1887

Chapter 11 : Cellulases and Xylanases in Cellulosic Biofuels Production

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Cellulases and Xylanases in Cellulosic Biofuels Production, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap11-2.gif

Abstract:

The major portion of total secreted protein is represented by cellulases and xylanases. In general, cellulases and xylanases of have a great potential for degradation of lignocellulosic materials. The strategy for isolation of individual cellulases has been described in this chapter and is based on the sequential use of different purification techniques, such as anion-exchange chromatography, hydrophobic chromatography, and gel filtration. The cellulase system of consists of several endoglucanases, cellobiohydrolases, and β-glucosidase. Cellobiohydrolases are the key components of multienzymatic cellulose complexes which are responsible for conversion of cellulose to soluble sugars. Xylanases are known for the production of fermentable monomeric xylose for production of biofuel and xylooligosaccharides for nutraceutical applications. Xylanases increase the digestibility of feed by lowering viscosity in the intestinal tract and decreasing absorption and water-holding capacity of feeds with significant content of nonstarch polysaccharides (NSP) by destruction of arabinoxylan. The ability of xylanases to efficiently decrease the viscosity of arabinoxylan makes them potential candidates to degrade NSPs and to be used as feed additives, and also to depolymerize pre-treated biomass in the production of cellulosic ethanol. All xylanases produce xylose, xylobiose (major product), and xylotriose as final products of arabinoxylan degradation. Filamentous fungal cell factories are the best hyperproducers of a complex array of glycosyl hydrolases such as cellulases, hemicellulases, and accessory enzymes.

Citation: Báez-Vásquez M, Sinitsyn A. 2008. Cellulases and Xylanases in Cellulosic Biofuels Production, p 139-145. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815547.ch11
1. Barnett, C.,, R. Berka, and, T. Fowler. 1991. Cloning and amplification of the gene encoding an extracellular β-glucosidase from Trichoderma reesei: evidence for improved rates of saccharification of cellulosic substrates. Bio/Technology 9:562567.
2. Bhat, K.,, N. J. Parry,, S. Kalogiannis,, D. E. Beever,, E. Owen,, M. Nerinckx, and, M. Claeyssens. 1998. Biochemical characterization of cellulases and xylanases from Thermoascus aurantiacus, and carbohydrases from Trichoderma reesei and other microorganisms, p. 102112. In M. Claeyssens,, W. Nerinckx, and, K. Piens. (ed.), Structures, Biochemistry, Genetics and Applications. Royal Society of Chemistry, Cambridge, United Kingdom.
3. Boisset, C.,, M. Fraschini, M. Schülein, B. Henrissat, and, H. Chanzy. 2000. Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Appl. Environ. Microbiol. 66:14441452.
4. Bok, J. D.,, S. K. Goer, and, D. E. Eveleigh. 1994. Cellulase and xylanase systems of Thermatoga neapolitana, p. 5465. In M. Himmel,, J. Baker, and, R. Overend. (ed.), Enzymatic Conversion of Biomass for Fuels Production, ACS Symposium 566. American Chemical Society, Washington, DC.
5. Bucheret, J.,, M. Tenkanen, A. Kanteleinen, and, L. Viikari. 1994. Application of xylanases in pulp and paper industry. Bioresour. Technol. 50:6572.
6. Bukhtojarov, F. E.,, B. B. Ustinov,, T. N. Salanowich,, A. I. Antonov,, A. V. Gusakov,, O. N. Okunev, and, A. P. Sinitsyn. 2004. Cellulase complex of the fungus Chrysosporum lucknowense: isolation and characterization of endoglucanases and cellobiohydrolases. Biochemistry (Moscow) 69:542551.
7. Covert, S. F.,, A. van den Wymelenberg, and, D. Cullen. 1992. Structure, organization, and transcription of a cellobiohydrolase gene cluster from Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58:21682175.
8. Dalboge, H., and, H. P. Heldt-Hansen. 1994. A novel method for efficient expression cloning of fungal enzyme genes. Mol. Gen. Genet. 243:253260.
9. Daneault, C.,, C. Leduc, and, J. L. Valade. 1994. The use of xylanases in kraft pulp bleaching: a review. Tappi J. 77:125131.
10. Demain, A. L.,, M. Newcomb, and, D. J. H. Wu. 2005. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 69:124154.
11. Durand, H.,, M. Clanet, and, G. Tiraby. 1988. Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme Microb. Technol. 101:4060.
12. Emalfarb, M. A.,, A. Ben-Bassat, and, A. P. Sinitsyn. January. 2000. Treating cellulosic materials with cellulases from chrysosporium. U.S. patent 6015707.
13. Emalfarb, M. A., et al. June 2003. Transformation system in the field of filamentous fungal hosts. U.S. patent 6573086.
14. Emalfarb, M. A.,, P. J. Punt, C. van Zeijl, and, C. van den Hondel. 2001. High-throughput screening of expressed DNA libraries in filamentous fungi. Foreign patent WO 01/79558.
15. Foreman, P.,, D. Brown,, L. Dankmyer,, R. Dean,, S. N. Dunn-Coleman,, F. Goedegebuur,, T. Houfek,, G. A. Kellwy,, H. Meerman,, T. C. Mitchinson,, H. Olivares,, P. M. Ward. 2003. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J. Biol. Chem. 278:3198831997.
16. Grishutin, S. G.,, A. V. Gusakov,, A. V. Markov,, B. B. Ustinov,, M. V. Semenova, and, A. P. Sinitsyn. 2004. Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim. Biophys. Acta 1674:268281.
17. Gusakov, A. V.,, A. P. Sinitsyn,, A. G. Berlin,, N. N. Popova,, A. V. Markov,, O. N. Okunev,, D. F. Tikhomirov, and, M. A. Emalfarb. 1998. Interaction between indigo and adsorbed protein as a major factor causing backstaining during cellulose treatment of cotton fabrics. Appl. Biochem. Biotechnol. 75:279293.
18. Gusakov, A. V.,, A. P. Sinitsyn,, A. G. Berlin,, A. V. Markov, and, N. V. Ankudimova. 2000. Discrimination of surface hydrophobic amino acid residues in cellulase molecules as a structural factor responsible for their high abrasive activity in the denim washing process. Enzyme Microb. Technol. 27:664671.
19. Gusakov, A. V.,, T. N. Salanovich,, A. I. Antonov,, B. B. Ustinov,, O. N. Okunev,, R. Burlingame,, M. A. P. Sinitsyn. 2007. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of celluloses. Biotechnol. Bioeng. 97:10281038.
20. Gusakov, A. V.,, A. P. Sinitsyn,, T. N. Salanovich,, F. E. Bukhtojarov,, A. V. Markov,, B. B. Ustinov,, C. van Zeijl,, P. Punt, and, R. Burlingame. 2005. Purification, cloning and characterization of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by industrial strain of Chrysosporium lucknowense. Enzyme Microb. Technol. 36:5769.
21. Henrissat, B.,, H. Driguez, C. Viet, and, M. Schülein. 1985. Synergism of cellulases from Trichoderma reesei in degradation of cellulose. Bio/Technology 3:722726.
22. Himmel, M.,, M. Ruth, and, C. Wayman. 1999. Cellulase for commodity products from cellulosic biomass. Curr. Opin. Biotechnol. 10:358364.
23. Kabel, M. A.,, M. J. E. C. van der Maarel,, G. Klip,, A. G. J. Voragen, and, H. A. Schols. 2005. Standard assays do not predict the efficiency of commercial cellulase preparations towards plant materials. Biotechnol. Bioeng. 93:5663.
24. Kleman-Leyer, K. M.,, M. Siika-Aho,, T. T. Teeri, and, T. K. Kirk. 1996. The cellulases endoglucanase I and cellobiohydrolase II of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not decrease its molecular size. Appl. Environ. Microbiol. 62:28832887.
25. Markov, A. V.,, A. V. Gusakov,, E. G. Kondratieva,, J. N. Okunev,, A. O. Bekkarevich, and, A. P. Sinitsyn. 2005. New effective method for analysis of the component composition of enzyme complexes from Trichoderma reesei. Biochemistry (Moscow) 70:657663.
26. Mathlouthi, N.,, L. Saulnier, B. Quemener, and, M. Larbier. 2002. Xylanase, β-glucanase and other side enzymatic activities have greater effect on the viscosity of several foodstuffs than xylanase and β-glucanase used alone or in combination. J. Agric. Food Chem. 50:51215127.
27. Medve, J.,, J. Ståhlberg, and, F. Tjerneld. 1994. Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose. Biotechnol. Bioeng. 44:10641073.
28. Miettinen-Oinonen, A., and, P. Suominen. 2002. Enhanced production of Trichoderma reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric. Appl. Environ. Microbiol. 68:39563964.
29. Miettinen-Oinonen, A.,, J. Londesborough, V. Joutsjoki, R. Lantto, and, J. Vehmaanpera. 2004. Three cellulases from Melanocarpus albomyces for textile treatment at neutral pH. Enzyme Microb. Technol. 34:332341.
30. Muñoz, I. G.,, W. Ubhayasekera, H. Henriksson, I. Szabo, G. Petters-son,, G. Johansson,, S. L. Mowbray, and, J. Ståhlberg. 2001. Family 7 cellobiohydrolases from Phanerochaete chrysosporium: crystal structure of the catalytic module of Cel7D (CBH58) at 1.32 angstrom resolution and homology models of the isozymes. J. Mol. Biol. 314:10971111.
31. Nidetzky, B.,, W. Steiner, M. Hayn, and, M. Claeyssen. 1994. Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem. J. 298:705710.
32. Okada, H.,, K. Tada,, T. Sekiya,, K. Yokoyama,, A. Takahashi,, H. Y. Morikawa. 1998. Molecular characterization and heterologous expression of the gene encoding a low-molecular-mass endoglucanase from Trichoderma reesei QM9414. Appl. Environ. Microbiol. 64:555563.
33. Pentillä, M.,, P. Lehtovaara, H. Nevalainen, R. Bhikhabhai, and, J. Knowles. 1986. Homology between cellulose genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene 45:253263.
34. Polizeli, M. L.,, T. M. Rizzatti, A. C. S. Monti,, R. Terenzi,, J. A. Jorge, and, D. S. Amorim. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67:577591.
35. Rabinovich, M. L.,, M. S. Meinik, and, A. V. Bolobova. 2002. Microbial cellulases. Appl. Biochem. Microbiol. 38:305321.
36. Saloheimo, M.,, P. Lehtovaara,, M. Pentillä,, T. T. Teeri,, J. Ståhlberg,, G. Johansson,, G. Pettersson,, M. J. Knowles. 1988. EGIII, a new endoglucnase from Trichoderma reesei : the characterization of both gene and enzyme. Gene 63:1112.
37. Saloheimo, M.,, T. Nakari-Setälä, M. Tenkanen, and, M. Penttilä. 1997. cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur. J. Biochem. 249:584591.
38. Schülein, M. 1997. Enzymatic properties of cellulases from Humicola insolens. J. Biotechnol. 57:7181.
39. Sinitsyn, A. P.,, B. Jadjemy, and, A. A. Klyosov. 1981. Enzymatic conversion of cellulose to glucose: effect of product inhibition and decrease of substrate reactivity on the rate of enzymatic hydrolysis. Microbiology 17:315321.
40. Sinitsyn, A. P.,, H. R. Bungay, and, L. S. Clesceri. 1983. Enzyme management in the Iotech process. Biotechnol. Bioeng. 25:13931399.
41. Sinitsyn, A. P.,, A. V. Gusakov,, S. G. Grishutin,, O. A. Sinitsyna, and, N. V. Ankudimova. 2001. Application of microassay for investigation of cellulose abrasive activity and backstaining. J. Biotechnol. 89:233238.
42. Solovieva, I. V.,, O. N. Okunev,, V. V. Velkov,, A. V. Koshelev,, T. V. Bubnova,, E. G. Kondratieva,, A. A. Skomarovsky, and, A. P. Sinitsyn. 2005. The selection and properties of Penicillium verruculosum mutants with enhanced production of cellulases and xylanases. Microbiology (Moscow) 74:141146.
43. Suurnäkki, A., M.-L. Niju-Paavola,, J. Buchert, and, L. Viikari. 2004. Enzymes in pulp and paper processing, p. 232244, 437439. In W. Achel (ed.), Enzymes in Industry. Wiley-VCH, Weinheim, Germany.
44. Teeri, T. 1997. Crystalline cellulose degradation: new insight into the function of cellobiohydrolase. Trends Biotechnol. 15:160167.
45. Teeri, T.,, I. Salovouri, and, J. Knowles. 1983. The molecular cloning of the major cellulose gene from Trichoderma reesei. Bio/ Technology 1:696699.
46. Teeri, T.,, P. Lehtovaara, S. Kauppinen, I. Salovuori, and, J. Knowles. 1987. Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene 51:4352.
47. Twomey, L. N.,, J. R. Pluske, J. B. Rowe, M. Chost,, W. Brown,, M. F. McConnell, and, D. W. Pethick. 2003. The effect of increasing levels of soluble non-starch polysaccharides and inclusion of feed enzymes in dog diets on faecal quality and digestibility. Anim. Feed Sci. Technol. 108:7182.
48. Ustinov, B. B.,, A. I. Antonov,, S. G. Grishutin,, E. I. Dzedsiulia,, A. V. Gusakov, and, A. P. Sinitsyn. 2005. Possibility of application of Chrysosporium lucknowense xylanases in pulp and paper industry and as feed additive, p. 218. In Abstracts of Second International Congress “Biotechnology: State and Perspectives,” March 14–18, 2005, Moscow, Russia.
49. Wyman, C. E. 1994. Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour. Technol. 50.316.
50. Wyman, C. E.,, B. D. Dale, R. T. Elander,, M. Hotzapple,, M. R. Ladish, and, Y. Y. Lee. 2005. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 96:19591966.

Tables

Generic image for table
Table 1.

Biochemical characteristics of cellulases from

Citation: Báez-Vásquez M, Sinitsyn A. 2008. Cellulases and Xylanases in Cellulosic Biofuels Production, p 139-145. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch11
Generic image for table
Table 2.

Properties of cellulases from

Citation: Báez-Vásquez M, Sinitsyn A. 2008. Cellulases and Xylanases in Cellulosic Biofuels Production, p 139-145. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch11
Generic image for table
Table 3.

Results of Avicel hydrolysis by individual cellobiohydrolases from two fungal sources

Citation: Báez-Vásquez M, Sinitsyn A. 2008. Cellulases and Xylanases in Cellulosic Biofuels Production, p 139-145. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch11
Generic image for table
Table 4.

Synergism between cellulases in hydrolysis of dewaxed cotton cellulose

Citation: Báez-Vásquez M, Sinitsyn A. 2008. Cellulases and Xylanases in Cellulosic Biofuels Production, p 139-145. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch11
Generic image for table
Table 5.

Biochemical characteristics of xylanases from

Citation: Báez-Vásquez M, Sinitsyn A. 2008. Cellulases and Xylanases in Cellulosic Biofuels Production, p 139-145. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch11
Generic image for table
Table 6.

Properties of xylanases from

Citation: Báez-Vásquez M, Sinitsyn A. 2008. Cellulases and Xylanases in Cellulosic Biofuels Production, p 139-145. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error