, D. R. Humphry, and, H. J. Gilbert. 2002. The membrane-bound {alpha}-glucuronidase from Pseudomonas cellulosa hydrolyzes 4-O- methyl-D-glucuronoxylooligosaccharides but not 4-O-methyl-D-glucuronoxylan. J. Bacteriol. 184:49254929.
113. Newcomb, M.,, C. Y. Chen, and, J. H. D. Wu. 2007. Induction of the celC operon of Clostridium thermocellum by laminaribiose. Proc. Natl. Acad. Sci. USA 104:37473752.
114. Ng, T. K., and, J. G. Zeikus. 1982. Differential metabolism of cellobiose and glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum. J. Bacteriol. 150:13911399.
115. Onyenwoke, R.,, Y. Lee,, S. Dabrowski,, B. K. Ahring, and, J. Wiegel. 2006. Reclassification of Thermoanaerobium acetigenum as Caldicellulosiruptor acetigenus comb. nov. and emendation of the genus description. Int. J. Syst. Bacteriol. 56:13911395.
116. Ozkan, M.,, S. G. Desai,, Y. Zhang,, D. M. Stevenson,, J. Beane,, E. A. White,, M. L. Guerinot, and, L. R. Lynd. 2001. Characterization of 13 newly isolated strains of anaerobic, cellulolytic, thermophilic bacteria. J. Ind. Microbiol. Biotechnol. 27:275280.
117. Pronk, J.,, M. Kuyper, M. Toirkens, R. Winkler, H. van Dijken, and, W. de Laat. 2005. Engineering Saccharomyces cerevisiae for xylose utilization. J. Biotechnol. 118:S86S87.
118. Rainey, F. A.,, A. M. Donnison,, P. H. Janssen,, D. Saul,, A. Rodrigo,, P. L. Bergquist,, R. M. Daniel,, E. Stackebrandt, and, H. W. Morgan. 1994. Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol. Lett. 120:263266.
119. Robinson, J.,, J. Keating, A. Boussaid, S. Mansfield, and, J. Saddler. 2002. The influence of bark on the fermentation of Douglas-fir whitewood pre-hydrolysates. Appl. Microbiol. Biotechnol. 59:448.
120. Saha,, B. C. 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30:291.
121. Sato, K.,, M. Tomita, S. Yonemura, S. Goto, K. Sekine, E. Okuma, Y. Takagi, K. Hon-nami, and, T. Saiki. 1993. Characterization of and ethanol hyper-production by Clostridium thermocellum I-1-B. Biosci. Biotechnol. Biochem. 57:21162121.
122. Schneider, E. 2001. ABC transporters catalyzing carbohydrate up-take. Res. Microbiol. 152:310.
123. Schwarz, W. H.,, K. Bronnenmeier, B. Krause, F. Lottspeich, and, W. L. Staudenbauer. 1995. Debranching of arabinoxylan: properties of the thermoactive recombinant a-L-arabinofuranosidase from Clostridium stercorarium (ArfB). Appl. Microbiol. Biotechnol. 43:860.
124. Schwarz,, W. H. 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56:634649.
125. Sedlak, M., and, N. W. Y. Ho. 2004. Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl. Biochem. Biotechnol. 113–116:403416.
126. Shinmyo, A.,, D. V. Garcia-Martinez, and, A. L. Demain. 1979. Studies on the extracellular cellulolytic enzyme complex produced by Clostridium thermocellum. J. Appl. Biochem. 1:202209.
127. Shoham, Y.,, R. Lamed, and, E. A. Bayer. 1999. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7:275281.
128. Sissons, C. H.,, K. R. Sharrock,, R. M. Daniel, and, H. W. Morgan. 1987. Isolation of cellulolytic anaerobic extreme thermophiles from New Zealand thermal sites. Appl. Environ. Microbiol. 53:832838.
129. Sjöström, E. 1993. Wood Chemistry: Fundamentals and Applications. Academic Press, San Diego, CA.
130. Slapack, G. E.,, I. Russell, and, G. G. Stewart. 1987. Thermophilic microbes in ethanol production. CRC Press, Inc., Boca Raton, FL.
131. Sleyter, U. B., and, K. O. Stetter. 1986. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch. Microbiol. 144:324333.
132. Sørensen, H. R.,, A. S. Meyer, and, S. Pedersen. 2003. Enzymatic hydrolysis of water-soluble wheat arabinoxylan. 1. Synergy between alpha-L-arabinofuranosidases, endo-1,4-beta-xylanases, and beta-xylosidase activities. Biotechnol. Bioeng. 81:726731.
133. Soutschek-Bauer, E.,, L. Hartl, and, W. L. Staudenbauer. 1985. Transformation of Clostridium thermohydrosulfuricum DSM 586 with plasmid DNA. Biotechnol. Lett. 7:705710.
134. Stevenson, D. M., and, P. J. Weimer. 2005. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Appl. Environ. Microbiol. 71:46724678.
135. Strobel,, H. J. 1995. Growth of the thermophilic bacterium Clostridium thermocellum in continuous culture. Curr. Microbiol. 31:214.
136. Strobel, H. J.,, F. C. Caldwell, and, K. A. Dawson. 1995. Carbohydrate transport by the anaerobic thermophile Clostridium thermocellum LQRI. Appl. Environ. Microbiol. 61:40124015.
137. Sudha Rani, K., and, G. Seenayya. 1999. High ethanol tolerance of new isolates of Clostridium thermocellum strains SS21 and SS22. World J. Microbiol. Biotechnol. 15:173178.
138. Suh, J. H.,, S. G. Cho, and, Y. J. Choi. 1996. Synergistic effects among endo-xylanase, {beta}-xylosidase, and {alpha}-L-arabinofuranosidase from Bacillus stearothermophilus. J. Microbiol. Biotechnol. 6:179183.
139. Sun, Y., and, J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83:111.
140. Sunna, A., and, G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17:3967.
141. Svetlichny, V. A.,, T. P. Svetlichnaya,, N. A. Chernykh, and, G. A. Zavarzin. 1990. Anaerocellum thermophilum gen. nov., sp. nov., an extreme thermophilic cellulolytic eubacterium isolated from the hot springs in the Valley of Geysers. Mikrobiologiya 59:871879.
142. Thomas, J. R.,, M. McNeil,, A. G. Darvill, and, P. Albersheim. 1987. Structure of plant cell walls. XIX. Isolation and characterization of wall polysaccharides from suspension-cultured Douglas Fir cells. Plant Physiol. 83:659671.
143. Toda, Y.,, T. Saiki, T. Uozumi, and, T. Beppu. 1988. Isolation and characterization of a protease-producing thermophilic, anaerobic bacterium, Thermobacteroides leptospartum sp. nov. Agric. Biol. Chem. 52:13391344.
144. Torronen, A., and, J. Rouvinen. 1995. Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochemistry 34:847856.
145. Tsoi, T. V.,, N. A. Chuvil’skaia, I. Atakishieva, T. Dzhavakhishvili, and, V. K. Akimenko. 1987. Clostridium thermocellum—a new object of genetic studies. Mol. Gen. Mikrobiol. Virusol. 1987:823. (In Russian.)
146. Tsujibo, H.,, M. Kosaka,, S. Ikenishi,, T. Sato,, Y. Inamori. 2004. Molecular characterization of a high-affinity xylobiose transporter of Streptomyces thermoviolaceus OPC-520 and its transcriptional regulation. J. Bacteriol. 186:10291037.
147. Tyurin, M. V.,, L. R. Lynd, and, J. Wiegel. 2006. Gene transfer systems for obligately anaerobic thermophilic bacteria. Extremophiles 35:309330.
148. Tyurin, M. V.,, S. G. Desai, and, L. R. Lynd. 2004. Electrotrans-formation of Clostridium thermocellum. Appl. Environ. Microbiol. 70:883890.
149. Underwood, S. A.,, S. Zhou,, T. B. Causey,, L. P. Yomano,, K. T. Shanmugam, and, L. O. Ingram. 2002. Genetic changes to optimize carbon partitioning between ethanol and biosynthesis in ethanologenic Escherichia coli. Appl. Environ. Microbiol. 68:62636272.
150. U.S. Department of Energy. 2004. Biomass Program Multi-Year Technical Plan. Biomass Program, U.S. Department of Energy, Washington, DC.
151. U.S. Department of Energy. 2005. Breaking the Biological Barriers to Cellulosic Ethanol: a Joint Research Agenda. U.S. Department of Energy, Rockville, MD. http://genomicsgtl.energy.gov/biofuels/.
152. van der Heide, T., and, B. Poolman. 2002. ABC transporters: one, two or four extracytoplasmic substrate-binding sites? EMBO Rep. 3:938943.
153. van Zyl, W. H.,, L. R. Lynd, R. den Haan, and, J. E. McBride. 2007. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 108:205235.
154. Walker, G. 1998. Yeast growth, p. 101202. In G. Walker (ed.), Yeast: Physiology and Biotechnology. Wiley, New York, NY.
155. Wang, D. I. C.,, G. C. Avgerinos., I. Biocic,, S. D. Fang, and, H. Y. Fang. 1983. Ethanol from cellulosic biomass. Philos. Trans. R. Soc. London B300:323333.
156. Warner, J. B., and, J. S. Lolkema. 2003. CcpA-dependent carbon catabolite repression in bacteria. Microbiol. Mol. Biol. Rev. 67:475490.
157. Weimer,, P. J. 1996. Why don’t ruminal bacteria digest cellulose faster? J. Dairy Sci. 79:14961502.
158. White, A.,, S. G. Withers,, N. R. Gilkes, and, D. R. Rose. 1994. Crystal structure of the catalytic domain of the beta-1,4-glycanase cex from Cellulomonas fimi. Biochemistry 33:1254612552.
159. Wiegel,, J., and L. G. Ljungdahl. 1981. Thermoanaerobacter ethanolicus gen nov., spec. nov., a new, extreme thermophilic anaerobic bacterium. Arch. Microbiol. 128:343348.
160. Williams, T. I.,, J. C. Combs,, B. C. Lynn, and, H. J. Strobel. 2007. Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl. Microbiol. Biotechnol. 74:422432.
161. Wilson, C. A., and T. M. Wood. 1992. The anaerobic fungus Neocallimastix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Appl. Microbiol. Biotechnol. 37:125129.
162. Winker, S., and, C. R. Woese. 1991. A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst. Appl. Microbiol. 14:305310.
163. Withers, S. G., and, R. Aebersold. 1995. Approaches to labeling and identification of active site residues in glycosidases. Protein Sci. 4:361372.
164. Wood, B. E., and, L. O. Ingram. 1992. Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl. Environ. Microbiol. 58:21032110.
165. Wyman,, C. E. 2007. What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol. 25:157.
166. Yomano, L. P.,, S. W. York, and, L. O. Ingram. 1998. Isolation and characterization of ethanol-tolerant mutants of E. coli KO11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol. 20:132138.
167. Zacchi, G., and, A. Axelsson. 1989. Economic evaluation of preconcentration in production of ethanol from dilute sugar solutions. Biotechnol. Bioeng. 34:223233.
168. Zaldivar, J.,, J. Nielsen, and, L. Olsson. 2001. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 56:1734.
169. Zeikus, G. J.,, P. W. Hegge, and, M. A. Anderson. 1979. Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 122:4148.
170. Zhang, M.,, C. Eddy, K. Deanda, M. Finkelstein, and, S. Picataggio. 1995. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240243.
171. Zhang, Y. H., and, L. R. Lynd. 2005a. Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J. Bacteriol. 187:99106.
172. Zhang, Y. H., and, L. R. Lynd. 2005b. Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc. Natl. Acad. Sci. USA 102:73217325.
173. Zhang, Y. H., and, L. R. Lynd. 2006. A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol. Bioeng. 94:888898.
174. Zhang, Y. H., and, L. R. Lynd. 2003. Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures. Anal. Chem. 75:219227.
175. Zverlov, V.,, S. Mahr, K. Riedel, and, K. Bronnenmeier. 1998. Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile ‘Anaerocellum thermophilum’ with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144 (Pt. 2):457465.

Tables

Generic image for table
Table 1.

Physiological characteristics and phenotypes of discussed species

Citation: Lynd L, Currie D, Ciazza N, Herring C, Orem N. 2008. Consolidated Bioprocessing of Cellulosic Biomass to Ethanol Using Thermophilic Bacteria, p 55-74. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch5
Generic image for table
Table 2.

Comparative rates of cellulose hydrolysis under dilute conditions

Citation: Lynd L, Currie D, Ciazza N, Herring C, Orem N. 2008. Consolidated Bioprocessing of Cellulosic Biomass to Ethanol Using Thermophilic Bacteria, p 55-74. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error