1887

Chapter 14 : Energetic Aspects of Methanogenic Feeding Webs

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Energetic Aspects of Methanogenic Feeding Webs, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap14-2.gif

Abstract:

The degradation of organic matter by methanogenesis is the most complex and the most efficient way of transforming organic matter into an energetically useful product. This chapter deals with the complex cooperations in methanogenic microbial communities under different treatment regimes and the technological perspectives in the optimization of energy recovery from biomass treatment in the present and in the future. Energy-rich products other than methane can be produced fermentatively from biomass. A real breakthrough in the treatment of high-strength wastewaters was the development of the Upflow Anaerobic Sludge Blanket (UASB) technology developed by G. Lettinga and his coworkers in Wageningen, The Netherlands, in the 1980s. Although the reason for the development of the microbial aggregates remains obscure, the UASB technology has proven to be applicable to many different types of high-load wastewaters and has conquered the market in this field nearly worldwide. All major constituents of living biomass or organic waste materials can be converted to methane plus CO, with the only exceptions being lignin and lignocellulose. It is the energetic efficiency that makes the overall process possible at all, but it also limits its kinetic and dynamic versatility.

Citation: Schink B. 2008. Energetic Aspects of Methanogenic Feeding Webs, p 171-178. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch14

Key Concept Ranking

Hydrogen Sulfide
0.75892854
Alcoholic Fermentation
0.71177953
Chemicals
0.6955872
0.75892854
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Untitled
Untitled

Citation: Schink B. 2008. Energetic Aspects of Methanogenic Feeding Webs, p 171-178. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Schink B. 2008. Energetic Aspects of Methanogenic Feeding Webs, p 171-178. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Schink B. 2008. Energetic Aspects of Methanogenic Feeding Webs, p 171-178. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Schink B. 2008. Energetic Aspects of Methanogenic Feeding Webs, p 171-178. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Schink B. 2008. Energetic Aspects of Methanogenic Feeding Webs, p 171-178. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.
Figure 1.

Network of the methanogenic feeding chain. Depolymerizations and primary fermentations are carried out by the same fermenting organisms. Note the decrease of chemical complexity with every step.

Citation: Schink B. 2008. Energetic Aspects of Methanogenic Feeding Webs, p 171-178. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Basic concept of the energy metabolism of a syntrophically fermenting bacterium (“secondary fermenter” in Fig. 1 ). ATP is formed in the oxidative branch of the metabolism by substrate-level phosphorylation, and part of it is consumed in the release of electrons, e.g., as molecular hydrogen, in a reversed electron transport step.

Citation: Schink B. 2008. Energetic Aspects of Methanogenic Feeding Webs, p 171-178. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Schink B. 2008. Energetic Aspects of Methanogenic Feeding Webs, p 171-178. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Schink B. 2008. Energetic Aspects of Methanogenic Feeding Webs, p 171-178. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Schink B. 2008. Energetic Aspects of Methanogenic Feeding Webs, p 171-178. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Schink B. 2008. Energetic Aspects of Methanogenic Feeding Webs, p 171-178. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch14
1. Aiyuk, S.,, I. Forrez,, K. de Lieven,, A. van Haandel, and, W. Verstraete. 2006. Anaerobic and complementary treatment of domestic sewage in regions with hot climates—a review. Bioresour. Technol. 97:22252241.
2. Baldrian, P. 2006. Fungal laccases—occurrence and properties. FEMS Microbiol. Rev. 30:215242.
3. Boll, M.,, B. Schink,, A. Messerschmidt, and, P. M. Kroneck. 2005. Novel bacterial molybdenum and tungsten enzymes: three-dimensional structure, spectroscopy, and reaction mechanism. Biol. Chem. 386:9991006.
4. Brune, A., and, M. Friedrich. 2000. Microecology of the termite gut: structure and function on a microscale. Curr. Opin. Microbiol. 3:263269.
5. Buckel, W., and, B. T. Golding. 2006. Radical enzymes in anaerobes. Annu. Rev. Microbiol. 60:2749.
6. Claassen, P. A. M.,, J. B. van Lier,, A. M. L. Contreras,, E. W. J. van Niel,, L. Sijtsma,, A. J. M. Stams,, S. S. de Vries, and, R. A. Weusthuis. 1999. Utilisation of biomass for the supply of energy carriers. Appl. Microbiol. Biotechnol. 52:741755.
7. Costa, E.,, J. Perez, and, J. U. Kreft. 2006. Why is metabolic labour divided in nitrification? Trends Microbiol. 14:213219.
8. de Bok, F. A.,, M. L. Luijten, and, A. J. Stams. 2002. Biochemical evidence for formate transfer in syntrophic propionate-oxidizing co-cultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei. Appl. Environ. Microbiol. 68:42474252.
9. Embley, T. M.,, B. J. Finlay,, P. L. Dyal,, R. P. Hirt,, M. Wilkinson, and, A. G. Williams. 1995. Multiple origins of anaerobic ciliates with hydrogenosomes within the radiation of aerobic ciliates. Proc. Biol. Sci. 262:8793.
10. Friedrich, M., and, B. Schink. 1993. Hydrogen formation from glyco-late driven by reversed electron transport in membrane vesicles of a syntrophic glycolate-oxidizing bacterium. Eur. J. Biochem. 217:233240.
11. Friedrich, M., and, B. Schink. 1995. Electron transport phosphorylation driven by glyoxylate respiration with hydrogen as electron donor in membrane vesicles of a glyoxylate-fermenting bacterium. Arch. Microbiol. 163:268275.
12. Hackett, W. F.,, W. J. Connors,, T. K. Kirk, and, J. G. Zeikus. 1977. Microbial decomposition of synthetic 14C-labeled lignins in nature: lignin biodegradation in a variety of natural materials. Appl. Environ. Microbiol. 33:4351.
13. Hallenbeck, P. C. 2005. Fundamentals of the fermentative production of hydrogen. Water Sci. Technol. 52:2129.
14. Holliger, C., and, B. Schink. 1997. Anaerober Abbau organischer Schadstoffe, p. 8390. In C. Knoll and, T. von Schell (ed.), Mikrobieller Schadstoffabbau. Vieweg, Braunschweig, Germany.
15. Kanai, T.,, H. Imanaka,, A. Nakajima,, K. Uwamori,, Y. Omori,, T. Fukui,, H. Atomi, and, T. Imanaka. 2005. Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakarensis KOD1. J. Biotechnol. 116:271282.
16. Kirby, R. 2006 Actinomycetes and lignin degradation. Adv. Appl. Microbiol. 58:125168.
17. Korner, I.,, J. Braukmeier,, J. Herrenklage,, K. Leikam,, M. Ritzkowski,, M. Schlegelmilch, and, R. Stegmann. 2003. Investigation and optimization of composting processes—test systems and practical examples. Waste Manag. 23:1726.
18. Leonowicz, A.,, N. S. Cho,, J. Luterek,, A. Wilkolazka,, M. Wojtas-Wasilewska,, A. Matuszewska,, M. Hofrichter,, D. Wesenberg, and, J. Rogalski. 2001. Fungal laccase: properties and activity on lignin. J. Basic Microbiol. 41:185227.
19. Lettinga, G. 1995. Anaerobic digestion and wastewater treatment systems. Antonie Leeuwenhoek 67:328.
20. Schink, B. 1988. Principles and limits of anaerobic degradation—environmental and technological aspects, p. 771846. In A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms. John Wiley and Sons, New York, NY..
21. Schink, B. 1997. Energetics of syntrophic cooperations in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61:262280.
22. Schink, B. 1999. Prokaryotes in environmental processes, p. 900912. In J. W. Lengeler,, G. Drews, and, H. G. Schlegel (ed.), Biology of the Prokaryotes. Thieme, Stuttgart, Germany.
23. Schink, B., and, A. J. M. Stams. 2001. Syntrophism among prokaryotes. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K. -H. Schleifer, and, E. Stackebrandt (ed.), The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd ed., Springer-Verlag, New York, NY..
24. Siebers, B., and, P. Schonheit. 2005. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr. Opin. Microbiol. 8:695705.
25. Spormann, A. M., and, F. Widdel. 2000. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85105.
26. Stams, A. J., and, S. J. Oude Elferink. 1997. Understanding and advancing wastewater treatment. Curr. Opin. Biotechnol. 8:328334.
27. Thauer, R. K., and, J. G. Morris. 1984. Metabolism of chemotrophic anaerobes: old views and new aspects, p. 123168. In D. P. Kelly and, N. G. Carr (ed.), The Microbe, Part II. Prokaryotes and Eukaryotes. Cambridge University Press, Cambridge, United Kingdom.
28. Thauer, R. K.,, K. Jungermann, and, K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100180.
29. Wallrabenstein, C., and, B. Schink. 1994. Evidence of reversed electron transport involved in syntrophic butyrate and benzoate oxidation by Syntrophomonas wolfei and Syntrophus buswellii. Arch. Microbiol. 162:136142.
30. Zeikus, J. G. 1977. The biology of methanogenic bacteria. Bacteriol. Rev. 41:514541.
31. Zinder, S. H., and, M. Koch. 1984. Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 138:263272.

Tables

Generic image for table
Table 1.

Changes of Gibbs free energy for secondary fermentations and methane-forming reactions

Citation: Schink B. 2008. Energetic Aspects of Methanogenic Feeding Webs, p 171-178. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error