1887

Chapter 13 : Acetate-Based Methane Production

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Acetate-Based Methane Production, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap13-2.gif

Abstract:

This chapter explores the microbiology and biochemistry of acetate conversion to methane, a key component of biomethanation. It provides a fundamental background appropriate for stimulating advances to improve the process that will ensure biomethanation among the competitive alternatives to fossil fuels. Biomethanation of organic matter in nature occurs in diverse habitats such as freshwater sediments, rice paddies, sewage digesters, the rumen, the lower intestinal tract of monogastric animals, landfills, hydrothermal vents, coastal marine sediments, and the subsurface. species synthesize tetrahydrosarcinapterin (HSPT) which serves the same function as tetrahydromethanopterin (HMPT). The aceticlastic and CO reduction pathways generate primary sodium and proton gradients that are the only possible driving forces for ATP synthesis. The production of acetate from complex biomass by fermentative and acetogenic anaerobes and the subsequent conversion of acetate to methane by aceticlastic methanogens are of primary importance in the biomethanation process. Aceticlastic methanogenesis is the major factor controlling the rate and reliability of the process; thus, a comprehensive understanding of these methanogens is paramount for developing an efficient process for biomethanation of renewable and waste biomass for use as a biofuel. Although the enzymology of reactions leading from acetate to methane by species is fairly well understood, there have been only a few investigations reported on the mechanism of energy conservation and regulation of gene expression. Further, global proteomic and microarray analyses have identified a host of proteins and genes in species, many with unknown functions, that may be important or essential.

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13

Key Concept Ranking

Environmental Microbiology
0.6992937
Methanosarcina barkeri
0.442749
Methanosarcina thermophila
0.4366421
Methanosarcina mazei
0.4366421
Methanosarcina thermophila
0.4366421
0.6992937
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The global carbon cycle in nature. (A) Fixation of CO into organic matter; (B) aerobic decomposition of organic matter to CO; (C) anaerobic decomposition of organic matter to fermentative end products; (D) anaerobic conversion of fermentative end products to methane and escape into aerobic environments; (E) aerobic oxidation of methane to CO by O-requiring methylotrophs.

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Methane-producing freshwater consortia.

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Phase-contrast micrographs of showing cells in pseudosarcinal aggregates (left) and single cells (right). Bars, 10 μm. Reprinted from ( ) with permission of the publisher.

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Thin-section electron micrograph of showing a cell aggregate enclosed by an outer membrane. Bar, 1 μm. Reprinted from ( ) with permission of the publisher.

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Scanning electron micrograph of strain T-3 filaments. Reprinted from ( ) with permission of the publisher.

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Thin section of “” () . Spacer plugs are indicated by arrows, and “M” indicates the amorphous granular layer. Bar, 1 μm. Reprinted from ( ) with permission of the publisher.

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Cofactors and coenzymes utilized in the pathway for aceticlastic methanogenesis.

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Overview of the aceticlastic and CO reduction pathways. HM(S)PT, tetrahydromethanopterin (HMPT) or tetrahydrosarcinapterin (HSPT); CoM, coenzyme M; CoB, coenzyme B.

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.
Figure 9.

Proposed mechanism of sodium translocation by the methyl-HM(S)PT:coenzyme M methyltransferase. Reprinted from ( ) with permission of the publisher.

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.
Figure 10.

Mechanism proposed for methyl-coenzyme M methylreductase. Adapted from Ermler et al., 1997.

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11.
Figure 11.

Pathways for conversion of acetate to methane by (A) and (B). Ack, acetate kinase; Pta, phosphotransacetylase; CoA-SH, coenzyme A; HSPT, tetrahydrosarcinapterin; Fd, reduced ferredoxin; Fd, oxidized ferredoxin; Cdh, CO dehydrogenase/acetyl-CoA synthase; CoM-SH, coenzyme M; Mtr, methyl-HSPT:CoM-SH methyltransferase; CoB-SH, coenzyme B; Cam, carbonic anhydrase; Ech, H-evolving hydrogenase; Vho, H-consuming hydrogenase; Ma-Rnf, Rnf; MP, methanophenazine; Hdr-DE, heterodisulfide reductase; Mrp, multiple resistance/pH regulation Na /H antiporter; Atp, H -translocating AA ATP synthase. Adapted from Li et al., 2006.

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.
Figure 12.

The A cluster of Acs from . Reprinted from ( ) with permission of the publisher.

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Ferry J. 2008. Acetate-Based Methane Production, p 155-170. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch13
1. Abbanat, D. R., and, J. G. Ferry. 1991. Resolution of component proteins in an enzyme complex from Methanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA. Proc. Natl. Acad. Sci. USA 88:32723276.
2. Abbanat, D. R., and, J. G. Ferry. 1990. Synthesis of acetylcoenzyme A by carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila. J. Bacteriol. 172:71457150.
3. Abken, H.-J.,, M. Tietze,, J. Brodersen,, S. Baumer,, U. Beifuss, and, U. Deppenmeier. 1998. Isolation and characterization of methanophenazine and the function of phenazines in membrane-bound electron transport of Methanosarcina mazei Go1. J. Bacteriol. 180:20272032.
4. Alber, B. E., and, J. G. Ferry. 1994. A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc. Natl. Acad. Sci. USA 91:69096913.
5. Allen, J. R.,, D. D. Clark,, J. G. Krum, and, S. A. Ensign. 1999. A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation. Proc. Natl. Acad. Sci. USA 96:84328437.
6. Andrade, S. L. A.,, F. Cruz,, C. L. Drennan,, V. Ramakrishnan,, D. C. Rees,, J. G. Ferry, and, O. Einsle. 2005. Structures of the iron-sulfur flavo-proteins from Methanosarcina thermophila and Archaeoglobus fulgidus. J. Bacteriol. 187:38483854.
7. Apolinario, E. E.,, K. M. Jackson, and, K. R. Sowers. 2005. Development of a plasmid-mediated reporter system for in vivo monitoring of gene expression in the archaeon Methanosarcina acetivorans. Appl. Environ. Microbiol. 71:49144918.
8. Beveridge, T. J.,, G. B. Patel,, B. J. Harris, and, G. D. Sprott. 1986. The ultrastructure of Methanothrix concilii, a mesophilic aceticlastic methanogen. Can. J. Microbiol. 32:32.
9. Boiangiu, C. D.,, E. Jayamani,, D. Brugel,, G. Herrmann,, J. Kim,, L. Forzi,, R. Hedderich,, I. Vgenopoulou,, A. J. Pierik,, J. Steuber, and, W. Buckel. 2005. Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria. J. Mol. Microbiol. Biotechnol. 10:105119.
10. Boone, D. R., and, Y. Kamagata. 1998. Rejection of the species Methanothrix soehngeniiVP and the genus MethanothrixVP as nomina confusa, and transfer of Methanothrix thermophilaVP to the genus Methanosaeta VP as Methanosaeta thermophila comb. nov. Request for an Opinion. Int. J. Syst. Bacteriol. 48:10791080.
11. Bruggemann, H.,, S. Baumer,, W. F. Fricke,, A. Wiezer,, H. Liesegang,, I. Decker,, C. Herzberg,, R. Martinez-Arias,, R. Merkl,, A. Henne, and, G. Gottschalk. 2003. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc. Natl. Acad. Sci. USA 100:13161321.
12. Bryant, M. P., and, D. R. Boone. 1987. Emended description of strain MST (DSM 800T), the type strain of Methanosarcina barkeri. Int.J. Syst. Bacteriol. 37:169170.
13. Buss, K. A.,, D. R. Cooper,, C. Ingram-Smith,, J. G. Ferry,, D. A. Sanders, and, M. S. Hasson. 2001. Urkinase: structure of acetate kinase, a member of the ASKHA superfamily of phosphotransferases. J. Bacteriol. 183:680686.
14. Clements, A. P., and, J. G. Ferry. 1992. Cloning, nucleotide sequence, and transcriptional analyses of the gene encoding a ferredoxin from Methanosarcina thermophila. J. Bacteriol. 174:52445250.
15. Deppenmeier, U. 2004. The membrane-bound electron transport system of Methanosarcina species. J. Bioenerg. Biomembr. 36:5564.
16. Deppenmeier, U. 2002. The unique biochemistry of methanogenesis. Prog. Nucleic Acid Res. Mol. Biol. 71:223283.
17. Deppenmeier, U.,, A. Johann,, T. Hartsch,, R. Merkl,, R. A. Schmitz,, R. Martinez-Arias,, A. A,, A. A,, S. S,, C. C,, H. H,, T. T,, A. A,, M. M,, S. S,, A. A,, A. A,, R. R,, H. P. Klenk,, R. P. Gunsalus,, H. J. Fritz, and, G. Gottschalk. 2002. The genome of Methanosarcina mazei: evidence for lateral gene transfer between Bacteria and Archaea. J. Mol. Microbiol. Biotechnol. 4:453461.
18. Eggen, R. I. L.,, A. C. M. Geerling,, A. B. P. Boshoven, and, W. M. Devos. 1991a. Cloning, sequence analysis, and functional expression of the acetyl coenzyme A synthetase gene from Methanothrix soehngenii in Escherichia coli. J. Bacteriol. 173:63836389.
19. Eggen, R. I. L.,, A. C. M. Geerling,, M. S. M. Jetten, and, W. M. Devos. 1991b. Cloning, expression, and sequence analysis of the genes for carbon monoxide dehydrogenase of Methanothrix soehngenii. J. Biol. Chem. 266:68836887.
20. Eggen, R. I. L.,, R. Vankranenburg,, A. J. M. Vriesema,, A. C. M. Geerling,, M. F. J. M. Verhagen,, W. R. Hagen, and, W. M. Devos. 1996. Carbon monoxide dehydrogenase from Methanosarcina frisia Go1. Characterization of the enzyme and the regulated expression of two operon-like cdh gene clusters. J. Biol. Chem. 271:1425614263.
21. Elberson, M. A., and, K. R. Sowers. 1997. Isolation of an aceticlastic strain of Methanosarcina siciliae from marine canyon sediments and emendation of the species description for Methanosarcina siciliae. Int. J. Syst. Bacteriol. 47:12581261.
22. Ermler, U.,, W. Grabarse,, S. Shima,, M. Goubeaud, and, R. K. Thauer. 1997. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278:14571462.
23. Ferry, J. G. 2003. One-carbon metabolism in methanogenic anaerobes, p. 143156. In L. G. Ljungdahl,, M. W. Adams,, L. L. Barton,, J. G. Ferry, and, M. K. Johnson (ed.), Biochemistry and Physiology of Anaerobic Bacteria. Springer-Verlag, New York, NY.
24. Ferry, J. G., and, C. H. House. 2006. The stepwise evolution of early life driven by energy conservation. Mol. Biol. Evol. 23:12861292.
25. Ferry, J. G., and, K. Kastead. 2007. Methanogenesis, p. 288314. In R. Cavicchioli (ed.), Archaea: Molecular Cell Biology. ASM Press, Washington, DC.
26. Finazzo, C.,, J. Harmer,, C. Bauer,, B. Jaun,, E. C. Duin,, F. Mahlert,, M. Goenrich,, R. K. Thauer,, S. Van Doorslaer, and, A. Schweiger. 2003. Coenzyme B induced coordination of coenzyme M via its thiol group to Ni(I) of F430 in active methyl-coenzyme M reductase. J. Am. Chem. Soc. 125:49884989.
27. Fischer, R., and, R. K. Thauer. 1989. Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri. Arch. Microbiol. 151:459465.
28. Fischer, R., and, R. K. Thauer. 1990. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett. 269:368372.
29. Galagan, J. E.,, C. Nusbaum,, A. Roy,, M. G. Endrizzi,, P. Macdonald,, W. FitzHugh,, S. Calvo,, R. Engels,, S. Smirnov,, D. Atnoor,, A. Brown,, N. Allen,, J. Naylor,, N. Stange-Thomann,, K. DeArellano,, R. Johnson,, L. Linton,, P. McEwan,, K. McKernan,, J. Talamas,, A. Tirrell,, W. Ye,, A. Zimmer,, R. D. Barber,, I. Cann,, D. E. Graham,, D. A. Grahame,, A. M. Guss,, R. Hedderich,, C. Ingram-Smith,, H. C. Kuettner,, J. A. Krzycki,, J. A. Leigh,, W. Li,, J. Liu,, B. Mukhopadhyay,, J. N. Reeve,, K. Smith,, T. A. Springer,, L. A. Umayam,, O. White,, R. H. White,, E. C. de Macario,, J. G. Ferry,, K. F. Jarrell,, H. Jing,, A. J. Macario,, I. Paulsen,, M. Pritchett,, K. R. Sowers,, R. V. Swanson,, S. H. Zinder,, E. Lander,, W. W. Metcalf, and, B. Birren. 2002. The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res. 12:532542.
30. Gartner, P.,, D. S. Weiss,, U. Harms, and, R. K. Thauer. 1994. N 5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum. Catalytic mechanism and sodium ion dependence. Eur. J. Biochem. 226:465472.
31. Goenrich, M.,, E. C. Duin,, F. Mahlert, and, R. K. Thauer. 2005. Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B. J. Biol. Inorg. Chem. 10:333342.
32. Goenrich, M.,, F. Mahlert,, E. C. Duin,, C. Bauer,, B. Jaun, and, R. K. Thauer. 2004. Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues. J. Biol. Inorg. Chem. 9:691705.
33. Gorrell, A.,, S. H. Lawrence, and, J. G. Ferry. 2005. Structural and kinetic analyses of arginine residues in the active-site of the acetate kinase from Methanosarcina thermophila. J. Biol. Chem. 280:1073110742.
34. Gottschalk, G., and, R. K. Thauer. 2001. The Na translocating methyltransferase complex from methanogenic archaea. Biochim. Biophys. Acta. 1505:2836.
35. Grabarse, W.,, F. Mahlert,, E. C. Duin,, M. Goubeaud,, S. Shima,, R. K. Thauer,, V. Lamzin, and, U. Ermler. 2001. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding. J. Mol. Biol. 309:315330.
36. Grahame, D. A. 2003. Acetate C-C bond formation and decomposition in the anaerobic world: the structure of a central enzyme and its key active-site metal cluster. Trends Biochem. Sci. 28:221224.
37. Grahame, D. A. 1991. Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J. Biol. Chem. 266:2222722233.
38. Grahame, D. A. A199. Substrate and cofactor reactivity of a carbon monoxide dehydrogenase corrinoid enzyme complex. Stepwise reduction of iron sulfur and corrinoid centers, the corrinoid Co2+ /1+ redox midpoint potential, and overall synthesis of acetyl-CoA. Biochemistry 32:1078610793.
39. Grahame, D. A., and, E. Demoll. 1996. Partial reactions catalyzed by protein components of the acetyl-CoA decarbonylase synthase enzyme complex from Methanosarcina barkeri. J. Biol. Chem. 271:83528358.
40. Grahame, D. A., and, E. Demoll. 1995. Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri. Biochemistry 34:46174624.
41. Grahame, D. A., and, S. Gencic. 2000. Methane biochemistry, p. 188198. In Encyclopedia of Microbiology, 2nd ed, vol. 3. Academic Press, New York, NY.
42. Harms, U.,, D. S. Weiss,, P. Gartner,, D. Linder, and, R. K. Thauer. 1995. The energy conserving N5-methyltetrahydromethanopterin: coenzyme M methyltransferase complex from Methanobacterium thermoautotrophicum is composed of eight different subunits. Eur.J. Biochem. 228:640648.
43. Hedderich, R. 2004. Energy-converting [NiFe] hydrogenases from Archaea and extremophiles: ancestors of complex I. J. Bioenerg. Biomembr. 36:6575.
44. Hedderich, R.,, A. Berkessel, and, R. K. Thauer. 1990. Purification and properties of heterodisulfide reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 193:255261.
45. Hedderich, R.,, N. Hamann, and, M. Bennati. 2005. Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster. Biol. Chem. 386:961970.
46. Hedderich, R.,, J. Koch,, D. Linder, and, R. K. Thauer. 1994. The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases. Eur. J. Biochem. 225:253261.
47. Heiden, S.,, R. Hedderich,, E. Setzke, and, R. K. Thauer. 1993. Purification of a cytochrome-b containing H2-heterodisulfide oxidoreductase complex from membranes of Methanosarcina barkeri. Eur. J. Biochem. 213:529535.
48. Hovey, R.,, S. Lentes,, A. Ehrenreich,, K. Salmon,, K. Saba,, G. Gottschalk,, R. P. Gunsalus, and, U. Deppenmeier. 2005. DNA microarray analysis of Methanosarcina mazei Go1 reveals adaptation to different methanogenic substrates. Mol. Genet. Genomics 273:225239.
49. Ingram-Smith, C.,, R. D. Barber, and, J. G. Ferry. 2000. The role of histidines in the acetate kinase from Methanosarcina thermophila. J. Biol. Chem. 275:3376533770.
50. Ingram-Smith, C.,, A. Gorrell,, S. H. Lawrence,, P. Iyer,, K. Smith, and, J. G. Ferry. 2005. Identification of the acetate binding site in the Methanosarcina thermophila acetate kinase. J. Bacteriol. 187:23862394.
51. Iyer, P. P., and, J. G. Ferry. 2001. Role of arginines in coenzyme A binding and catalysis by the phosphotransacetylase from Methanosarcina thermophila. J. Bacteriol. 183:42444250.
52. Iyer, P. P.,, S. H. Lawrence,, K. B. Luther,, K. R. Rajashankar,, H. P. Yennawar,, J. G. Ferry, and, H. Schindelin. 2004. Crystal structure of phosphotransacetylase from the methanogenic archaeon Methanosarcina thermophila. Structure 12:559567.
53. Jablonski, P. E.,, W. P. Lu,, S. W. Ragsdale, and, J. G. Ferry. 1993. Characterization of the metal centers of the corrinoid/iron-sulfur component of the CO dehydrogenase enzyme complex from Methanosarcina thermophila by EPR spectroscopy and spectroelectro-chemistry. J. Biol. Chem. 268:325329.
54. Jetten, M. S. M.,, A. J. M. Stams, and, A. J. B. Zehnder. 1989. Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase of Methanothrix soehngenii. FEBS Lett. 181:437441.
55. Jetten, M. S. M.,, W. R. Hagen,, A. J. Pierik,, A. J. M. Stams, and, A. J. B. Zehnder. 1991a. Paramagnetic centers and acetyl-coenzyme A/CO exchange activity of carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur. J. Biochem. 195:385391.
56. Jetten, M. S. M.,, A. J. Pierik, and, W. R. Hagen. 1991b. EPR characterization of a high-spin system in carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur. J. Biochem. 202:12911297.
57. Jetten, M. S. M.,, A. J. M. Stams, and, A. J. B. Zehnder. 1990. Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol. Ecol. 73:339344.
58. Jetten, M. S. M.,, A. J. M. Stams, and, A. J. B. Zehnder. 1992. Methanogenesis from acetate. A comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol. Rev. 88:181198.
59. Kamagata, Y., and, E. Mikami. 1991. Isolation and characterization of a novel thermophilic Methanosaeta strain. Int. J. Syst. Bacteriol. 41:191196.
60. Kisker, C.,, H. Schindelin,, B. E. Alber,, J. G. Ferry, and, D. C. Rees. 1996. A left-handed beta-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. EMBO J. 15:23232330.
61. Kocsis, E.,, M. Kessel,, E. DeMoll, and, D. A. Grahame. 1999. Structure of the Ni/Fe-S protein subcomponent of the acetyl-CoA decarbonylase/synthase complex from Methanosarcina thermophila at 26-A resolution. J. Struct. Biol. 128:165174.
62. Kruger, M.,, A. Meyerdierks,, F. O. Glockner,, R. Amann,, F. Widdel,, M. Kube,, R. Reinhardt,, J. Kahnt,, R. Bocher,, R. K. Thauer, and, S. Shima. 2003. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426:878881.
63. Kunkel, A.,, M. Vaupel,, S. Heim,, R. K. Thauer, and, R. Hedderich. 1997. Heterodisulfide reductase from methanol-grown cells of Methanosarcina barkeri is not a flavoenzyme. Eur. J. Biochem. 244:226234.
64. Latimer, M. T., and, J. G. Ferry. 1993. Cloning, sequence analysis, and hyperexpression of the genes encoding phosphotransacetylase and acetate kinase from Methanosarcina thermophila. J. Bacteriol. 175:68226829.
65. Latimer, M. T.,, M. H. Painter, and, J. G. Ferry. 1996. Characterization of an iron-sulfur flavoprotein from Methanosarcina thermophila. J. Biol. Chem. 271:2402324028.
66. Lawrence, S. H., and, J. G. Ferry. 2006. Steady-state kinetic analysis of phosphotransacetylase from Methanosarcina thermophila. J. Bacteriol. 188:11551158.
67. Lawrence, S. H.,, K. B. Luther,, H. Schindelin, and, J. G. Ferry. 2006. Structural and functional studies suggest a catalytic mechanism for the phosphotransacetylase from Methanosarcina thermophila. J. Bacteriol. 188:11431154.
68. Lessner, D. J.,, L. Li,, Q. Li,, T. Rejtar,, V. P. Andreev,, M. Reichlen,, K. Hill,, J. J. Moran,, B. L. Karger, and, J. G. Ferry. 2006. An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics. Proc. Natl. Acad. Sci. USA 103:1792117926.
69. Lewalter, K., and, V. Muller. 2006. Bioenergetics of archaea: ancient energy conserving mechanisms developed in the early history of life. Biochim. Biophys. Acta 1757:437445.
70. Li, L.,, Q. Li,, L. Rohlin,, U. Kim,, K. Salmon,, T. Rejtar,, R. P. Gunsalus,, B. L. Karger, and, J. G. Ferry. 2007. Quantitative proteomic and microarray analysis of the archaeon Methanosarcina acetivorans grown with acetate versus methanol. J. Proteome Res. 6:759771.
71. Li, Q.,, L. Li,, T. Rejtar,, B. L. Karger, and, J. G. Ferry. 2005. The proteome of Methanosarcina acetivorans. Part II. Comparison of protein levels in acetate- and methanol-grown cells. J. Proteome Res. 4:129136.
72. Li, Q.,, L. Li,, T. Rejtar,, D. J. Lessner,, B. L. Karger, and, J. G. Ferry. 2006. Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. J. Bacteriol. 188:702710.
73. Lindahl, P. A., and, B. Chang. 2001. The evolution of acetyl-CoA synthase. Orig. Life Evol. Biosph. 31:403434.
74. Liu, J. S.,, I. W. Marison, and, U. von Stockar. 2001. Microbial growth by a net heat up-take: a calorimetric and thermodynamic study on acetotrophic methanogenesis by Methanosarcina barkeri. Biotechnol. Bioeng. 75:170180.
75. Lu, W. P.,, P. E. Jablonski,, M. Rasche,, J. G. Ferry, and, S. W. Ragsdale. 1994. Characterization of the metal centers of the Ni-Fe-S component of the carbon-monoxide dehydrogenase enzyme complex from Methanosarcina thermophila. J. Biol. Chem. 269:97369742.
76. Ma, K.,, X. Liu, and, X. Dong. 2006. Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor. Int. J. Syst. Evol. Microbiol. 56:127131.
77. Maestrojuan, G. M., and, D. R. Boone. 1991. Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. Int. J. Syst. Bacteriol. 41:267274.
78. Mah, R. A., and, D. A. Kuhn. 1984. Transfer of the type species of the genus Methanococcus to the genus Methanosarcina, naming it Methanosarcina mazei (Barker, 1936) comb. nov. et emend. and conservation of the genus Methanococcus (Approved Lists 1980) with Methanococcus vannielii (Approved Lists 1980) as the type species. Int. J. Syst. Bacteriol. 34:263265.
79. Mah, R. A.,, M. R. Smith, and, L. Baresi. 1978. Studies on an acetate-fermenting strain of Methanosarcina. Appl. Environ. Microbiol. 35:11741184.
80. Martin, W., and, M. J. Russell. 2007. On the origin of biochemistry at an alkaline hydrothermal vent. Philos. Trans. R. Soc. B doi: 10.1098/rstb.2002.1183.
81. Metcalf, W. W.,, J. K. Zhang,, E. Apolinario,, K. R. Sowers, and, R. S. Wolfe. 1997. A genetic system for Archaea of the genus Methanosarcina. Liposome-mediated transformation and construction of shuttle vectors. Proc. Natl. Acad. Sci. USA 94:26262631.
82. Meuer, J.,, H. C. Kuettner,, J. K. Zhang,, R. Hedderich, and, W. W. Metcalf. 2002. Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc. Natl. Acad. Sci. USA 99:56325637.
83. Miles, R. D.,, A. Gorrell, and, J. G. Ferry. 2002. Evidence for a transition state analog, MgADP-aluminum fluoride-acetate, in acetate kinase from Methanosarcina thermophila. J. Biol. Chem. 277:2254722552.
84. Miles, R. D.,, P. P. Iyer, and, J. G. Ferry. 2001. Site-directed mutational analysis of active site residues in the acetate kinase from Methanosarcina thermophila. J. Biol. Chem. 276:4505945064.
85. Min, H., and, S. H. Zinder. 1989. Kinetics of acetate utilization by two thermophilic acetotrophic methanogens: Methanosarcina sp. strain CALS-1 and Methanothrix sp. strain CALS-1. Appl. Environ. Microbiol. 55:488491.
86. Mizukami, S.,, K. Takeda,, S. Akada, and, T. Fujita. 2006. Isolation and characteristics of Methanosaeta in paddy field soils. Biosci. Biotechnol. Biochem. 70:828835.
87. Moller-Zinkhan, D.,, G. Borner, and, R. K. Thauer. 1989. Function of methanofuran, tetrahydromethanopterin, and coenzyme-F420 in Archaeoglobus fulgidus. Arch. Microbiol. 152:362368.
88. Muller, V. 2004. An exceptional variability in the motor of Archaeal A1A0 ATPases: from multimeric to monomeric rotors comprising 6–13 ion binding sites. J. Bioenerg. Biomembr. 36:115125.
89. Murakami, E.,, U. Deppenmeier, and, S. W. Ragsdale. 2001. Characterization of the intramolecular electron transfer pathway from 2-hydroxyphenazine to the heterodisulfide reductase from Methanosarcina thermophila. J. Biol. Chem. 276:24322439.
90. Murakami, E., and, S. W. Ragsdale. 2000. Evidence for intersubunit communication during acetyl-CoA cleavage by the multienzyme CO dehydrogenase/acetyl-CoA synthase complex from Methanosarcina thermophila. Evidence that the beta subunit catalyzes C-C and C-S bond cleavage. J. Biol. Chem. 275:46994707.
91. Murray, P. A., and, S. H. Zinder. 1985. Nutritional requirements of Methanosarcina sp. strain TM-1. Appl. Environ. Microbiol. 50:4955.
92. Nelson, M. J. K., and, J. G. Ferry. 1984. Carbon monoxide-dependent methyl coenzyme M methylreductase in acetotrophic Methanosarcina spp. J. Bacteriol. 160:526532.
93. Patel, G. B. 1984. Characterization and nutritional properties of Methanothrix concilii sp. nov., a mesophilic, aceticlastic methanogen. Can. J. Microbiol. 30:13831396.
94. Patel, G. B., and, G. D. Sprott. 1990. Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int. J. Syst. Bacteriol. 40:7982.
95. Peinemann, S.,, V. Muller,, M. Blaut, and, G. Gottschalk. 1988. Bioenergetics of methanogenesis from acetate by Methanosarcina barkeri. J. Bacteriol. 170:13691372.
96. Ragsdale, S. W. 2004. Life with carbon monoxide. Crit. Rev. Biochem. Mol. Biol. 39:165195.
97. Rasche, M. E.,, K. S. Smith, and, J. G. Ferry. 1997. Identification of cysteine and arginine residues essential for the phosphotransacetylase from Methanosarcina thermophila. J. Bacteriol. 179:77127717.
98. Raybuck, S. A.,, S. E. Ramer,, D. R. Abbanat,, J. W. Peters,, W. H. Orme-Johnson,, J. G. Ferry, and, C. T. Walsh. 1991. Demonstration of carbon-carbon bond cleavage of acetyl coenzyme A by using isotopic exchange catalyzed by the CO dehydrogenase complex from acetate-grown Methanosarcina thermophila. J. Bacteriol. 173:929932.
99. Sachs, G.,, J. A. Kraut,, Y. Wen,, J. Feng, and, D. R. Scott. 2006. Urea transport in bacteria: acid acclimation by gastric Helicobacter spp. J. Membr. Biol. 212:7182.
100. Saeki, K., and, H. Kumagai. 1998. The rnf gene products in Rhodobacter capsulatus play an essential role in nitrogen fixation during anaerobic DMSO-dependent growth in the dark. Arch. Microbiol. 169:464467.
101. Sauer, K., and, R. K. Thauer. 1998. His(84) rather than His(35) is the active site histidine in the corrinoid protein MtrA of the energy conserving methyltransferase complex from Methanobacterium thermoautotrophicum. FEBS Lett. 436:401402.
102. Scherer, P.,, V. Hollriegel,, C. Krug,, M. Bokel, and, P. Renz. 1984. On the biosynthesis of 5-hydroxybenzimidazolylcobamide (vitamin B12-factor III) in Methanosarcina barkeri. Arch. Microbiol. 138:354359.
103. Schmehl, M.,, A. Jahn,, A. Meyer zu Vilsendorf,, S. Hennecke,, B. Masepohl,, M. Schuppler,, M. Marxer,, J. Oelze, and, W. Klipp. 1993. Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. Mol. Gen. Genet. 241:602615.
104. Shima, S.,, E. Warkentin,, R. K. Thauer, and, U. Ermler. 2002. Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen. J. Biosci. Bioeng. 93:519530.
105. Simianu, M.,, E. Murakami,, J. M. Brewer, and, S. W. Ragsdale. 1998. Purification and properties of the heme- and iron-sulfur-containing heterodisulfide reductase from Methanosarcina thermophila. Biochemistry 37:1002710039.
106. Singh, N.,, M. M. Kendall,, Y. Liu, and, D. R. Boone. 2005. Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. Int. J. Syst. Evol. Microbiol. 55:25312538.
107. Singh-Wissmann, K., and, J. G. Ferry. 1995. Transcriptional regulation of the phosphotransacetylase-encoding and acetate kinase-encoding genes (pta and ack ) from Methanosarcina thermophila. J. Bacteriol. 177:16991702.
108. Singh-Wissmann, K.,, C. Ingram-Smith,, R. D. Miles, and, J. G. Ferry. 1998. Identification of essential glutamates in the acetate kinase from Methanosarcina thermophila. J. Bacteriol. 180:11291134.
109. Singh-Wissmann, K.,, R. D. Miles,, C. Ingram-Smith, and, J. G. Ferry. 2000. Identification of essential arginines in the acetate kinase from Methanosarcina thermophila. Biochemistry 39:36713677.
110. Smith, K. S., and, C. Ingram-Smith. 2007. Methanosaeta, the forgotten methanogen? Trends Microbiol. 7:150155.
111. Smith, K. S.,, C. Jakubzick,, T. C. Whittam, and, J. G. Ferry. 1999. Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc. Natl. Acad. Sci. USA 96:1518415189.
112. Sowers, K. R.,, J. E. Boone, and, R. P. Gunsalus. 1993. Disaggregation of Methanosarcina spp and growth as single cells at elevated osmolarity. Appl. Environ. Microbiol. 59:38323839.
113. Sowers, K. R.,, S. F. Baron, and, J. G. Ferry. 1984. Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl. Environ. Microbiol. 47:971978.
114. Terlesky, K. C., and, J. G. Ferry. 1988a. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:40754079.
115. Terlesky, K. C., and, J. G. Ferry. 1988b. Purification and characterization of a ferredoxin from acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:40804082.
116. Terlesky, K. C.,, M. J. K. Nelson, and, J. G. Ferry. 1986. Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing a corrinoid and nickel from acetate-grown Methanosarcina thermophila. J. Bacteriol. 168:10531058.
117. Thauer, R. K. 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:23772406.
118. Tripp, B. C.,, C. B. Bell,, F. Cruz,, C. Krebs, and, J. G. Ferry. 2004. A role for iron in an ancient carbonic anhydrase. J. Biol. Chem. 279:66836687.
119. van Beelen, P.,, J. F. Labro,, J. T. Keltjens,, W. J. Geerts,, G. D. Vogels,, W. H. Laarhoven,, W. Guijt, and, C. A. Haasnoot. 1984. Derivatives of methanopterin, a coenzyme involved in methano-genesis. Eur. J. Biochem. 139:359365.
120. von Klein, D.,, H. Arab,, H. Volker, and, M. Thomm. 2002. Methanosarcina baltica, sp. nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. Extremophiles 6:103110.
121. Vorholt, J. A.,, L. Chistoserdova,, S. M. Stolyar,, R. K. Thauer, and, M. E. Lidstrom. 1999. Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J. Bacteriol. 181:57505757.
122. Weiss, D. S.,, P. Gartner, and, R. K. Thauer. 1994. The energetics and sodium-ion dependence of N5-methyltetrahydromethanopterin: coenzyme M methyltransferase studied with cob(I)alamin as methyl acceptor and methylcob(III) alamin as methyl donor. Eur. J. Biochem. 226:799809.
123. Westermann, P.,, B. K. Ahring, and, R. A. Mah. 1989. Threshold acetate concentrations for acetate catabolism by aceticlastic methanogenic bacteria. Appl. Environ. Microbiol. 55:514515.
124. Whitman, W. B.,, D. C. Coleman, and, W. J. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95:65786583.
125. Zhilina, T. N., and, G. A. Zavarzin. 1979. Comparative cytology of Methanosarcinae and description of Methanosarcina vacuolata sp. nova. Microbiology 48:223228.
126. Zhilina, T. N., and, G. A. Zavarzin. 1987. Methanosarcina vacuolata sp. nov., a vacuolated Methanosarcina. Int. J. Syst. Bacteriol. 37:281283.
127. Zimmerman, S. A., and, J. G. Ferry. 2006. Proposal for a hydrogen bond network in the active site of the prototypic gamma-class carbonic anhydrase. Biochemistry 45:51495157.
128. Zinder, S. H., and, R. A. Mah. 1979. Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2 for methanogenesis. Appl. Environ. Microbiol. 38:9961008.
129. Zinder, S. H.,, K. R. Sowers, and, J. G. Ferry. 1985. Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. Int. J. Syst. Bacteriol. 35:522523.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error