Chapter 12 : Production of Ethanol from Synthesis Gas

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Production of Ethanol from Synthesis Gas, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap12-2.gif


After the oil supply shocks in the 1970s, research on development of alternative sources of liquid fuels was intensified. The initial emphasis was on processes that used coal as a feedstock, but later investigations were on the direct fermentation of lignocellulosic biomass where the biomass is first treated to convert it to fermentable sugars, followed by the familiar alcoholic fermentation, generally by yeast. Synthesis gas can be fermented or otherwise converted to a number of desired products, including ethanol. It can be chemically converted to liquid fuels. has been shown to ferment 100 mmol of fructose to 23 mmol of ethanol, 81 mmol of acetate, and 4 mmol of butanol. Upon fermentation of an equivalent amount of carbon monoxide (600 mmol), the end products produced shifted to 96 mmol of ethanol, 12 mmol of acetate, and 24 mmol of butanol. The presence of reducing agents alone can shift products of fermentation from acetate to ethanol. The ability to produce butanol from synthesis gas appears to be the most attractive feature of . was isolated from chicken yard waste based on its ability to ferment synthesis gas to ethanol. The first commercial fermentation of synthesis gas to ethanol will probably use as the microbial catalyst. can directly ferment biomass, at least the cellulose fraction.

Citation: S. Tanner R. 2008. Production of Ethanol from Synthesis Gas, p 147-151. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch12

Key Concept Ranking

Carbon monoxide
Hydrogen Sulfide
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Abrini, J., H. Naveau, and, E.-J. Nyns. 1994. Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch. Microbiol. 161:345351.
2. Barik,, S., S. Prieto,, S. B. Harrison,, E. C. Clausen, and, J. L. Gaddy. 1988. Biological production of alcohols from coal through indirect liquefaction. Appl. Biochem. Biotechnol. 18:363378.
3. Bredwell, M. D.,, P. Srivastava, and, R. M. Worden. 1999. Reactor design issues for synthesis-gas fermentations. Biotechnol. Prog. 15:834844.
4. Breznak, J. A.,, J. M. Switzer, and, H.-J. Seitz. 1988. Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch. Microbiol. 150:282288.
5. Buschhorn, H.,, P. Dürre, and, G. Gottschalk. 1989. Production and utilization of ethanol by Acetobacterium woodii. Appl. Environ. Microbiol. 55:18351840.
6. Colby,, J., E. Williams, and, A. P. F. Turner. 1985. Applications of CO-utilizing microorganisms. Trends Biotechnol. 3:1217.
7. Collins, M. D.,, P. A. Lawson,, A. Willems,, J. J. Cordoba,, J. Fernandez-Garayzabal,, P. Garcia,, H. Hippe, and, J. A. Farrow. 1994. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44:812826.
8. Datar, R. P.,, R. M. Shenkman,, B. G. Cateni,, R. L. Huhnke, and, R. S. Lewis. 2004. Fermentation of biomass-generated producer gas to ethanol. Biotechnol. Bioeng. 86:587594.
9. Drake, H. L. 1994. Acetogenesis. Chapman & Hall, New York, NY.
10. Dürre, P. 1998. New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl. Microbiol. Biotechnol. 49:639648.
11. Fraisse, L., and, H. Simon. 1988. Observations on the reduction of non-activated carboxylates by Clostridium formicoaceticum with carbon monoxide or formate and the influence of various viologens. Arch. Microbiol. 150:381386.
12. Gaddy, J. L. October, 2000. Biological production of ethanol from waste gases with Clostridium ljungdahlii. U.S. patent 6,136,577.
13. Gaddy, J. L., and, E. C. Clausen. December. 1992. Clostridium ljungdahlii, an anaerobic ethanol and acetate producing microorganism. U.S. patent 5,173,429.
14. Grethlein, A. J., and, M. K. Jain. 1992. Bioprocessing of coal-derived synthesis gas by anaerobic bacteria. Trends Biotechnol. 10:418423.
15. Grethlein, A. J.,, R. M. Worden,, M. K. Jain, and, R. Datta. 1990. Continuous production of mixed alcohols and acids from carbon monoxide. Appl. Biochem. Biotechnol. 24/25:875884.
16. Grethlein, A. J.,, R. M. Worden,, M. K. Jain, and, R. Datta. 1991. Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J. Ferment. Bioeng. 72:5860.
17. Hartmanis, M. G. N.,, T. Klason, and, S. Gatenbeck. 1984. Uptake and activation of acetate and butyrate in Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 20:6671.
18. Heijthuijsen, J. H. F. G., and, T. A. Hansen. 1989. Selection of sulphur sources for the growth of Butyribacterium methylotrophicum and Acetobacterium woodii. Appl. Microbiol. Biotechnol. 32:186192.
19. Heijthuijsen, J. H. F. G., and, T. A. Hansen. 1990. C1-metabolism in anaerobic non-methanogenic bacteria, p. 163191. In G. A. Codd,, L. Dijkhuizen, and, F. R. Tabita (ed.), Autotrophic Microbiology and One-Carbon Metabolism. Kluwer Academic Publishers, Dordrecht, The Netherlands.
20. Jones, D. T., and, D. R. Woods. 1986. Acetone-butanol fermentation revisited. Microbiol. Rev. 50:484524.
21. Klasson, K. T.,, M. D. Ackerson,, E. C. Clausen, and, J. L. Gaddy. 1992. Bioconversion of synthesis gas into liquid or gaseous fuels. Enzyme Microb. Technol. 14:602608.
22. Levy, P. F.,, G. W. Barnard,, D. V. Garcia-Martinez,, J. E. Sanderson, and, D. L. Wise. 1981. Organic acid production from CO2/H2 and CO/H2 by mixed-culture anaerobes. Biotechnol. Bioeng. 23:22932306.
23. Liou, J. S.-C.,, D. L. Balkwill,, G. R. Drake, and, R. S. Tanner. 2005. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural lagoon, and reclassification of Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int. J. Syst. Evol. Microbiol. 55:20852091.
24. Liou, S., and, R. S. Tanner. 2001. Production of acids and alcohols from CO by clostridial strain P7, abstr. O-11, p. 533. Abstr. 101st Annu. Meet. Am. Soc. Microbiol. 2001. American Society for Microbiology, Washington, DC.
25. Lynd,, L., R. Kerby, and, J. G. Zeikus. 1982. Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J. Bacteriol. 149:255263.
26. McKendry, P. 2002. Energy production from biomass (part 3): gasification technologies. Bioresour. Technol. 83:5563.
27. Midilli,, A., M. Dogru,, G. Akay, and, C. R. Howarth. 2002. Hydrogen production from sewage sludge via a fixed bed gasifier product gas. Int. J. Hydrogen Energy 27:10351041.
28. Mielenz, J. R. 2001. Ethanol production from biomass: technology and commercialization status. Curr. Opin. Microbiol. 4:324329.
29. Najafpour, G., and, H. Younesi. 2006. Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii. Enzyme Microb. Technol. 38:223228.
30. Phillips, J. R.,, E. C. Clausen, and, J. L. Gaddy. 1994. Synthesis gas as substrate for the biological production of fuels and chemicals. Appl. Biochem. Biotechnol. 45/46:145157.
31. Phillips, J. R.,, K. T. Klasson,, E. C. Clausen, and, J. L. Gaddy. 1993. Biological production of ethanol from coal synthesis gas: medium development studies. Appl. Biochem. Biotechnol. 39/40:559571.
32. Rajagopalan, S.,, R. P. Datar, and, R. S. Lewis. 2002. Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass Bioenerg. 23:487493.
33. Sakai,, S., Y. Nakashimida,, H. Yoshimoto,, S. Watanabe,, H. Okada, and, N. Nishio. 2004. Ethanol production from H2 and CO2 by a newly isolated thermophilic bacterium, Moorella sp. HUC22-1. Biotechnol. Lett. 26:16071612.
34. Saxena, J., and, R. S. Tanner. 2006. Effect of trace metals on ethanol production by Clostridium strain P11, abstr. O-006, p. 422. Abstr. 106th Annu. Meet. Am. Soc. Microbiol. 2006. American Society for Microbiology, Washington, DC.
35. Simon,, H., H. White,, H. Lebertz, and, I. Thanos. 1987. Reduktion von 2-Enoaten und Alkanoaten mit Kohlenmonoxid oder Formiat, Viologenen, und Clostridium thermoaceticum zu gesättigten Säuren und ungesättigten bzw. gessätigten Alkoholen. Angew. Chem. 99:785787.
36. Sipma, J.,, A. M. Henstra,, S. N. Parshina,, P. N. L. Lens,, G. Lettinga, and, A. J. M. Stams. 2006. Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization. Crit. Rev. Biotechnol. 26:4165.
37. Spath, P. L., and, D. C. Dayton. 2003. Preliminary Screening— Technical and Economic Assessment of Synthesis Gas to Fuels and Chemical with Emphasis on the Potential for Biomass-Derived Syngas. NREL/TP-510-34929. NTIS, Springfield, VA.
38. Tanner, R. S.,, L. M. Miller, and, D. Yang. 1993. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int. J. Syst. Bacteriol. 43:232236.
39. Van Der Drift, A.,, J. Van Doorn, and, J. W. Vermeulen. 2001. Ten residual biomass fuels for circulating fluidized-bed gasification. Biomass Bioenerg. 20:4556.
40. Worden, R. M.,, A. J. Grethlein,, M. K. Jain, and, R. Datta. 1991. Production of butanol and ethanol from synthesis gas via fermentation. Fuel 70:615619.
41. Younesi,, H., G. Najafpour, and, A. R. Mohamed. 2005. Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochem. Eng. J. 27:110119.
42. Zeikus, J. G.,, L. H. Lynd,, T. E. Thompson,, J. A. Krzycki,, P. J. Weimer, and, P. W. Hegge. 1980. Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain. Curr. Microbiol. 3:381386.


Generic image for table
Table 1.

Microbial products from CO fermentation

Citation: S. Tanner R. 2008. Production of Ethanol from Synthesis Gas, p 147-151. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error