1887

Chapter 7 : Cellulosomes from Mesophilic Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Cellulosomes from Mesophilic Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap07-2.gif

Abstract:

This chapter discusses fully characterized cellulosomes from mesophilic bacteria consisting of two major components. These components include (i) one or more scaffolding proteins called scaffoldins that contain enzyme binding sites called cohesins and (ii) cellulosomal enzymes containing dockerin domains. The cohesin-dockerin interaction between the scaffolding protein and cellulosomal enzymes allows the assembly of the extracellular multisubunit enzyme complex. The scaffoldins minimally contain a carbohydrate binding module (CBM) and enzyme binding domains. In addition, depending on the scaffoldin, there may be hydrophilic domains, dockerins, even an enzyme function, and other domains of unknown function. The cellulosomes of mesophilic bacteria must play a major role in the turnover of carbon in nature, since most of the anaerobic habitats are in the temperate range of 15 to 45ºC in contrast to thermophilic organisms that require temperatures above 50ºC. An analysis of the expression of cellulosomal genes of revealed that many of the cellulase and hemicellulase genes were expressed coordinately when cells were grown on cellulose or cellobiose. Since cellulosomes contain both cellulases and hemicellulases, it was of interest to determine whether synergism existed in the degradation of substrates such as corn cell wall by the enzymes.

Citation: Doi R. 2008. Cellulosomes from Mesophilic Bacteria, p 97-106. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Model of the scaffolding protein CbpA of .

Citation: Doi R. 2008. Cellulosomes from Mesophilic Bacteria, p 97-106. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Model of a cellulosome attached to its substrate and cell surface.

Citation: Doi R. 2008. Cellulosomes from Mesophilic Bacteria, p 97-106. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch07
1. Arai, T.,, A. Kosugi,, H. Chan,, R. Koukiekolo,, H. R. H. Doi. 2006. Properties of cellulosomal family 9 cellulases from Clostridium cellulovorans. Appl. Microbiol. Biotechnol. 71.654.660.
2. Arai, T.,, S. Matsuoka,, H.-Y. Cho,, H. Yukawa,, M. S.-L. Wong, and, R. H. Doi. 2007. Synthesis of Clostridium cellulovorans minicellulosomes by intercellular complementation. Proc. Natl. Acad. Sci. USA 104:14561460.
3. Aurilia, V.,, J. C. Martin,, S. I. McCrae,, K. P. Scott,, M. T. Rincon, and, H. J. Flint. 2000. Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences. Microbiology 146:13911397.
4. Bayer, E. A.,, J. P. Belaich, Y. Shoham, and, R. Lamed. 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58:521554.
5. Bayer, E. A.,, E. Morag, and, R. Lamed. 1994. The cellulosome—a treasure trove for biotechnology. Trends Biotechnol. 12:378386.
6. Belaich, A.,, G. Parsiegla,, L. Gal,, C. Villard,, R. and, Jo.-P. Belaich. 2002. Cel9M, a new family 9 cellulase of the Clostridium cellulolyticum cellulosome. J. Bacteriol. 184:13781384.
7. Blum, D. L.,, I. A. Kataeva, X.-L. Li, and, L. G. Ljungdahl. 2000. Feruloyl esterase activity of the Clostridium thermocellum cellulo-some can be attributed to previously unknown domains of XynY and XynZ. J. Bacteriol. 182:13461351.
8. Cho, H.-Y.,, H. Yukawa,, M. Inui,, R. H. Doi, and, S.-L. Wong. 2004. Production of minicellulosomes from Clostridium cellulovorans in Bacillus subtilis WB800. Appl. Environ. Microbiol. 70:57045707.
9. Demain, A. L.,, M. Newcomb, and, J. H. Wu. 2005. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 69:124154.
10. Desvaux, M. 2005. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol. Rev. 29:741764.
11. Devillard, E.,, D. B. Goodheart,, S. K. R. Karnati,, E. A. Bayer,, R. Lamed,, J. Miron,, K. E. Nelson, and, M. Morrison. 2004. Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. J. Bacteriol. 186:136145.
12. Ding, S.-Y.,, E. A. Bayer, D. Steiner, Y. Shoham, and, R. Lamed. 1999. A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase. J. Bacteriol. 181:67206729.
13. Doi, R. H.,, A. Kosugi, K. Murashima, Y. Tamura, and, S.-O. Han. 2003. Cellulosomes from mesophilic bacteria. J. Bacteriol. 185:59075914.
14. Doi, R. H., and, A. Kosugi. 2004. Cellulosomes: plant cell wall degrading enzyme complexes. Nat. Rev. Microbiol. 2:541551.
15. Doner, L. W., and, D. B. Johnston. 2001. Isolation and characterization of cellulose/arabinoxylan residual mixtures from corn fiber gum processes. Cereal Chem. 78:200204.
16. Fierobe,, H.-P.,, E. A. Bayer,, C. Tardif,, M. Czjzek,, A. A. Belaich, R. Lamed,, Y. Shoham, and, J.-P. Belaich. 2002. Degradation of cellulose substrates by cellulosome chimerase: substrate targeting versus proximity of enzyme components. J. Biol. Chem. 277:4962149630.
17. Fierobe,, H.-P.,, A. Mechaly,, C. Tardif,, A. Belaich,, R. Y. Shoham,, J.-P. Belaich, and, E. A. Bayer. 2001. Design and production of active cellulosome chimeras: selective incorporation of dockerin-containing enzymes into defined functional complexes. J. Biol. Chem. 276:2125721261.
18. Fierobe,, H.-P.,, F. Mingardon,, A. Mechaly,, A. Belaich,, M. S. Pages,, R. Lamed,, C. Tardif,, J.-P. Belaich, and, E. A. Bayer. 2005. Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined tri-functional scaffoldin. J. Biol. Chem. 280:1632516334.
19. Foong, F. C.-F., and, R. H. Doi. 1992. Characterization and comparison of Clostridium cellulovorans endoglucanases-xylanases EngB and EngD expressed in Escherichia coli. J. Bacteriol. 174:14031409.
20. Gal, L.,, S. Pages, C. Gaudin, A. Belaich, C. Reverbel-Leroy, C. Tardif, and, J. P. Belaich. 1997. Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Appl. Environ. Microbiol. 63:903909.
21. Gaudin, C.,, A. Belaich, S. Champ, and, J.-P. Belaich. 2000. CelE, a multidomain cellulase from Clostridium cellulolyticum: a key enzyme in the cellulosome? J. Bacteriol. 182:19101915.
22. Hamamoto, T.,, O. Shoseyov, F. Foong, and, R. H. Doi. 1990. A Clostridium cellulovorans gene, engD, codes for both endo-[H9252]-1,4-glucanase and cellobiosidase activities. FEMS Microbiol. Lett. 72:285288.
23. Han, S.-O., H.-Y. Cho,, H. Yukawa,, M. and R. H. Doi. 2004a. Regulation of expression of cellulosomes and noncellulosomal (hemi)cellulolytic enzymes in Clostridium cellulovorans during growth on different carbon sources. J. Bacteriol. 186:42184227.
24. Han,, S.-O.,, H. Yukawa,, M. Inui, and, R. H. Doi. 2003. Regulation of expression of cellulosomal cellulase and hemicellulase genes in Clostridium cellulovorans. J. Bacteriol. 1185:60676075.
25. Han, S.-O.,, H. Yukawa, M. Inui, and, R. H. Doi. 2004b. Isolation and expression of the xynB gene and its product, XynB, a consistent component of the Clostridium cellulovorans cellulosome. J. Bacteriol. 186:83478355.
26. Han, S.-O.,, H. Yukawa, M. Inui, and, R. H. Doi. 2005a. Molecular cloning, transcriptional and expression analysis of engO, encoding a new noncellulosomal family 9 enzyme from Clostridium cellulovorans. J. Bacteriol. 187:48844889.
27. Han, S.-O.,, H. Yukawa, M. Inui, and, R. H. Doi. 2005b. Effect of carbon source on the cellulosomal subpopulations of Clostridium cellulovorans. Microbiology 151:14911497.
28. Himmel, M. E., S.-Y. Ding,, D. K. Johnson,, W. S. Bischoff,, M. R. Nimlos,, J. W. Brady, and, T. D. Foust. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804807.
29. Ichi-ishi, A.,, S. Sheweita, and, R. H. Doi. 1998. Characterization of EngF from Clostridium cellulovorans and identification of a novel cellulose binding domain. Appl. Environ. Microbiol. 64:10861090.
30. Jindou, S.,, S. Karita,, E. Fujino,, T. Fujino,, H., T. Kimura,, K. Sakka, and, K. 2002. α-Galactosidase Aga27A, an enzymatic component of the Clostridium josui cellulosome. J. Bacteriol. 184:600604.
31. Kakiuchi, M.,, A. Isui,, K. Suzuki,, T. Fujino,, E. T. Kimura,, S. Karita,, K. Sakka, and, K. Ohmiya. 1998. Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome. J. Bacteriol. 180:43034308.
32. Kosugi, A.,, Y. Amano, K. Murashima, and, R. H. Doi. 2004. Hydrophilic domains of scaffolding protein CbpA promote glycosyl hydrolase activity and localization of cellulosomes to the cell surface of Clostridium cellulovorans. J. Bacteriol. 186:63516359.
33. Kosugi, A.,, T. Arai, and, R. H. Doi. 2006. Degradation of cellulo-some-produced cello-oligosaccharides by an extracellular noncellulosomal β-glucan glucohydrolase, BglA, from Clostridium cellulovorans. Biochem. Biophys. Res. Commun. 349:2023.
34. Kosugi, A.,, K. Murashima, and, R. H. Doi. 2002a. Xylanase and acetyl xylan esterase activities of XynA, a key subunit of the Clostridium cellulovorans cellulosome for xylan degradation. Appl. Environ. Microbiol. 68:63996402.
35. Kosugi, A.,, K. Murashima, and, R. H. Doi. 2002b. Characterization of two noncellulosomal subunits, ArfA and BgaA, from Clostridium cellulovorans that cooperate with the cellulosome in plant cell wall degradation. J. Bacteriol. 184:68596865.
36. Koukiekolo, R., H.-Y. Cho,, A. Kosugi,, M. H. Yukawa, and, R. H. Doi. 2005. Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Appl. Environ. Microbiol. 71:35043511.
37. Liu, C.-C., and, R. H. Doi. 1998. Properties of exgS, a gene for a major subunit of the Clostridium cellulovorans cellulosome. Gene 211:3947.
38. Lynd, L. R.,, P. J. Weimer, W. H. van Zyl, and, I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66:506577.
39. Maamar, H.,, L. Abdou, C. Boileau, O. Valetter, and, C. Tardif. 2006. Transcriptional analysis of the cip-cel gene cluster from Clostridium cellulolyticum. J. Bacteriol. 188:26142624.
40. Morrison, M., and, J. Miron. 2000. Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins? FEMS Microbiol. Lett. 185:109115.
41. Murashima, K.,, A. Kosugi, and, R. H. Doi. 2002. Synergistic effects on crystalline degradation between cellulosomal cellulases from Clostridium cellulovorans. J. Bacteriol. 184:50885095.
42. Murashima, K.,, A. Kosugi, and, R. H. Doi. 2003. Synergistic effects of cellulosomal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation. J. Bacteriol. 185:15181524.
43. Ohara, H.,, S. Karita, T. Kimura, K. Sakka, and, K. Ohmiya. 2000. Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci. Biotechnol. Biochem. 64:254260.
44. Pages, S.,, A. Belaich,, J.-P. Belaich,, E. Morag,, R. Y. Shoham, and, E. A. Bayer. 1997. Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dock-erin domain. Proteins 29:517527.
45. Pages, S.,, A. Belaich,, C. Tardif,, C. Reverbel-Leroy,, C. Gaudin, and, J.-P. Belaich. 1996. Interaction between the endoglucanase CelA and the scaffolding protein CipC of the Clostridium cellulolyticum cellulosome. J. Bacteriol. 178:22792286.
46. Pages, S.,, O. Valette, L. Abdou, A. Belaich, and, J.-P. Belaich. 2003. A rhamnogalacturonan lyase in the Clostridium cellulolyticum cellulosome. J. Bacteriol. 185:47274733.
47. Perret, S.,, A. Belaich, H.-P. Fierobe, J.-P. Belaich, and, C. Tardif. 2004a. Towards designer cellulosomes in clostridia: mannanase enrichment of the cellulosomes produced by Clostridium cellulolyticum. J. Bacteriol. 186:65446552.
48. Perret, S.,, H. Maamar, J.-P. Belaich, and, C. Tardif. 2004b. Use of antisense RNA to modify the composition of cellulosomes produced by Clostridium cellulolyticum. Mol. Microbiol. 51:599607.
49. Pohlschröder, M.,, E. Canale-Parola, and, S. B. Leschine. 1995. Ultrastructural diversity of the cellulase complexes of Clostridium papyrosolvens C7. J. Bacteriol. 177:66256629.
50. Pohlschröder, M.,, S. B. Leschine, and, E. Canale-Parola. 1994. Multi-complex cellulase-xylanase system of Clostridium papyrosolvens C7. J. Bacteriol. 176:7076.
51. Reverbel-Leroy, C.,, S. Pages, A. Belaich, J.-P. Belaich, and, C. Tardif. 1997. The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. J. Bacteriol. 179:4652.
52. Sabathe, F.,, A. Belaich, and, P. Soucaille. 2002. Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. FEMS Microbiol. Lett. 217:1522.
53. Schwarz,, W. H. 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56:634649.
54. Sheweita, S.A.,, A. Ichi-ishi,, J.-S. Park,, C.-C. Liu,, L. M. Malburg, Jr., and, R. H. Doi. 1996. Characterization of engF, a gene for a noncellulosomal Clostridium cellulovorans endoglucanase. Gene 182:163167.
55. Shoseyov, O.,, M. Takagi, M. Goldstein, and, R. H. Doi. 1992. Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A (CbpA). Proc. Natl. Acad. Sci. USA 89:34833487.
56. Stephanopoulos, G. 2007. Challenges in engineering microbes for biofuels production. Science 315:801804.
57. Tamaru, Y., and, R. H. Doi. 1999. Three surface layer homology domains at the N terminus of the Clostridium cellulovorans major cellulosomal subunit EngE. J. Bacteriol. 181:32703276.
58. Tamaru, Y., and, R. H. Doi. 2000. The engL gene cluster of Clostridium cellulovorans contains a gene for cellulosomal ManA. J. Bacteriol. 182:244247.
59. Tamaru, Y., and, R. H. Doi. 2001. Pectate lyase A, an enzymatic subunit of the Clostridium cellulovorans cellulosome. Proc. Natl. Acad. Sci. USA 98:41254129.
60. Tamaru, Y.,, S. Karita, A. Ibrahim, H. Chan, and, R. H. Doi. 2000. A large gene cluster for the Clostridium cellulovorans cellulosome. J. Bacteriol. 182:59065910.
61. Wu, J. H. D.,, W. H. Orme-Johnson, and, A. L. Demain. 1988. Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystalline cellulose. Biochemistry 27:17031709.
62. Xu, Q.,, W. Gao, S.-Y. Ding, R. Kenig,, Y. Shoham,, E. A. Bayer, and, R. Lamed. 2003. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J. Bacteriol. 185:45484557.

Tables

Generic image for table
Table 1.

Cellulosome-producing mesophilic microorganisms

Citation: Doi R. 2008. Cellulosomes from Mesophilic Bacteria, p 97-106. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error