1887

Chapter 6 : Cellulosome-Enhanced Conversion of Biomass: On the Road to Bioethanol

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Cellulosome-Enhanced Conversion of Biomass: On the Road to Bioethanol, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap06-2.gif

Abstract:

The cellulosome was first isolated on the basis of the cellulose-binding function of the anaerobic thermophilic bacterium . Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. The cellulose utilization systems in cellulosome-producing bacteria include over 100 different genes that must be orchestrated and timely expressed. The concept of directly converting biomass to ethanol by a mixed clostridial fermentation was fashionable some 30 years ago when it was found that the product pattern of in favor of ethanol could become almost quantitative in stable coculture with another ethanol-producing anaerobe. The action of the exocellular protuberance-bound cellulosome may serve to delay or limit diffusional loss of the hydrolyzed sugar to the environment and/or competing bacteria. Consolidated bioprocessing (CBP) was recently extended for direct production of ethanol in yeast by cloning an endoglucanase and a ß-glucosidase in . At present, , as a very potent cellulolytic, anaerobic thermophile, still seems to be the microorganism of choice for future bioethanol production from biomass. Theoretically, can be engineered metabolically to produce better yields of ethanol or other products. Eventually, yeast cell surfaces may be modified to contain designer cellulosomes for direct ethanol conversion. The combination of CBP with the designer cellulosome concept may ultimately provide optimized degradation of specific cellulosic feedstocks for bioethanol production.

Citation: Bayer E, Shoham Y, Lamed R. 2008. Cellulosome-Enhanced Conversion of Biomass: On the Road to Bioethanol, p 75-96. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch6

Key Concept Ranking

Enzyme-Linked Immunosorbent Assay
0.42142904
Cell Wall Components
0.40127015
0.42142904
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Cellulosome architecture of The cellulosomal enzymes are attached via their type I dockerin modules to the type I cohesins of the CipA scaffoldin. In turn, the CipA scaffoldin is attached, via its divergent type II dockerin, to a series of anchoring scaffoldins—SdbA, Orf2p, and OlpB—which bear one, two, and four type II cohesins, respectively. The anchoring scaffoldins carry at their C terminus an SLH module that anchors the cellulosome to the bacterial cell surface. A single CBM on the CipA scaffoldin binds the cellulosome and the entire cell to the cellulose substrate.

Citation: Bayer E, Shoham Y, Lamed R. 2008. Cellulosome-Enhanced Conversion of Biomass: On the Road to Bioethanol, p 75-96. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Scaffoldins of different cellulosome-producing bacteria. Micrographs of the bacteria are also included. The four scaffoldins of the paradigm are shown. The type II cohesin-dockerin pairs are shown in a darker shade of gray, and the anchoring component, SLH module or sortase signal, is designated by the adjacent symbol of an anchor. The other clostridial species are characterized with a single scaffoldin. The four scaffoldins of the system are more cross-interactive than that of the paradigm (see the text for details). The reversed types of cohesindockerin pairings are evident in the system, as are the two exceptionally large scaffoldins. The system is especially elaborate, with the single-cohesin ScaC “adaptor” scaffoldin providing the means with which to modify the repertoire of cellulosomal components.

Citation: Bayer E, Shoham Y, Lamed R. 2008. Cellulosome-Enhanced Conversion of Biomass: On the Road to Bioethanol, p 75-96. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Schematic representation of the designer cellulosome concept. In the native complex (left) the specificity of the cohesin-dockerin interaction is usually identical. If the native components are used, we would expect random incorporation of the enzymes, resulting in a large collection of artificial cellulosomes heterogeneous in their content. In designer cellulosomes (right) composed of matching chimeric components, the specificity of the different cohesin-dockerin pairs is divergent, thus facilitating the controlled incorporation of enzyme components.

Citation: Bayer E, Shoham Y, Lamed R. 2008. Cellulosome-Enhanced Conversion of Biomass: On the Road to Bioethanol, p 75-96. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Engineering of potent cellulolytic microorganisms for production of biofuels. Bacterial, mold, or yeast host cell systems can be converted into a cellulosome producer by cloning appropriate genes that code for cellulases and/or designer cellulosome components (i.e., a chimeric scaffoldin and desired dockerin-containing hybrid enzymes). The resultant cellulolytic cells can be grown directly on cellulosic biomass to produce the desired end product, e.g., sugar intermediates or final bio-fuel.

Citation: Bayer E, Shoham Y, Lamed R. 2008. Cellulosome-Enhanced Conversion of Biomass: On the Road to Bioethanol, p 75-96. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch06
1. Ahsan, M. M.,, T. Kimura, S. Karita, K. Sakka, and, K. Ohmiya. 1996. Cloning, DNA sequencing, and expression of the gene encoding Clostridium thermocellum cellulase CelJ, the largest catalytic component of the cellulosome. J. Bacteriol. 178:57325740.
2. Ahsan, M. M.,, M. Matsumoto,, S. Karita,, T. Kimura,, K. Ohmiya. 1997. Purification and characterization of the family J catalytic domain derived from the Clostridium thermocellum endoglucanase CelJ. Biosci. Biotechnol. Biochem. 61:427431.
3. Ait, N.,, N. Creuzet, and, P. Forget. 1979. Partial purification of cellulase from Clostridium thermocellum. J. Gen. Microbiol. 113:399402.
4. Ali, B. R.,, M. P. Romaniec,, G. P. Hazlewood, and, R. B. Freedman. 1995. Characterization of the subunits in an apparently homogeneous subpopulation of Clostridium thermocellum cellulosomes. Enzyme Microb. Technol. 17:705711.
5. Antonopoulos, D. A.,, K. E. Nelson, M. Morrison, and, B. A. White. 2004. Strain-specific genomic regions of Ruminococcus flavefaciens FD-1 as revealed by combinatorial random-phase genome sequencing and suppressive subtractive hybridization. Environ. Microbiol. 6:335346.
6. Arai, T.,, A. Kosugi,, H. Chan,, R. Koukiekolo,, H. R. H. Doi. 2006. Properties of cellulosomal family 9 cellulases from Clostridium cellulovorans. Appl. Microbiol. Biotechnol. 71:654660.
7. Aurilia, V.,, J. C. Martin,, S. I. McCrae,, K. P. Scott,, M. T. Rincon, and, H. J. Flint. 2000. Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences. Microbiology 146:13911397.
8. Bayer, E. A., J.-P. Belaich,, Y. Shoham, and, R. Lamed. 2004. The cellulosomes: multi-enzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58:521554.
9. Bayer, E. A.,, H. Chanzy, R. Lamed, and, Y. Shoham. 1998a. Cellulose, cellulases and cellulosomes. Curr. Opin. Struct. Biol. 8:548557.
10. Bayer, E. A., S.-Y. Ding,, A. Mechaly,, Y. Shoham, and, R. Lamed. 1999. Emerging phylogenetics of cellulosome structure, p. 189201. In H. J. Gilbert,, G. J. Davies,, B. Henrissat, and, B. Svensson (ed.), Recent Advances in Carbohydrate Bioengineering. The Royal Society of Chemistry, Cambridge, United Kingdom.
11. Bayer, E. A.,, B. Henrissat, and, R. Lamed. The. cellulosome: a natural bacterial strategy to combat biomass recalcitrance. In M. E. Himmel (ed.), Biomass Recalcitrance, in press. Blackwell, London, United Kingdom.
12. Bayer, E. A.,, R. Kenig, and, R. Lamed. 1983. Adherence of Clostridium thermocellum to cellulose. J. Bacteriol. 156:818827.
13. Bayer, E. A., and, R. Lamed. 1992. The cellulose paradox: pollutant par excellence and/or a reclaimable natural resource? Biodegradation 3:171188.
14. Bayer, E. A., and, R. Lamed. 2006. The cellulosome saga: early history, p. 1146. In V. Uversky and, I. A. Kataeva (ed.), Cellulosome. Nova Science Publishers, Inc, New York, NY.
15. Bayer, E. A.,, R. Lamed, and, M. E. Himmel. 2007. The potential of cellulases and cellulosomes for cellulosic waste management. Curr. Opin. Biotechnol. 18:237245.
16. Bayer, E. A.,, E. Morag, and, R. Lamed. 1994. The cellulosome—a treasure-trove for biotechnology. Trends Biotechnol. 12:378386.
17. Bayer, E. A.,, E. Morag, R. Lamed, S. Yaron, and, Y. Shoham. 1998b. Cellulosome structure: four-pronged attack using biochemistry, molecular biology, crystallography and bioinformatics, p. 3965. In M. Claeyssens,, W. Nerinckx, and, K. Piens (ed.), Carbohydrases from Trichoderma reesei and Other Microorganisms. The Royal Society of Chemistry, London, United Kingdom.
18. Bayer, E. A.,, E. Morag, Y. Shoham, J. Tormo, and, R. Lamed. 1996. The cellulosome: a cell-surface organelle for the adhesion to and degradation of cellulose, p. 155182. In M. Fletcher (ed.), Bacterial Adhesion: Molecular and Ecological Diversity. Wiley-Liss, Inc., New York, NY.
19. Bayer,, E. A.,, E. Morag,, M. Wilchek,, R. Lamed, 1995. Cellulosome domains for novel biotechnological application, p. 251259. In S. B. Petersen,, B. Svensson, and, S. Pedersen (ed.), Carbohydrate Bioengineering. Elsevier Science B.V., Amsterdam, The Netherlands.
20. Bayer, E. A.,, E. Setter, and, R. Lamed. 1985. Organization and distribution of the cellulosome in Clostridium thermocellum. J. Bacteriol. 163:552559.
21. Bayer, E. A.,, L. J. W. Shimon, R. Lamed, and, Y. Shoham. 1998c. Cellulosomes: structure and ultrastructure. J. Struct. Biol. 124:221234.
22. Bayer, E. A.,, Y. Shoham, and, R. Lamed. September. 2001, posting date. Cellulose-decomposing prokaryotes and their enzyme systems. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer, and, E. Stackebrandt (ed.), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd ed. Springer-Verlag, New York, NY. http://link.springer.de/link/service/books/10125/index.htm.
23. Bayer, E. A.,, Y. Shoham, and, R. Lamed. 2000. The cellulosome—an exocellular organelle for degrading plant cell wall polysaccharides, p. 387439. In R. J. Doyle (ed.), Glycomicrobiology. Kluwer Academic/Plenum Publishers, New York, NY.
24. Béguin, P., and, P. M. Alzari. 1998. The cellulosome of Clostridium thermocellum. Biochem. Soc. Trans. 26:178185.
25. Béguin,, P., S. Chauvaux,, G. Guglielmi,, M. Matuschek,, E. M.-K. Chaveroche, I. Miras,, P. Alzari, and, P. Gounon. 1999. The Clostridium thermocellum cellulosome: organization and mode of attachment to the cell, p. 437-443. In K. Ohmiya,, K. Hayashi,, K. Sakka,, Y. T. Kimura (ed.), Genetics, Biochemistry and Ecology of Cellulose Degradation. Uni Publishers Co., Tokyo, Japan.
26. Béguin, P., and, M. Lemaire. 1996. The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. Crit. Rev. Biochem. Mol. Biol. 31:201236.
27. Belaich,, J.-P.,, A. Belaich,, H.-P. Fierobe,, L. Gal,, C. S. Pagès,, C. Reverbel-Leroy, and, C. Tardif. 1999. The cellulolytic system of Clostridium cellulolyticum, p. 479487. In K. Ohmiya,, K. Hayashi,, K. Sakka,, Y. T. Kimura (ed.), Genetics, Biochemistry and Ecology of Cellulose Degradation. Uni Publishers Co., Tokyo, Japan.
28. Belaich, J.-P.,, C. Tardif, A. Belaich, and, C. Gaudin. 1997. The cellulolytic system of Clostridium cellulolyticum. J. Biotechnol. 57:314.
29. Belaich, J. P.,, H.-P. Fierobe,, S. Pagès,, A. Belaich,, C. Tardif,, E. A. Bayer,, A. Mechaly, and, O. Valette. 2004. From native to engineered cellulosomes, p. 167174. In K. Ohmiya,, K. Sakka,, S. T. Kimura, and, M. Sakka. (ed.), Genetics, Biotechnology of Ligno-cellulose Degradation and Biomass Utilization. Uni Publishers Co., Ltd., Tokyo, Japan.
30. Blake,, A. W.,, L. McCartney,, J. E. Flint,, D. N. Bolam,, A. B. Bischoff,, H. J. Gilbert, and, J. P. Knox. 2006. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J. Biol. Chem. 281:2932129329.
31. Blum, D. L.,, I. A. Kataeva,, X. L. Li, and, L. G. Ljungdahl. 2000. Feruloyl esterase activity of the Clostridium thermocellum cellulo-some can be attributed to previously unknown domains of XynY and XynZ. J. Bacteriol. 182:13461351.
32. Boraston, A. B.,, D. N. Bolam,, H. J. Gilbert, and, G. J. Davies. 2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382:769781.
33. Bourne, Y., and, B. Henrissat. 2001. Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr. Opin. Struct. Biol. 11:593600.
34. Carrard, G.,, A. Koivula, H. Soderlund, and, P. Béguin. 2000. Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc. Natl. Acad. Sci. USA 97:1034210347.
35. Carreira, L. H., and L. G. Ljungdahl. 1983. Production of ethanol from biomass using anaerobic thermophilic bacteria, p. 129. In D. L. Wise,, L. H. Carreira, and, L. G. Ljungdahl (ed.), Liquid Fuel Developments. CRC Press, Inc., Boca Raton, FL.
36. Cho, H. Y.,, H. Yukawa,, M. Inui,, R. H. Doi, and, S. L. Wong. 2004. Production of minicellulosomes from Clostridium cellulovorans in Bacillus subtilis WB800. Appl. Environ. Microbiol. 70:57045707.
37. Coutinho, P. M.,, E. Deleury, and, B. Henrissat. 2003. The families of carbohydrate-active enzymes in the genomic era. J. Appl. Glycosci. 50:241244.
38. Coutinho, P. M., and, B. Henrissat. 1999a. Carbohydrate-active enzymes: an integrated database approach, p. 312. In H. J. Gilbert,, G. J. Davies,, B. Henrissat, and, B. Svensson. (ed.), Recent Advances in Carbohydrate Bioengineering. The Royal Society of Chemistry, Cambridge, United Kingdom.
39. Coutinho, P. M., and, B. Henrissat. 1999b. The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach, p. 1523. In K. Ohmiya,, K. Hayashi,, K. Sakka,, Y. T. Kimura (ed.), Genetics, Biochemistry and Ecology of Cellulose Degradation. Uni Publishers Co., Tokyo, Japan.
40. Demain, A. L.,, M. Newcomb, and, J. H. Wu. 2005. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 69:124154.
41. Den Haan, R.,, S. H. Rose,, L. R. Lynd, and, W. H. van Zyl. 2007. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab. Eng. 9:8794.
42. Desvaux, M. 2005. Clostridium cellulolyticum : model organism of mesophilic cellulolytic clostridia. FEMS Microbiol. Rev. 29:741764.
43. Desvaux, M.,, E. Guedon, and, H. Petitdemange. 2001a. Carbon flux distribution and kinetics of cellulose fermentation in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. J. Bacteriol. 183:119130.
44. Desvaux, M.,, E. Guedon, and, H. Petitdemange. 2000. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol. 66:24612470.
45. Desvaux, M.,, E. Guedon, and, H. Petitdemange. 2001b. Kinetics and metabolism of cellulose degradation at high substrate concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. Appl. Environ. Microbiol. 67:38373845.
46. Desvaux, M.,, E. Guedon, and, H. Petitdemange. 2001c. Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment. Micro-biology 147:14611471.
47. Desvaux, M.,, A. Khan,, A. Scott-Tucker,, R. R. Chaudhuri,, M. J. Pallen, and, I. R. Henderson. 2005. Genomic analysis of the protein secretion systems in Clostridium acetobutylicum ATCC 824. Biochim. Biophys. Acta 1745:223253.
48. Desvaux, M., and, H. Petitdemange. 2001. Flux analysis of the metabolism of Clostridium cellulolyticum grown in cellulose-fed continuous culture on a chemically defined medium under ammonium-limited conditions. Appl. Environ. Microbiol. 67:38463851.
49. Ding, S.-Y.,, E. A. Bayer, D. Steiner, Y. Shoham, and, R. Lamed. 1999. A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family-9 glycosyl hydrolase. J. Bacteriol. 181:67206729.
50. Ding, S.-Y.,, E. A. Bayer, D. Steiner, Y. Shoham, and, R. Lamed. 2000. A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins. J. Bacteriol. 182:49154925.
51. Ding, S.-Y.,, M. T. Rincon,, R. Lamed,, J. C. Martin,, S. I. Bischoff,, V. Aurilia,, Y. Shoham,, E. A. Bayer, and, H. J. Flint. 2001. Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J. Bacteriol. 183:19451953.
52. Doi, R. H.,, M. Goldstein,, S. Hashida,, J. S. Park, and, M. Takagi. 1994. The Clostridium cellulovorans cellulosome. Crit. Rev. Micro-biol. 20:8793.
53. Doi, R. H., and, A. Kosugi. 2004. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat. Rev. Microbiol. 2:541551.
54. Doi, R. H.,, A. Kosugi, K. Murashima, Y. Tamaru, and, S. O. Han. 2003. Cellulosomes from mesophilic bacteria. J. Bacteriol. 185:59075914.
55. Doi, R. H., and, Y. Tamura. 2001. The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. Chem. Rec. 1:2432.
56. Dror,, T. W.,, E. Morag,, A. Rolider,, E. A. Bayer,, R. Lamed, and, Y. Shoham. 2003a. Regulation of the cellulosomal cel S (cel48A) gene of Clostridium thermocellum is growth-rate dependent. J. Bacteriol. 185:30423048.
57. Dror, T. W.,, A. Rolider, E. A. Bayer, R. Lamed, and, Y. Shoham. 2003b. Regulation of expression of scaffoldin-related genes in Clostridium thermocellum. J. Bacteriol. 185:51095116.
58. Dror, T. W.,, A. Rolider, E. A. Bayer, R. Lamed, and, Y. Shoham. 2005. Regulation of major cellulosomal endoglucanases of Clostridium thermocellum differs from that of a prominent cellulosomal xylanase. J. Bacteriol. 187:22612266.
59. Duong, C. T. V.,, E. A. Johnson, and, A. L. Demain. 1983. Thermophilic, anaerobic and cellulolytic bacteria. Enzyme Ferment. Biotechnol. 7:156195.
60. Engelhardt, H., and, J. Peters. 1998. Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions. J. Struct. Biol. 124:276302.
61. Erbeznik, M.,, C. R. Jones,, K. A. Dawson, and, H. J. Strobel. 1997. Clostridium thermocellum JW20 (ATCC 31549) is a coculture with Thermoanaerobacter ethanolicus. Appl. Environ. Microbiol. 63:29492951.
62. Felix, C. R., and, L. G. Ljungdahl. 1993. The cellulosome—the exo-cellular organelle of Clostridium. Annu. Rev. Microbiol. 47:791819.
63. Fernandes,, A. C.,, C. M. Fontes,, H. J. Gilbert,, G. P. Hazlewood,, T. H. Fernandes, and, L. M. A. Ferreira. 1999. Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. Biochem. J. 342:105110.
64. Fierobe,, H.-P.,, E. A. Bayer,, C. Tardif,, M. Czjzek,, A. A. Belaich,, R. Lamed, Y. Shoham, and, J.-P. Belaich. 2002. Degradation of cellulose substrates by cellulosome chimeras: substrate targeting versus proximity of enzyme components. J. Biol. Chem. 277:4962149630.
65. Fierobe,, H.-P.,, A. Mechaly,, C. Tardif,, A. Belaich,, R. Y. Shoham, J.-P. Belaich, and, E. A. Bayer. 2001. Design and production of active cellulosome chimeras: selective incorporation of dockerin-containing enzymes into defined functional complexes. J. Biol. Chem. 276:2125721261.
66. Fierobe,, H.-P.,, F. Mingardon, A. Mechaly,, A. Belaich,, M. T. Rincon, R. Lamed, C. Tardif,, J.-P. Belaich, and, E. A. Bayer. 2005. Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined tri-functional scaffoldin. J. Biol. Chem. 280:1632516334.
67. Fujino, T.,, P. Béguin, and, J.-P. Aubert. 1993. Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface. J. Bacteriol. 175:18911899.
68. Fujita, Y.,, J. Ito, M. Ueda, H. Fukuda, and, A. Kondo. 2004. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl. Environ. Microbiol. 70:12071212.
69. Garcia-Martinez, D. V.,, A. Shinmyo, A. Madia, and, A. L. Demain. 1980. Studies on cellulase production by Clostridium thermocellum. Eur. J. Appl. Microbiol. Biotechnol. 9:189197.
70. Germain, P.,, F. Toukourou, and, L. Donaduzzi. 1986. Ethanol production by anaerobic thermophilic bacteria: regulation of lactate dehydrogenase activity in Clostridium thermohydrosulfuricum. Appl. Microbiol. Biotechnol. 24:300305.
71. Gerngross,, U. T.,, M. P. M. Romaniec,, T. Kobayashi,, N. S. Huskisson, and, A. L. Demain. 1993. Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol. Microbiol. 8:325334.
72. Gilad, R.,, L. Rabinovich,, S. Yaron,, E. A. Bayer,, R. Lamed, H. J. Gilbert, and Y. Shoham. 2003. CelI, a non-cellulosomal family-9 enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose. J. Bacteriol. 185:391398.
73. Gilbert,, H. J. 2007. Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol. Microbiol. 63:15681576.
74. Grépinet, O., M.-C. Chebrou, and, P. Béguin. 1988. Nucleotide sequence and deletion analysis of the xylanase gene (xynZ) of Clostridium thermocellum. J. Bacteriol. 170:45824588.
75. Guedon, E.,, M. Desvaux, and, H. Petitdemange. 2002. Kinetic analysis of Clostridium cellulolyticum carbohydrate metabolism: importance of glucose 1-phosphate and glucose 6-phosphate branch points for distribution of carbon fluxes inside and outside cells as revealed by steady-state continuous culture. Appl. Environ. Micro-biol. 68:5358.
76. Guglielmi, G., and, P. Béguin. 1998. Cellulase and hemicellulase genes of Clostridium thermocellum from five independent collections contain few overlaps and are widely scattered across the chromo-some. FEMS Microbiol. Lett. 161:209215.
77. Halstead,, J. R.,, P. E. Vercoe,, H. J. Gilbert,, K. Davidson, and, G. P. Hazlewood. 1999. A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. Microbiology 45:31013108.
78. Han, S. O.,, H. Y. Cho, H. Yukawa, M. Inui, and, R. H. Doi. 2004. Regulation of expression of cellulosomes and noncellulosomal (hemi)cellulolytic enzymes in Clostridium cellulovorans during growth on different carbon sources. J. Bacteriol. 186:42184227.
79. Han, S. O.,, H. Yukawa,, M. Inui, and, R. H. Doi. 2005a. Effect of carbon source on the cellulosomal subpopulations of Clostridium cellulovorans. Microbiology 151:14911497.
80. Han, S. O.,, H. Yukawa, M. Inui, and, R. H. Doi. 2005b. Molecular cloning and transcriptional and expression analysis of engO, encoding a new noncellulosomal family 9 enzyme, from Clostridium cellulovorans. J. Bacteriol. 187:48844889.
81. Han, S. O.,, H. Yukawa, M. Inui, and, R. H. Doi. 2003a. Regulation of expression of cellulosomal cellulase and hemicellulase genes in Clostridium cellulovorans. J. Bacteriol. 185:60676075.
82. Han, S. O.,, H. Yukawa, M. Inui, and, R. H. Doi. 2003b. Transcription of Clostridium cellulovorans cellulosomal cellulase and hemicellulase genes. J. Bacteriol. 185:25202527.
83. Hazlewood,, G. P.,, M. P. M. Romaniec, K. Davidson, O. Grépinet, P. Béguin, J. Millet,, O. Raynaud, and, J.-P. Aubert. 1988. A catalogue of Clostridium thermocellum endoglucanase, β-glucosidase and xylanase genes cloned in Escherichia coli. FEMS Microbiol. Lett. 51:231236.
84. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280:309316.
85. Henrissat, B., and, A. Bairoch. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293:781788.
86. Henrissat, B.,, P. M. Coutinho, E. Deleury, and, G. J. Davies. 2003. Sequence families and modular organisation of carbohydrate-active enzymes, p. 1534. In A. Svendsen (ed.), Enzyme Functionality: Design, Engineering and Screening. Marcel Dekker, New York, NY.
87. Henrissat,, B., and G. J. Davies. 2000. Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol. 124:15151519.
88. Henrissat, B., and, A. Romeu. 1995. Families, superfamilies and subfamilies of glycosyl hydrolases. Biochem. J. 311:350351.
89. Herrero, A. A., and, R. F. Gomez. 1980. Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl. Environ. Microbiol. 40:571577.
90. Herrero, A. A.,, R. F. Gomez, and, M. F. Roberts. 1982. Ethanol-induced changes in the membrane lipid composition of Clostridium thermocellum. Biochim. Biophys. Acta 693:195204.
91. Himmel, M. E., S.-Y. Ding,, D. K. Johnson,, W., S. Adney,, M. R. Nimlos,, J. W. Brady, and, T. D. Foust. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804807. (Erratum, 316:982.)
92. Hughes,, S. R.,, S. B. Riedmuller,, J. A. Mertens,, X. L. Li,, K. M. Bischoff,, N. Qureshi,, M. A. Cotta, and, P. J. Farrelly. 2006. High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell. Proteome Sci. 4:10.
93. Ito, J.,, Y. Fujita, M. Ueda, H. Fukuda, and, A. Kondo. 2004. Improvement of cellulose-degrading ability of a yeast strain displaying Trichoderma reesei endoglucanase II by recombination of cellulose-binding domains. Biotechnol. Prog. 20:688691.
94. Jindou, S.,, Q. Xu, R. Kenig,, Y. Shoham,, E. A. Bayer, and, R. Lamed. 2006. Novel architectural theme of family-9 glycoside hydrolases identified in cellulosomal enzymes of Acetivibrio cellulolyticus and Clostridium thermocellum. FEMS Microbiol. Lett. 254:308316.
95. Johnson, E. A., and, A. L. Demain. 1984. Probable involvement of sulfhydryl groups and a metal as essential components of the cellulase of Clostridium thermocellum. Arch. Microbiol. 137:135138.
96. Johnson, E. A.,, E. T. Reese, and, A. L. Demain. 1982a. Inhibition of Clostridium thermocellum cellulase by end products of cellulolysis. J. Appl. Biochem. 4:6471.
97. Johnson,, E. A.,, M. Sakojoh,, G. Halliwell,, A. Madia, and, A. L. Demain. 1982b. Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl. Environ. Microbiol. 43:11251132.
98. Jones,, R. P. 1989. Biological principles for the effects of ethanol. Enzyme Microb. Technol. 11:130153.
99. Kakiuchi, M.,, A. Isui,, K. Suzuki,, T. Fujino,, E. T. Kimura,, S. Karita,, K. Sakka, and, K. Ohmiya. 1998. Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome. J. Bacteriol. 180:43034308.
100. Karita, S.,, K. Sakka, and, K. Ohmiya. 1997. Cellulosomes, cellulase complexes, of anaerobic microbes: their structure models and functions, p. 4757. In R. Onodera,, H. Itabashi,, K. H. Yano, and, Y. Sasaki. (ed.), Rumen Microbes and Digestive Physiology in Ruminants, vol. 14. Japan Scientific Society Press, Tokyo, Japan.
101. Katahira, S.,, Y. Fujita,, A. Mizuike,, H. Fukuda, and, A. Kondo. 2004. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 70:54075414.
102. Katahira, S.,, A. Mizuike,, H. Fukuda, and, A. Kondo. 2006. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl. Microbiol. Biotechnol. 72:11361143.
103. Kim, A. Y.,, G. T. Attwood,, S. M. Holt,, B. A. White, and, H. P. Blaschek. 1994. Heterologous expression of endo-beta-1,4-D-glucanase from Clostridium cellulovorans in Clostridium acetobutylicum ATCC 824 following transformation of the engB gene. Appl. Environ. Microbiol. 60:337340.
104. Kirby, J.,, J. C. Martin,, A. S. Daniel, and, H. J. Flint. 1997. Dockerin-like sequences in cellulases and xylanases from the rumen cellulolytic bacterium Ruminococcus flavefaciens. FEMS Microbiol. Lett. 149:213219.
105. Kosugi, A.,, Y. Amano, K. Murashima, and, R. H. Doi. 2004. Hydrophilic domains of scaffolding protein CbpA promote glycosyl hydrolase activity and localization of cellulosomes to the cell surface of Clostridium cellulovorans. J. Bacteriol. 186:63516359.
106. Kosugi, A.,, K. Murashima, Y. Tamaru, and, R. H. Doi. 2002. Cell-surface-anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngE. J. Bacteriol. 184:884888.
107. Koukiekolo, R.,, H. Y. Cho,, A. Kosugi,, M. Inui,, H. and R. H. Doi. 2005. Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Appl. Environ. Microbiol. 71:35043511.
108. Lamed, R., and, E. A. Bayer. 1991. Cellulose degradation by thermophilic anaerobic bacteria, p. 377-410. In C. H. Haigler and, P. J. Weimer (ed.), Biosynthesis and Biodegradation of Cellulose and Cellulose Materials. Marcel Dekker, New York, NY.
109. Lamed, R., and, E. A. Bayer. 1993. The cellulosome concept—a decade later!, p. 1-12. In K. Shimada,, S. Hoshino,, K. Ohmiya,, K. S. Karita (ed.), Genetics, Biochemistry and Ecology of Lignocellulose Degradation. Uni Publishers Co., Ltd., Tokyo, Japan.
110. Lamed, R., and, E. A. Bayer. 1988a. The cellulosome concept: exocellular/extracellular enzyme reactor centers for efficient binding and cellulolysis, p. 101116. In J.-P. Aubert,, P. Beguin, and, J. Millet. (ed.), Biochemistry and Genetics of Cellulose Degradation. Academic Press, London, United Kingdom.
111. Lamed, R., and, E. A. Bayer. 1988b. The cellulosome of Clostridium thermocellum. Adv. Appl. Microbiol. 33:146.
112. Lamed, R.,, E. A. Bayer,, B. C. Saha, and, J. G. Zeikus. 1988. Biotechnological potential of enzymes from unique thermophiles, p. 371383. In G. Durand,, L. Bobichon, and, J. Florent. (ed.), Proceedings of the 8th International Biotechnology Symposium, vol. 1. Société Française de Microbiologie, Paris, France.
113. Lamed, R.,, R. Kenig, E. Setter, and, E. A. Bayer. 1985. Major characteristics of the cellulolytic system of Clostridium thermocellum coincide with those of the purified cellulosome. Enzyme Microb. Technol. 7:3741.
114. Lamed, R.,, E. Morag (Morgenstern), O. Mor-Yosef, and, E. A. Bayer. 1991. Cellulosome-like entities in Bacteroides cellulosolvens. Curr. Microbiol. 22:2733.
115. Lamed, R.,, J. Naimark, E. Morgenstern, and, E. A. Bayer. 1987. Specialized cell surface structures in cellulolytic bacteria. J. Bacteriol. 169:37923800.
116. Lamed, R.,, E. Setter, and, E. A. Bayer. 1983a. Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J. Bacteriol. 156:828836.
117. Lamed, R.,, E. Setter, R. Kenig, and, E. A. Bayer. 1983b. The cellulosome—a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol. Bioeng. Symp. 13:163181.
118. Lamed, R., and, J. G. Zeikus. 1980. Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J. Bacteriol. 144:569578.
119. Leatherwood, J. M. 1969. Cellulase complex of Ruminococcus and a new mechanism for cellulose degradation. Adv. Chem. Ser. 95:5359.
120. Leibovitz, E., and, P. Béguin. 1996. A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA. J. Bacteriol. 178:30773084.
121. Leibovitz, E.,, H. Ohayon, P. Gounon, and, P. Béguin. 1997. Characterization and subcellular localization of the Clostridium thermocellum scaffoldin dockerin binding protein SdbA. J. Bacteriol. 179:25192523.
122. Lemaire, M.,, I. Miras, P. Gounon, and, P. Béguin. 1998. Identification of a region responsible for binding to the cell wall within the Slayer protein of Clostridium thermocellum. Microbiology 144:211217.
123. Lemaire, M.,, H. Ohayon, P. Gounon, T. Fujino, and, P. Béguin. 1995. OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope. J. Bacteriol. 177:24512459.
124. Levasseur, A.,, D. Navarro,, P. J. Punt,, J. P. Belaich,, M. Asther, and E. Record. 2005. Construction of engineered bifunctional enzymes and their overproduction in Aspergillus niger for improved enzymatic tools to degrade agricultural by-products. Appl. Environ. Microbiol. 71:81328140.
125. Levasseur, A.,, S. Pages,, H. P. Fierobe,, D. Navarro,, P. J. P. Belaich, M. Asther, and, E. Record. 2004. Design and production in Aspergillus niger of a chimeric protein associating a fungal feruloyl esterase and a clostridial dockerin domain. Appl. Environ. Microbiol. 70:69846991.
126. Linder, M., and, T. T. Teeri. 1997. The roles and function of cellulose-binding domains. J. Biotechnol. 57:1528.
127. Lopez-Contreras, A. M.,, K. Gabor,, A. A. Martens,, B. A. Renckens,, P. A. Claassen,, J. Van Der Oost, and, W. M. De Vos. 2004. Substrate-induced production and secretion of cellulases by Clostridium acetobutylicum. Appl. Environ. Microbiol. 70:52385243.
128. Lopez-Contreras, A. M.,, A. A. Martens,, N. Szijarto,, H. Mooibroek,, P. J. van der Oost, and, W. M. de Vos. 2003. Production by Clostridium acetobutylicum ATCC 824 of CelG, a cellulosomal glycoside hydrolase belonging to family 9. Appl. Environ. Micro-biol. 69:869877.
129. Lupas, A.,, H. Engelhardt,, J. Peters,, U. Santarius,, S. and, W. Baumeister. 1994. Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J. Bacteriol. 176:12241233.
130. Lynd, L. R.,, W. H. van Zyl,, J. E. McBride, and, M. Laser. 2005. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16:577583.
131. Lytle, B.,, C. Myers, K. Kruus, and, J. H. D. Wu. 1996. Interactions of the CelS binding ligand with various receptor domains of the Clostridium thermocellum cellulosomal scaffolding protein, CipA. J. Bacteriol. 178:12001203.
132. Maamar, H.,, L. Abdou, C. Boileau, O. Valette, and, C. Tardif. 2006. Transcriptional analysis of the cip-cel gene cluster from Clostridium cellulolyticum. J. Bacteriol. 188:26142624.
133. Maamar, H.,, P. de Philip,, J. P. Belaich, and, C. Tardif. 2003. ISCce1 and ISCce2, two novel insertion sequences in Clostridium cellulolyticum. J. Bacteriol. 185:714725.
134. Maamar, H.,, O. Valette, H. P. Fierobe,, A. Belaich,, J. P. Belaich, and, C. Tardif. 2004. Cellulolysis is severely affected in Clostridium cellulolyticum strain cipCMut1. Mol. Microbiol. 51:589598.
135. Mandels, M., and, E. T. Reese. 1957. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bacteriol. 73:269278.
136. Mesnage, S.,, T. Fontaine,, T. Mignot,, M. Delepierre,, M. and, A. Fouet. 2000. Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J. 19:44734484.
137. Mesnage, S.,, E. Tosi-Couture, M. Mock, and, A. Fouet. 1999. The Slayer homology domain as a means for anchoring heterologous proteins on the cell surface of Bacillus anthracis. J. Appl. Micro-biol. 87:256260.
138. Mingardon, F.,, S. Perret, A. Belaich,, C. Tardif,, J. P. Belaich, and, H. P. Fierobe. 2005. Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824. Appl. Biochem. Biotechnol. 71:12151222.
139. Morag, E.,, E. A. Bayer, and, R. Lamed. 1990. Relationship of cellulosomal and noncellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes. J. Bacteriol. 172:60986105.
140. Morag, E.,, I. Halevy,, E. A. Bayer, and, R. Lamed. 1991. Isolation and properties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellum. J. Bacteriol. 173:41554162.
141. Morrison, M., and, J. Miron. 2000. Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins? FEMS Microbiol. Lett. 185:109115.
142. Murashima, K.,, C. L. Chen, A. Kosugi,, Y. Tamaru,, R. H. Doi, and, S. L. Wong. 2002a. Heterologous production of Clostridium cellulovorans engB, using protease-deficient Bacillus subtilis, and preparatio. of active recombinant cellulosomes. J. Bacteriol. 184.76.81.
143. Murashima, K.,, A. Kosugi, and, R. H. Doi. 2002b. Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD. Mol. Microbiol. 45:617626.
144. Murray, W. D.,, L. C. Sowden, and, J. R. Colvin. 1986. Symbiotic relationship of Bacteroides cellulosolvens and Clostridium saccharolyticum in cellulose fermentation. Appl. Environ. Microbiol. 51:710715.
145. Navarre, W. W., and, O. Schneewind. 1994. Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria. Mol. Microbiol. 14:115121.
146. Navarre, W. W., and, O. Schneewind. 1999. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63:174229.
147. Nechooshtan, R. 2007. Characterization of Regulatory Elements of the Cellulase System in Clostridium thermocellum. Technion, Haifa, Israel.
148. Newcomb, M.,, C. Y. Chen, and, J. H. Wu. 2007. Induction of the celC operon of Clostridium thermocellum by laminaribiose. Proc. Natl. Acad. Sci. USA 104:37473752.
149. Ng, T. K.,, T. K. Weimer, and, J. G. Zeikus. 1977. Cellulolytic and physiological properties of Clostridium thermocellum. Arch. Micro-biol. 114:17.
150. Ng, T. K., and, J. G. Zeikus. 1982. Differential metabolism of cellobiose and glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum. J. Bacteriol. 150:13911399.
151. Ng, T. K., and, J. G. Zeikus. 1981. Purification and characterization of an endoglucanase (1,4-[H9252]-D-glucan glucanohydrolase) from Clostridium thermocellum. Biochem. J. 199:341350.
152. Nolling, J.,, G. Breton,, M. V. Omelchenko,, K. S. Makarova,, Q. Zeng,, R. Gibson,, H. M. Lee,, J. Dubois,, D. Qiu,, J. Hitti,, Y. I. Wolf,, R. L. Tatusov,, F. Sabathe,, L. Doucette-Stamm,, P. Soucaille,, M. J. Daly,, G. N. Bennett,, E. V. Koonin, and, D. R. Smith. 2001. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 183:48234838.
153. Ohmiya, K.,, K. Sakka, T. Kimura, and, K. Morimoto. 2003. Application of microbial genes to recalcitrant biomass utilization and environmental conservation. J. Biosci. Bioeng. 95:549561.
154. Pagès, S.,, A. Belaich,, J.-P. Belaich,, E. Morag,, R. Y. Shoham, and, E. A. Bayer. 1997a. Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dock-erin domain. Proteins 29:517527.
155. Pagès, S.,, A. Belaich,, H.-P. Fierobe,, C. Tardif,, C. and J.-P. Belaich. 1999. Sequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXp. J. Bacteriol. 181:18011810.
156. Pagès, S.,, A. Belaich,, C. Tardif,, C. Reverbel-Leroy,, C. Gaudin, and, J.-P. Belaich. 1996. Interaction between the endoglucanase CelA and the scaffolding protein CipC of the Clostridium cellulolyticum cellulosome. J. Bacteriol. 178:22792286.
157. Pagès, S.,, L. Gal,, A. Belaich,, C. Gaudin,, C. and, J.-P. Belaich. 1997b. Role of scaffolding protein CipC of Clostridium cellulolyticum in cellulose degradation. J. Bacteriol. 179:28102816.
158. Pagès, S.,, O. Valette, L. Abdou, A. Belaich, and, J.-P. Belaich. 2003. A rhamnogalacturonan lyase in the Clostridium cellulolyticum cellulosome. J. Bacteriol. 185:47274733.
159. Perret, S.,, A. Belaich,, H. P. Fierobe,, J. P. Belaich, and, C. Tardif. 2004a. Towards designer cellulosomes in clostridia: mannanase enrichment of the cellulosomes produced by Clostridium cellulolyticum. J. Bacteriol. 186:65446552.
160. Perret, S.,, L. Casalot,, H.-P. Fierobe,, C. Tardif,, F. J.-P. Belaich, and, A. Belaich. 2004b. Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824. J. Bacteriol. 186:253257.
161. Perret, S.,, H. Maamar, J.-P. Belaich, and, C. Tardif. 2004c. Use of antisense RNA to modify the composition of cellulosomes produced by Clostridium cellulolyticum. Mol. Microbiol. 51:599607.
162. Prates, J. A.,, N. Tarbouriech,, S. J. Charnock,, C. M. Fontes,, L. M. Ferreira, and, G. J. Davies. 2001. The structure of the feruloyl esterase module of xylanase 10B from Clostridium thermocellum provides insights into substrate recognition. Structure 9:11831190.
163. Ragauskas, A. J.,, C. K. Williams, B. H. Davison, G. Britovsek,, J. Cairney,, C. A. Eckert,, W. J. Bischoff,, Jr., J. P. Hallett, D. J. Leak,, C. L. Liotta,, J. R. Mielenz,, R. Murphy,, R. and, T. Tschaplinski. 2006. The path forward for biofuels and biomaterials. Science 311:484489.
164. Rani, K. S., and, G. Seenayya. 1999. High ethanol tolerance of new isolates of Clostridium thermocellum strains SS21 and SS22. World J. Microbiol. Biotechnol. Adv. 15:173178.
165. Reese,, E. T. 1975. Enzyme systems for cellulose. Biotechnol. Bioeng. Symp. 5:7780.
166. Reese, E. T. 1976a. History of the cellulase program at the U.S. Army Natick Development Center. Biotechnol. Bioeng. Symp. 6:920.
167. Reese,, E. T. 1976b. Cellulase production. Biotechnol. Bioeng. Symp. 6:9193.
168. Reese, E. T., and, M. Mandels. 1980. Stability of the cellulase of Trichoderma reesei under use conditions. Biotechnol. Bioeng. 22:323335.
169. Reese, E. T.,, R. G. H. Siu, and, H. S. Levinson. 1950. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59:485497.
170. Rincon, M. T.,, T. Cepeljnik, J. C. Martin, Y. Barak,, R. Lamed,, E. A. Bayer, and, H. J. Flint. 2007. A novel cell surface-anchored cellulose-binding protein encoded by the sca gene cluster of Ruminococcus flavefaciens. J. Bacteriol. 189:47744783.
171. Rincon,, M. T.,, T. Cepeljnik,, J. C. Martin,, R. Lamed,, Y. E. A. Bayer, and, H. J. Flint. 2005. Unconventional mode of attachment of the Ruminococcus flavefacien s cellulosome to the cell surface. J. Bacteriol. 187:75697578.
172. Rincon, M. T., S.-Y. Ding,, S. I. McCrae,, J. C. Martin,, V. Aurilia,, R., Y. Shoham,, E. A. Bayer, and, H. J. Flint. 2003. Novel organization and divergent dockerin specificities in the cellulosome system of Ruminococcus flavefaciens. J. Bacteriol. 185:703713.
173. Rincon, M. T.,, J. C. Martin,, V. Aurilia,, S. I. McCrae,, G. Rucklidge,, M. Reid,, E. A. Bayer,, R. Lamed, and, H. J. Flint. 2004. ScaC, an adaptor protein carrying a novel cohesin that expands the dock-erin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosome. J. Bacteriol. 186:25762585.
174. Rincon, M. T.,, S. I. McCrae,, J. Kirby,, K. P. Scott, and, H. J. Flint. 2001. EndB, a multidomain family 44 cellulase from Ruminococcus flavefaciens 17, binds to cellulose via a novel cellulose-binding module and to another R. flavefaciens protein via a dock-erin domain. Appl. Environ. Microbiol. 67:44264431.
175. Sabathe, F.,, A. Belaich, and, P. Soucaille. 2002. Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. FEMS Microbiol. Lett. 217:1522.
176. Sabathe, F., and, P. Soucaille. 2003. Characterization of the CipA scaffolding protein and in vivo production of a minicellulosome in Clostridium acetobutylicum. J. Bacteriol. 185:10921096.
177. Saddler, J. N., and, M. K.-H. Chan. 1984. Conversion of pretreated lignocellulosic substrates to ethanol by Clostridium thermosaccharolyticum and Clostridium thermohydrosulphuricum. Can. J. Microbiol. 30:212220.
178. Salamitou, S.,, O. Raynaud, M. Lemaire, M. Coughlan, P. Béguin, and, J.-P. Aubert. 1994. Recognition specificity of the duplicated segments present in Clostridium thermocellum endoglucanase CelD and in the cellulosome-integrating protein CipA. J. Bacteriol. 176:28222827.
179. Salamitou, S.,, K. Tokatlidis, P. Béguin, and, J.-P. Aubert. 1992. Involvement of separate domains of the cellulosomal protein S1 of Clostridium thermocellum in binding to cellulose and in anchoring of catalytic subunits to the cellulosome. FEBS Lett. 304:8992.
180. Schneewind, O.,, A. Fowler, and, K. F. Faull. 1995. Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 268:103106.
181. Schubert, C. 2006. Can biofuels finally take center stage? Nat. Biotechnol. 24:777784.
182. Schumacher,, M. A.,, G. S. Allen,, M. Diel,, G. Seidel,, W. and R. G. Brennan. 2004. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell 118:731741.
183. Schumacher, M. A.,, G. Seidel, W. Hillen, and, R. G. Brennan. 2007. Structural mechanism for the fine-tuning of Ccpa function by the small molecule effectors glucose 6-phosphate and fructose 1,6-bisphosphate. J. Mol. Biol. 368:10421050.
184. Schwarz,, W. H. 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56:634649.
185. Schwarz, W. H.,, V. V. Zverlov, and, H. Bahl. 2004. Extracellular glycosyl hydrolases from clostridia. Adv. Appl. Microbiol. 56:215261.
186. Shimon, L. J. W.,, S. Pagès,, A. Belaich,, J. P. Belaich,, E. A. Bayer,, R. Lamed, Y. Shoham, and, F. Frolow. 2000. Structure of a family IIIa scaffoldin CBD from the cellulosome of Clostridium cellulolyticum at 2. 2 Å resolution. Acta Crystallogr. D Biol. Crystallogr. 56:15601568.
187. Shinmyo, A.,, D. V. Garcia-Martinez, and, A. L. Demain. 1979. Studies on the extracellular cellulolytic enzyme complex produced by Clostridium thermocellum. J. Appl. Biochem. 1:202209.
188. Shoham, Y.,, R. Lamed, and, E. A. Bayer. 1999. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7:275281.
189. Shoseyov, O.,, M. Takagi,, M. A. Goldstein, and, R. H. Doi. 1992. Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. Proc. Natl. Acad. Sci. USA 89:34833487.
190. Slapack, G. E.,, I. Russell, and, C. G. Stewart. 1987. Thermophilic Microbes in Ethanol Production. CRC Press, Boca Raton, FL.
191. Stevenson, D. M., and, P. J. Weimer. 2005. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Appl. Environ. Micro-biol. 71:46724678.
192. Tamaru, Y., and, R. H. Doi. 2001. Pectate lyase A, an enzymatic subunit of the Clostridium cellulovorans cellulosome. Proc. Natl. Acad. Sci. USA 20:41254129.
193. Tarbouriech, N.,, J. A. Prates,, C. M. Fontes, and, G. J. Davies. 2005. Molecular determinants of substrate specificity in the feruloyl esterase module of xylanase 10B from Clostridium thermocellum. Acta Crystallogr. D 61:194197.
194. Tardif, C.,, H. Maamar, M. Balfin, and, J. P. Belaich. 2001. Electro-transformation studies in Clostridium cellulolyticum. J. Ind. Micro-biol. Biotechnol. 27:271274.
195. Tokatlidis, K.,, P. Dhurjati, and, P. Béguin. 1993. Properties conferred on Clostridium thermocellum endoglucanase CelC by grafting the duplicated segment of endoglucanase CelD. Protein Eng. 6:947952.
196. Tokatlidis, K.,, S. Salamitou, P. Béguin, P. Dhurjati, and, J.-P. Aubert. 1991. Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components. FEBS Lett. 291:185188.
197. Tomme, P.,, R. A., J. Warren,, R. C. Miller,, D. G. Kilburn, and N. R. Gilkes. 1995. Cellulose-binding domains—classification and properties, p. 142161. In J. M. Saddler and, M. H. Penner (ed.), Enzymatic Degradation of Insoluble Polysaccharides. American Chemical Society, Washington, DC.
198. Ton-That, H.,, L. A. Marraffini, and, O. Schneewind. 2004. Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim. Biophys. Acta 1694:269278.
199. Tormo, J.,, R. Lamed, A. J. Chirino,, E. Morag,, E. A. Bayer,, Y. Shoham, and, T. A. Steitz. 1996. Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J. 15:57395751.
200. U.S. Department of Energy. 2006. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda. DOE/SC-0095. U.S. Department of Energy Office of Science and Office of Energy Efficiency and Renewable Energy, Rockville, MD.
201. Venkateswaren, S., and A. L. Demain. 1986. The Clostridium thermocellum-Clostridium thermosaccharolyticum ethanol production process: nutritional studies and scale-down. Chem. Eng. Commun. 45:5360.
202. Wang, D. I. C.,, G. C. Avgerinos,, I. Biocic,, S.-D. Wang, and, H.-Y. Fang. 1983. Ethanol from cellulosic biomass. Philos. Trans. R. Soc. Lond. B 300:323333.
203. Wang, W. K.,, K. Kruus, and, J. H. D. Wu. 1993. Cloning and DNA sequence of the gene coding for Clostridium thermocellum cellulase S S(CelS), a major cellulosome component. J. Bacteriol. 175:12931302.
204. Warner, J. B., and, J. S. Lolkema. 2003. CcpA-dependent carbon catabolite repression in bacteria. Microbiol. Mol. Biol. Rev. 67:475490.
205. Weimer, P. J., and, J. G. Zeikus. 1977. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum. Appl. Environ. Microbiol. 33:289297.
206. Wiegel, J.,, C. P. Mothershed, and, J. Puls. 1985. Differences in xylan degradation by various noncellulolytic thermophilic anaerobes and Clostridium thermocellum. Appl. Environ. Microbiol. 49:656659.
207. Williams, T. I.,, J. C. Combs,, B. C. Lynn, and, H. J. Strobel. 2007. Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl. Microbiol. Biotechnol. 74:422423.
208. Wu, J. H. D. 1993. Clostridium thermocellum cellulosome—new mechanistic concept for cellulose degradation, p. 251264. In M. E. Himmel and, G. Georgiou (ed.), Biocatalyst Design for Stability and Specificity. ACS Symposium Series No. 516. American Chemical Society, Washington, DC.
209. Wu, J. H. D.,, W. H. Orme-Johnson, and, A. L. Demain. 1988. Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystalline cellulose. Biochemistry 27:17031709.
210. Xu, Q.,, Y. Barak, R. Kenig,, Y. Shoham,, E. A. Bayer, and, R. Lamed. 2004a. A novel Acetivibrio cellulolyticus anchoring scaffoldin that bears divergent cohesins. J. Bacteriol. 186:57825789.
211. Xu, Q.,, E. A. Bayer,, M. Goldman,, R. Kenig,, Y. and R. Lamed. 2004b. Architecture of the Bacteroides cellulosolvens cellulosome: description of a cell-surface anchoring scaffoldin and a family 48 cellulase. J. Bacteriol. 186:968977.
212. Xu, Q.,, W. Gao, S.-Y. Ding, R. Kenig,, Y. Shoham,, E. A. Bayer, and, R. Lamed. 2003. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell-surface anchoring protein. J. Bacteriol. 185:45484557.
213. Yaron, S.,, E. Morag, E. A. Bayer, R. Lamed, and, Y. Shoham. 1995. Expression, purification and subunit-binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome. FEBS Lett. 360:121124.
214. Zeikus, J. G.,, A. Ben-Bassat,, T. K. Ng, and, R. J. Lamed. 1981. Thermophilic ethanol fermentations. Basic Life Sci. 18:441461.
215. Zhang, Y. H.,, M. E. Himmel, and, J. R. Mielenz. 2006. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv. 24:452481.
216. Zhang, Y. H., and, L. R. Lynd. 2005a. Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc. Natl. Acad. Sci. USA 102:73217325.
217. Zhang, Y. H., and, L. R. Lynd. 2005b. Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J. Bacteriol. 187:99106.
218. Zhao, G.,, E. Ali, M. Sakka, T. Kimura, and, K. Sakka. 2006. Binding of S-layer homology modules from Clostridium thermocellum SdbA to peptidoglycans. Appl. Microbiol. Biotechnol. 70:464469.
219. Zverlov, V. V., K.-P. Fuchs, and, W. H. Schwarz. 2002. Chi18A, the endochitinase in the cellulosome of the thermophilic, cellulolytic bacterium Clostridium thermocellum. Appl. Environ. Microbiol. 68:31763179.
220. Zverlov, V. V.,, K. P. Fuchs,, W. H. Schwarz, and, G. Velikodvorskaya. 1994. Purification and cellulosomal localization of Clostridium thermocellum mixed linkage b-glucanase LicB (1,3-1,4-[H9252]-D-glucanase). Biotechnol. Lett. 16:2934.
221. Zverlov, V. V.,, J. Kellermann, and, W. H. Schwarz. 2005. Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics 5:36463653.
222. Zverlov, V. V.,, G. V. Velikodvorskaya,, W. H. Schwarz,, K. Bronnenmeier,, J. and W. L. Staudenbauer. 1998. Multidomain structure and cellulosomal localization of the Clostridium thermocellum cellobiohydrolase CbhA. J. Bacteriol. 180:30913099.

Tables

Generic image for table
Table 1.

Dockerin-containing genes and/or gene products of the genome

Citation: Bayer E, Shoham Y, Lamed R. 2008. Cellulosome-Enhanced Conversion of Biomass: On the Road to Bioethanol, p 75-96. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error