1887

Chapter 10 : The Development of Ethanologenic Bacteria for Fuel Ethanol Production

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Development of Ethanologenic Bacteria for Fuel Ethanol Production, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap10-2.gif

Abstract:

This chapter focuses on the development of two related bacteria that have proven to be effective in a variety of physical and chemical processes: and . Development of recombinant microbes that utilize a variety of sugars for ethanol production in laboratory media under optimum growth conditions has been repeated by several laboratories around the world. The use of dilute acid at temperatures above 140ºC is effective for the hydrolysis of hemicellulose in bagasse without significant loss of sugars or the production of degraded by-products. Dilute acid hydrolysis of hemicellulose has been used in order to produce high concentrations of hemicellulose sugars for fermentation by strain KO11-RD1. The yield of ethanol from acidic hydrolysis of cellulose is limited due to the poor recovery of glucose during the acid hydrolysis process. The degradation of glucose occurs very rapidly under conditions necessary for cellulose hydrolysis. Therefore, the use of cellulolytic enzymes has been pursued for several decades as a means of increasing the ethanol yield from cellulose. The simultaneous saccharification and fermentation (SSF) model has the following advantages over the sequential hydrolysis and fermentation process model: (i) lower enzyme dosages required for efficient conversion, (ii) compatibility with coproduction of enzymes during ethanol fermentation, and (iii) lower free-sugar concentrations during the SSF process.

Citation: Luli G, Jarboe L, Ingram L. 2008. The Development of Ethanologenic Bacteria for Fuel Ethanol Production, p 129-137. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch10

Key Concept Ranking

Saccharomyces cerevisiae
0.50537634
Lactic Acid
0.4838135
0.50537634
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

(Left) Effects of growth temperature on the alcohol tolerance of strain CP4. Cells were grown as described previously ( ). An overnight culture was diluted 1:200 into fresh medium containing a series of concentrations of ethanol and incubated for 48 h. Growth was measured as optical density at 550 nm. (Right) Effects of initial glucose concentration on the alcohol tolerance of strain CP4. An overnight culture was diluted 1:200 into fresh medium containing 1, 10, 20, or 25% glucose and a series of concentrations of ethanol. Cultures were incubated at 30°C for 48 h, and growth was measured as optical density at 550 nm ( ).

Citation: Luli G, Jarboe L, Ingram L. 2008. The Development of Ethanologenic Bacteria for Fuel Ethanol Production, p 129-137. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

A 200-liter fed-batch fermentation of dilute acid hydrolysate of sugarcane bagasse by strain KO11-RD1. Final ethanol yield was 93% of theoretical.

Citation: Luli G, Jarboe L, Ingram L. 2008. The Development of Ethanologenic Bacteria for Fuel Ethanol Production, p 129-137. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

SSF of sugarcane bagasse fiber after dilute acid hydrolysis of hemicellulose under low- and high-temperature conditions, using strain SZ21.

Citation: Luli G, Jarboe L, Ingram L. 2008. The Development of Ethanologenic Bacteria for Fuel Ethanol Production, p 129-137. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch10
1. Alterthum, F., and, L. O. Ingram. 1989. Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl. Environ. Microbiol. 55:19431948.
2. Asghari, A.,, R. J. Bothast,, J. B. Doran, and, L. O. Ingram. 1996. Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli strain KO11. J. Ind. Microbiol. 16:4247.
3. Barbosa, M. F.,, M. J. Beck, J. E. Fein, D. Potts, and, L. O. Ingram. 1992. Efficient fermentation of Pinus sp. acid hydrolysates by an ethanologenic strain of Escherichia coli. Appl. Environ. Microbiol. 58:13821384.
4. Beall, D. S.,, L. O. Ingram,, A. Ben-Bassat,, J. B. Doran,, D. E. Fowler,, R. G. Hall, and, B. E. Wood. 1992. Conversion of hydrolysates of corn cobs and hulls into ethanol by recombinant Escherichia coli B containing integrated genes for ethanol production. Biotechnol. Lett. 14:857862.
5. Brooks, T. A., and, L. O. Ingram. 1995. Conversion of mixed waste office paper to ethanol by genetically engineered Klebsiella oxytoca strain P2. Biotechnol. Prog. 11:619625.
6. Burchhardt, G., and, L. O. Ingram. 1992. Conversion of xylan to ethanol by ethanologenic strains of Escherichia coli and Klebsiella oxytoca. Appl. Environ. Microbiol. 58:11281133.
7. Byun, M. O.-K.,, J. B. Kaper, and, L. O. Ingram. 1986. Construction of a new vector for the expression of foreign genes in Zymomonas mobilis. J. Ind. Microbiol. 1:915.
8. Carey, V. C.,, S. K. Walia, and, L. O. Ingram. 1983. Expression of a lactose transposon (TN951) in Zymomonas mobilis. Appl. Environ. Microbiol. 46:11631168.
9. Carey, V. C., and, L. O. Ingram. 1983. Lipid composition of Zymomonas mobilis: effects of ethanol and glucose. J. Bacteriol. 154:12911300.
10. Carey, V. C.,, S. K. Walia, and, L. O. Ingram. 1984. Expression of the lactose operon in Zymomonas mobilis. Dev. Ind. Microbiol. 25:589596.
11. Conway, T.,, Y. A. Osman,, J. I. Konnan,, E. M. Hoffmann, and, L. O. Ingram. 1987. Promoter and nucleotide sequence of the Zymomonas mobilis pyruvate decarboxylase. J. Bacteriol. 169:949954.
12. Dennis, P. P.,, M. Ehrenberg, and, H. Bremer. 2004. Control of rRNA synthesis in Escherichia coli: a systems biology approach. Microbiol. Mol. Biol. Rev. 68:639668.
13. Dien, B. S.,, R. B. Hespell,, L. O. Ingram, and, R. J. Bothast. 1997. Conversion of corn milling fibrous co-products into ethanol by recombinant Escherichia coli strains KO11 and SL40. World J. Microbiol. Biotechnol. 13:619625.
14. Dien, B. S.,, N. N. Nichols, P. J. O’Bryan, and, R. J. Bothast. 2000. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl. Biochem. Biotechnol. 84:181196.
15. Doran, J. B., and, L. O. Ingram. 1993. Fermentation of crystalline cellulose to ethanol by Klebsiella oxytoca containing chromosom-ally integrated Zymomonas mobilis genes. Biotechnol. Prog. 9:533538.
16. Doran, J. B.,, H. C. Aldrich, and, L. O. Ingram. 1994. Saccharification and fermentation of sugar cane bagasse by Klebsiella oxytoca P2 containing chromosomally integrated genes encoding the Zymomonas mobilis ethanol pathway. Biotechnol. Bioeng. 44:240247.
17. Gauss, W. F.,, S. Suzuki, and, M. Takagi. November. 1976. Manufacture of alcohol from cellulosic materials using plural ferments. U.S. patent 3,990,994.
18. Gonzalez, R.,, H. Tao,, J. E. Purvis,, S. W. York,, K. T. Shanmugam, and, L. O. Ingram. 2003. Gene array-based identification of beneficial changes that contribute to increased ethanol tolerance in ethanologenic Escherichia coli LY01. Biotechnol. Prog. 19:612623.
19. Grohmann, K.,, E. A. Baldwin,, B. S. Buslig, and, L. O. Ingram. 1994. Fermentation of galacturonic acid and other sugars in orange peel hydrolysates by the ethanologenic strain of Escherichia coli. Biotechnol. Lett. 16:281286.
20. Guimaraes, W. V.,, K. Ohta, G. Burchhardt, and, L. O. Ingram. 1992. Ethanol production from starch by recombinant Escherichia coli containing integrated genes for ethanol production and plasmid genes for saccharification. Biotechnol. Lett. 14:415420.
21. Hespell, R. B.,, H. Wyckoff,, B. S. Dien, and, R. J. Bothast. 1996. Stabilization of pet operon plasmids and ethanol production in Escherichia coli strains lacking lactate dehydrogenase and pyruvate-formate lyase activities. Appl. Environ. Microbiol. 62:45944597.
22. Ingram,, L. O. 1976. Adaptation of membrane lipids to alcohols. J. Bacteriol. 125:670678.
23. Ingram, L. O.,, A. S. Holt,, V. C. Carey,, K. M. Dombek,, W. A. Holt,, Y. A. Osman, and, S. K. Walia. 1984. Biochemical and genetic improvement of Zymomonas mobilis. Biomass 6:131143.
24. Ingram, L. O.,, T. Conway,, D. P. Clark,, G. W. Sewell, and, J. F. Preston. 1987. Genetic engineering of ethanol production in Escherichia coli. Appl. Environ. Microbiol. 53:24202425.
25. Ingram, L. O.,, T. Conway, and, F. Alterthum. March. 1991. Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes. U.S. patent 5,000,000.
26. Ingram, L. O.,, K. Ohta, and, B. Wood. October. 1998. Recombinant cells that highly express chromosomally integrated heterologous genes. U.S. patent 5,821,093.
27. Katzen, R., and, D. A. Monceaux. 1995. Development of bioconversion of cellulosic wastes. Appl. Biochem. Biotechnol. 51/52:585592.
28. Lee, Y. Y.,, P. Iyer, and, R. W. Torget. 1999. Dilute-acid hydrolysis of lignocellulosic biomass. Adv. Biochem. Eng. Biotechnol. 65:93115.
29. Lynch, A. S., and, E. C. C. Lin. 1996. Responses to molecular oxygen, p. 15261538. In F. C. Neidhart,, R. Curtiss III, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2th ed. ASM Press, Washington, DC.
30. Martin, G. J. O.,, A. K. Bin Zhou, and, N. B. Pamment. 2006. Performance and stability of ethanologenic Escherichia coli strain FBR5 during continuous culture on xylose and glucose. J. Ind. Microbiol. Biotechnol. 33:834844.
31. Martinez, A.,, S. W. York,, L. P. Yomano,, V. L. Pineda,, F. C. Davis,, J. C. Shelton, and, L. O. Ingram. 1999. Biosynthetic burden and plasmid burden limit expression of chromosomally integrated heterologous genes (pdc, adhB) in Escherichia coli. Biotechnol. Prog. 15:891897.
32. Martinez, A.,, T. B. Grabar, K. T. Shanmugam,, L. Yomano,, S. W. York, and, L. O. Ingram. 2007. Low. salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol. Lett. 29:394404.
33. Moniruzzaman, M.,, B. S. Dien,, B. Ferrer,, R. B. Hespell,, B. E. Dale,, L. O. Ingram, and, R. J. Bothast. 1996. Ethanol production from AFEX pretreated corn fiber by recombinant bacteria. Biotechnol. Lett. 18:955990.
34. Moniruzzaman, M., and, L. O. Ingram. 1998. Ethanol production from dilute acid hydrolysate of rice hulls using genetically engineered Escherichia coli. Biotechnol. Lett. 20:943947.
35. Ohta, K.,, D. S. Beall,, J. P. Mejia,, K. T. Shanmugam, and, L. O. Ingram. 1991a. Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl. Environ. Microbiol. 57:28102815.
36. Ohta, K.,, D. S. Beall,, K. T. Shanmugam, and, L. O. Ingram. 1991b. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl. Environ. Microbiol. 57:893900.
37. Okuda, N.,, K. Ninomiya, M. Takao, Y. Katakura, and, S. Shioya. 2007. Microaeration enhances productivity of bioethanol from hydrolysate of waste house wood using ethanologenic Escherichia coli KO11. J. Biosci. Bioeng. 103:350357.
38. Osman, Y. A.,, T. Conway,, S. J. Bonetti, and, L. O. Ingram. 1987. Glycolytic flux in Zymomonas mobilis: enzyme and metabolite levels during batch fermentation. J. Bacteriol. 169:37263736.
39. Osman, Y. A., and, L. O. Ingram. 1987. Zymomonas mobilis mutants with an increased rate of alcohol production. Appl. Environ. Microbiol. 53:14251432.
40. Paul, B. J.,, W. Ross, T. Gaal, and, R. L. Gourse. 2004. rRNA transcription in Escherichia coli. Annu. Rev. Genet. 38:749770.
41. Scholler, H. December 1932. Process and device for the saccharification of cellulose and the like. U.S. patent 1,890,304.
42. Scholler, H. February 1935. Process of converting cellulose and the like into sugar with dilute acids under pressure. U.S. patent 1,990,097.
43. Scholler, H. July 1938. Process of saccharification of cellulose. U.S. patent 2,123,211.
44. Scholler, H. January 1940. Fermentation process of treating sugar worts. U.S. patent 2,188,193.
45. Teixeira de Mattos, M. J., and, O. M. Neijssel. 1997. Bioenergetic consequences of microbial adaptation to low-nutrient environments. J. Biotechnol. 59:117126.
46. Tolan, J. S., and, R. K. Finn. 1987a. Fermentation of D-xylose and L-arabinose to ethanol by Erwinia chrysanthemi. Appl. Environ. Microbiol. 53:20332038.
47. Tolan, J. S., and, R. K. Finn. 1987b. Fermentation of D-xylose to ethanol by genetically modified Klebsiella planticola. Appl. Environ. Microbiol. 53:20392044.
48. Underwood, S. A.,, M. L. Buszko,, K. T. Shanmugam, and, L. O. Ingram. 2004. Lack of protective osmolytes limits final cell density and volumetric productivity of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl. Environ. Microbiol. 70:27342740.
49. United States Department of Energy. 2006. Financial Assistance Funding Opportunity Announcement: DE-PS36-07GO97003.
50. Walia, S. K.,, B. P. All III,, V. C. Carey, and, L. O. Ingram. 1984a. Self-transmissible plasmid in Zymomonas mobilis carrying antibiotic resistance. Appl. Environ. Microbiol. 47:198200.
51. Walia, S. K.,, B. P. All III,, V. C. Carey, and, L. O. Ingram. 1984b. Occurrence of R-plasmid in Zymomonas mobilis. Dev. Ind. Microbiol. 25:485490.
52. Wood, B. E., and, L. O. Ingram. 1992. Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl. Environ. Microbiol. 58:21032110.
53. Wood, B. E.,, H. C. Aldrich, and, L. O. Ingram. 1997. Ultrasound stimulates ethanol production during the simultaneous saccharification and fermentation of mixed waste office paper. Biotechnol. Prog. 13:232237.
54. Wood, B. E.,, L. P. Yomano,, S. W. York, and, L. O. Ingram. 2005. Development of industrial-medium-required elimination of the 2,3 butanediol fermentation pathway to maintain ethanol yield in an ethanologenic strain of Klebsiella oxytoca. Biotechnol. Prog. 21:13661372.
55. Yomano, L. P.,, S. W. York, and, L. O. Ingram. 1998. Isolation and characterization of ethanol tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J. Ind. Microbiol. 20:132138.
56. York, S. W., and, L. O. Ingram. 1996. Ethanol production by recombinant Escherichia coli KO11 using crude yeast autolysate as a nutrient supplement. Biotechnol. Lett. 18:683688.
57. Zhou, S., and, L. O. Ingram. 1999. Engineering endoglucanase-secreting strains of ethanologenic Klebsiella oxytoca P2. J. Ind. Microbiol. Biotechnol. 22:600607.
58. Zhou, S., and, L. O. Ingram. 2001. Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulase. Biotechnol. Lett. 23:14551462.
59. Zhou, S.,, F. C. Davis, and, L. O. Ingram. 2001. Gene integration and expression and extracellular secretion of Erwinia chrysanthemi endoglucanase CelY (celY) and CelZ (celZ) in ethanologenic Klebsiella oxytoca P2. Appl. Environ. Microbiol. 67:614.
60. Zhou, S.,, L. P. Yomano,, K. T. Shanmugam, and, L. O. Ingram. 2005. Fermentation of 10 (w/v) sugar to D(-)-lactate by engineered Escherichia coli B. Biotechnol. Lett. 27:18911896.

Tables

Generic image for table
Table 1.

Desirable microbial traits for conversion of biomass to ethanol

Citation: Luli G, Jarboe L, Ingram L. 2008. The Development of Ethanologenic Bacteria for Fuel Ethanol Production, p 129-137. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch10
Generic image for table
Table 2.

Fermentation of hemicellulose sugars from various lignocellulosic biomasss sources by strains of ethanologenic and

Citation: Luli G, Jarboe L, Ingram L. 2008. The Development of Ethanologenic Bacteria for Fuel Ethanol Production, p 129-137. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch10
Generic image for table
Table 3.

Summary of cellulose conversion to ethanol using strain P2 in SSF processes with added enzymes

Citation: Luli G, Jarboe L, Ingram L. 2008. The Development of Ethanologenic Bacteria for Fuel Ethanol Production, p 129-137. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch10
Generic image for table
Table 4.

Coproduction of ethanol plus enzymes by bacteria for the conversion of various polymers

Citation: Luli G, Jarboe L, Ingram L. 2008. The Development of Ethanologenic Bacteria for Fuel Ethanol Production, p 129-137. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error