1887

Chapter 8 : Cohesin-Dockerin Interactions and Folding

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Cohesin-Dockerin Interactions and Folding, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap08-2.gif

Abstract:

Many investigations were conducted to characterize the cohesin-dockerin interactions. These studies include measuring cohesin-dockerin affinity, identifying critical amino acid residues by site-directed mutagenesis, and determining the molecular structures of the dockerin, cohesin, and its complex. Cohesins are highly conserved within the same scaffolding protein, with sequence identities higher than 50%. The interactions between the cohesin of the CipA scaffolding protein and the dockerin of cellulosomal catalytic components are categorized as type I, and the interactions between the dockerin of CipA and its counterpart are categorized as type II. The type I cohesins and dockerins include those modules from different microorganisms. This classification, however, is based on sequence homology and does not necessarily imply recognition among the same type of modules. Indeed, interspecies specificity was demonstrated using cohesins and dockerins from and , respectively. In this work, Pages et al. found that Cel48A (i.e., CelS), with its dockerin, did not recognize cohesin 1 of the scaffolding protein CipC. The extremely high affinity between cohesin and dockerin and their important roles in cellulosome assembly have prompted interest in determining their molecular structures to elucidate the molecular mechanism of the cohesin-dockerin recognition. The first success in X-ray crystallography of a cohesin-dockerin complex was brought about by using a crystal of the dockerin of Xyn10B and cohesin 2 of CipA, coexpressed in and purified as a complex, yielding a good crystal suitable for X-ray analysis.

Citation: David Wu J, Newcomb M, Sakka K. 2008. Cohesin-Dockerin Interactions and Folding, p 107-113. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch8

Key Concept Ranking

Nuclear Magnetic Resonance Spectroscopy
0.44714716
0.44714716
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Alignment of amino acid sequences of some dockerin modules classified as types Ia, Ib, Ic, II, and III. Three α helices are indicated with arrows, and the Ca -binding loops homologous to the EF-hand motif are indicated with horizontal bars. Amino acid positions 11 and 12, including the highly conserved ST motif in type Ia and AL motif in type II, are boxed. Ct, ; Cj, ; Cc, ; Ac, ; Rf, .

Citation: David Wu J, Newcomb M, Sakka K. 2008. Cohesin-Dockerin Interactions and Folding, p 107-113. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Schematic drawings of some scaffolding proteins from , and . Numerical values are sequence identities (in percentages) within each scaffolding protein. CBM, cellulose-binding module; GH9, glycosyl hydrolase family 9; SLH, surface layer homology; Doc, dockerin.

Citation: David Wu J, Newcomb M, Sakka K. 2008. Cohesin-Dockerin Interactions and Folding, p 107-113. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch08
1. Adams, J. J.,, G. Pal, Z. Jia, and, S. P. Smith. 2006. Mechanism of bacterial cell-surface attachment revealed by the structure of cellulosomal type II cohesin-dockerin complex. Proc. Natl. Acad. Sci. USA 103:305310.
2. Bayer, E. A.,, R. Kenig, and, R. Lamed. 1983. Adherence of Clostridium thermocellum to cellulose. J. Bacteriol. 163:552559.
3. Carvalho, A. L.,, F. M. Dias,, T. Nagy,, J. A. Prates,, M. R. Bischoff,, N. Smith,, E. A. Bayer,, G. J. Davies,, L. M. Ferreira,, M. J. Romao,, C. M. Fontes, and, H. J. Gilbert. 2007. Evidence for a dual binding mode of dockerin modules to cohesins. Proc. Natl. Acad. Sci. USA 104:30893094.
4. Carvalho, A. L.,, F. M. V. Dias, J. A. M. Prates,, T. Nagy,, H. J. Gilbert,, G. J. Bischoff,, L. M. A. Ferreira,, M. J. Romao, and, C. M.G. A. Fontes. 2003. Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex. Proc. Natl. Acad. Sci. USA 100:1380913814.
5. Carvalho, A. L.,, V. M. Pires,, T. M. Gloster,, J. P. Turkenburg,, J. A. Prates,, L. M. Ferreira,, M. J. Romao,, G. J. Davies,, C. M. Fontes, and, H. J. Gilbert. 2005. Insights into the structural determinants of cohesin-dockerin specificity revealed by the crystal structure of the type II cohesin from Clostridium thermocellum SdbA. J. Mol. Biol. 349:909915.
6. Chauvaux, S.,, P. Beguin,, J.-P. Aubert,, K. M. Bhat,, L. A. Gow,, T. M. Wood, and, A. Bairoch. 1990. Calciumbinding affinity and calcium-enhanced activity of Clostridium thermocellum endoglucanase D. Biochem. J. 265:261265.
7. Choi, S. K., and, L. G. Ljungdahl. 1996. Structural role of calcium for the organization of the cellulosome of Clostridium thermocellum. Biochemistry 35:49064910.
8. Demain, A. L.,, M. Newcomb, and, J. H. Wu. 2005. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 69:124154.
9. Fierobe, H. P.,, S. Pages,, A. Belaich,, S. Champ,, D. and J. P. Belaich. 1999. Cellulosome from Clostridium cellulolyticum: molecular study of the dockerin/cohesin interaction. Biochemistry 38:1282212832.
10. Gerngross, U. T.,, M. P. M. Romainiec,, N. S. Huskisson, and, A. L. Demain. 1993. Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol. Microbiol. 8:325334.
11. Gilbert,, H. J. 2007. Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol. Microbiol. 63:15681576.
12. Grepinet, O., M.-C. Chebrou, and, P. Beguin. 1988. Nucleotide sequence and deletion analysis of the xylanase gene (xynZ) of Clostridium thermocellum. J. Bacteriol. 170:45824588.
13. Jindou, S.,, A. Soda,, S. Karita,, T. Kajino,, P. J. H. D. Wu,, M. Inagaki,, T. K. Ohmiya. 2004. Cohesindockerin interactions within and between Clostridium josui and Clostridium thermocellum: binding selectivity between cognate dockerin and cohesin domains and species specificity. J. Biol. Chem. 279:98679874.
14. Kataeva, I. A. (ed.). 2006. Cellulosome. Nova Science Publishers, Hauppauge, NY.
15. Leibovitz, E., and, P. Beguin. 1996. A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA. J. Bacteriol. 178:30773084.
16. Lytle, B.,, C. Myers, K. Kruus, and, J. H. D. Wu. 1996. Interactions of the CelS binding ligand with various receptor domains of the Clostridium thermocellum cellulosomal scaffolding protein, CipA. J. Bacteriol. 178:12001203.
17. Lytle, B., and, J. H. D. Wu. 1998. Involvement of both dockerin subdomains in assembly of the Clostridium thermocellum cellulosome. J. Bacteriol. 180:65816585.
18. Lytle, B.,, B. F. Volkman,, W. M. Westler, and, J. H. D. Wu. 2000. Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy. Arch. Biochem. Biophys. 379:237244.
19. Lytle, B. L.,, B. F. Volkman,, W. M. Westler,, M. P. Heckman, and, J. H. D. Wu. 2001. Solution structure of a type I dockerin domain, a novel prokaryotic, extracellular calcium-binding domain. J. Mol. Biol. 307:745753.
20. Mechaly, A., H.-P. Fierobe, A. Belaich, J.-P. Belaich,, R. Lamed,, Y. and E. A. Bayer. 2001. Cohesin-dockerin interaction in cellulosome assembly. A single hydroxyl group of a dockerin domain distinguishes between nonrecognition and high affinity recognition. J. Biol. Chem. 276:98839888.
21. Miras, I.,, F. Schaeffer, P. Beguin, and, P. M. Alzari. 2002. Mapping by site-directed mutagenesis of the region responsible for cohesindockerin interaction on the surface of the seventh cohesin domain of Clostridium thermocellum CipA. Biochemistry 41:21152119.
22. Noach, I.,, F. Frolow, H. Jakoby,, S. Rosenheck,, L. W. Shimon,, R. Lamed, and, E. A. Bayer. 2005. Crystal structure of a type-II cohesin module from the Bacteroides cellulosolvens cellulosome reveals novel and distinctive secondary structural elements. J. Mol. Biol. 348:112.
23. Pages, S.,, A. Belaich,, J.-P. Belaich,, E. Morag,, R. Y. Shoham, and, E. A. Bayer. 1997. Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum : prediction of specificity determinants of the dock-erin domain. Proteins 29:517527.
24. Schaeffer, F.,, M. Matuschek, G. Guglielmi,, I. Miras,, P. M. Alzari, and, P. Beguin. 2002. Duplicated dockerin subdomains of Clostridium thermocellum endoglucanase CelD bind to a cohesin domain of the scaffolding protein CipA with distinct thermodynamic parameters and a negative cooperativity. Biochemistry 41:21062114.
25. Shimon, L. J. W.,, E. A. Bayer,, E. Morag,, R. Lamed,, S. F. Frolow. 1997. A cohesin domain from Clostridium thermocellum: the crystal structure provides new insights into cellulosome assembly. Structure 5:381390.
26. Shoseyov, O.,, M. Takagi,, M. A. Goldstein, and, R. H. Doi. 1992. Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. Proc. Natl. Acad. Sci. USA 89:34833487.
27. Spinelli, S., H.-P. Fierobe,, A. Belaich,, J.-P. Belaich,, B. Henrissat, and, C. Cambillau. 2000. Crystal structure of a cohesin module from Clostridium cellulolyticum: implications for dockerin recognition. J. Mol. Biol. 304:189200.
28. Tavares, G. A.,, P. Beguin, and, P. M. Alzari. 1997. The crystal structure of a type I cohesin domain at 1.7 A resolution. J. Mol. Biol. 273:701713.
29. Tokatlidis, K.,, S. Salamitou, P. Beguin, P. Dhurjati, and, J. P. Aubert. 1991. Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components. FEBS Lett. 291:185188.
30. Volkman, B. F.,, B. L. Lytle, and, J. H. D. Wu. 2004. Dockerin domains, p. 617628. In A. Messerschmidt,, W. Bode, and, M. Cygler. (ed.), Metalloproteins, vol. 3. John Wiley & Sons, Ltd., Chichester, United Kingdom.
31. Wu, J. H. D., and, A. L. Demain. 1988. Proteins of the Clostridium thermocellum complex responsible for degradation of crystalline cellulose, p. 117131. In J. P. Aubert,, P. Beguin, and, J. Millet. (ed.), Biochemistry and Genetics of Cellulose Degradation. Academic Press, New York, NY.
32. Wu, J. H. D.,, W. H. Orme-Johnson, and, A. L. Demain. 1988. Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystalline cellulose. Biochemistry 27:17031709.
33. Xu, Q.,, E. A. Bayer,, M. Goldman,, R. Kenig,, Y. and R. Lamed. 2004. Architecture of the Bacteroides cellulosolvens cellulosome: description of a cell surface-anchoring scaffoldin and a family 48 cellulase. J. Bacteriol. 186:968977.
34. Yaron, S.,, E. Morag,, E. A. Bayer,, R. Lamed, and, Y. Shoham. 1995. Expression, purification and subunit-binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome. FEBS Lett. 360:121124.

Tables

Generic image for table
Table 1.

Association and dissociation constants of various dockerin-cohesin complexes of as measured by SPR

Citation: David Wu J, Newcomb M, Sakka K. 2008. Cohesin-Dockerin Interactions and Folding, p 107-113. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch8
Generic image for table
Table 2.

Association and dissociation constants of the complexes between the recombinant dockerin of Xyn11A and various cohesins of CipA, measured by SPR

Citation: David Wu J, Newcomb M, Sakka K. 2008. Cohesin-Dockerin Interactions and Folding, p 107-113. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error