1887

Chapter 17 : Methane from Gas Hydrates

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Methane from Gas Hydrates, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap17-2.gif

Abstract:

This chapter provides an introduction to naturally occurring methane hydrates: their physical properties, formation, occurrence, and distribution in the natural environment, current estimates of resources, and potential for exploitation. The hydrate stability zone (HSZ) in marine and subsurface permafrost sediments can be delineated as the overlap of the pressure-temperature region of hydrate thermodynamic stability and the hydrothermal/geo-thermal gradients. In both marine and permafrost sediments, within the region of pressure-temperature stability, gas hydrates may form wherever the concentration of methane exceeds solubility in pore waters. The chapter summarizes the principal metabolic pathways involved in methanogenesis. The most important substrates for bacterial methanogenesis are acetate and H /CO/. Until recently, probably the most widely cited global estimate of hydrate-bound gas was 21 × 10 m of methane (STP) or ~10,000 gigatons of methane carbon. The success of the initial field studies at Mallik well led to a second research program, the Mallik 2002 consortium, this time with the aim of investigating methane production. The forecast for future tight supplies of natural gas, along with increasingly higher prices, point to growing demand for alternative supplies. The exploitation of gas hydrates is seen by many as a means to meet the demand, with some analysts suggesting that marine gas hydrates may begin contributing to natural gas markets in less than 10 years.

Citation: Tohidi B, Anderson R. 2008. Methane from Gas Hydrates, p 207-219. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch17

Key Concept Ranking

Nitrate Reduction
0.51378006
Sulfate Reduction
0.51378006
Nitrate Reduction
0.51378006
Sulfate Reduction
0.51378006
Desulfovibrio desulfuricans
0.46243873
0.51378006
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Common clathrate hydrate structures, cavity types, and guest examples.

Citation: Tohidi B, Anderson R. 2008. Methane from Gas Hydrates, p 207-219. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

World map of known and inferred gas hydrate occurrences in aquatic (sea and lake floor) and continental (permafrost) environments. Locations updated from Kvenvolden ( ).

Citation: Tohidi B, Anderson R. 2008. Methane from Gas Hydrates, p 207-219. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Schematic illustration of the biogenic methane HSZ in seafloor and subsurface permafrost sediments (mbsf, meters below seafloor; mbgs, meters below ground surface). Phase boundaries and thermal gradients are arbitrary examples for structure I methane hydrates.

Citation: Tohidi B, Anderson R. 2008. Methane from Gas Hydrates, p 207-219. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Seismic section showing a prominent BSR at the base of the gas HSZ, Lima Basin, offshore Peru. Note how thestrong BSR reflection cross-cuts weaker reflections from sedimentary layers, mimicking the seafloor topography at a constantdepth. Courtesy of Ingo Pecher, Heriot-Watt University, United Kingdom.

Citation: Tohidi B, Anderson R. 2008. Methane from Gas Hydrates, p 207-219. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Typical morphologies of gas hydrate within sediments. In coarse-grained sediments (e.g., sands), hydrates tend to grow as a disseminated interstitial pore fill, while in finer-grained sediments (silts, muds, and clays) segregation (nodules and layers) is common.

Citation: Tohidi B, Anderson R. 2008. Methane from Gas Hydrates, p 207-219. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Carbon isotopic compositions (per mill relative to the Pee Dee Belemnite standard) and concentrations (percent of hydrocarbon gases) of methane in natural gas hydrates from various global localities. Values lighter than 60‰ indicate a biogenic origin, while heavier values suggest a thermogenic source. Overlap is common on both local and regional scales due to mixing of different gas sources.

Citation: Tohidi B, Anderson R. 2008. Methane from Gas Hydrates, p 207-219. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Principal zones of organic matter oxidation in marine sediments. Based on Claypool and Kaplan ( ).

Citation: Tohidi B, Anderson R. 2008. Methane from Gas Hydrates, p 207-219. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Illustration of main pathways in the production of methane by bacterial degradation of marine sedimentary organic matter. The thickness of arrows relates to relative importance of processes. Solid arrows indicate pathways to (and from) methane, while dashed arrows show substrate pathways to sulfate reduction. Based on Wellsbury and Parkes ( ).

Citation: Tohidi B, Anderson R. 2008. Methane from Gas Hydrates, p 207-219. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.
Figure 9.

Pie charts show the distribution of organic carbon on Earth (excluding dispersed organic carbon such as kerogen and bitumen) with past ( ) and more recent ( ) estimates of the global hydrate inventory. Values are given in gigatons (Gt) of carbon. Inset shows global estimates of hydrate-bound gas versus year of estimate. From data compiled by Milkov ( ).

Citation: Tohidi B, Anderson R. 2008. Methane from Gas Hydrates, p 207-219. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch17
1. Anderson, R.,, M. Llamedo,, B. Tohidi, and, R. W. Burgass. 2003. Experimental measurement of methane and carbon dioxide clath-rate hydrate equilibria in mesoporous silica. J. Phys. Chem. B 107:35073514.
2. Barnes, M. A.,, W. C. Barnes, and, R. M. Bustin. 1990. Chemistry and diagenesis of organic matter in sediments and fossil fuels, p. 189204. In I. A. Mcllreath and, D. W. Morrow (ed.), Diagenesis: Geoscience Canada Reprint Series 4. Runge Press, Ontario, Canada.
3. Bernard, B.,, J. Brooks, and, W. Sackett. 1976. Natural gas seepage in the Gulf of Mexico. Earth Planet. Sci. Lett. 31:4854.
4. Berner, R. A. 1980. Early Diagenesis: A Theoretical Approach. Princeton Series in Geochemistry, vol. 241. Princeton University Press, Princeton, NJ.
5. Booth, J. S.,, M. M. Rowe, and, K. M. Fisher. 1996. Offshore gas hydrate sample database with an overview and preliminary analysis. U.S. Geol. Surv. Open-File Rep. 96–272:17.
6. Brooks, J. M.,, L. A. Barnard,, D. A. Weisenberg,, M. C. Kennicutt III, and, K. A. Kvenvolden. 1983. Molecular and isotopic composition of hydrocarbons at Site 533, Deep Sea Drilling Project Leg 76. Init. Rep. Deep Sea Drill. Proj. 76:377389.
7. Brooks, J. M.,, B. H. Cox,, W. R. Bryant,, M. C. Kennicutt III,, R. G. Mann, and, T. J. MacDonald. 1986. Association of gas hydrates and oil seepage in the Gulf of Mexico. Org. Geochem. 10:221234.
8. Brooks, J. M.,, M. E. Field, and, M. C. Kennicutt. 1991. Observations of gas hydrates in marine sediments, offshore northern California. Mar. Geol. 96:103109.
9. Brooks, J. M.,, A. W. A. Jeffrey,, T. J. MacDonald,, R. C. Pflaum, and, K. A. Kvenvolden. 1985. Geochemistry of hydrate gas and water from Site 570, Deep Sea Drilling Project Leg 84. Init. Rep. Deep Sea Drill. Proj. 84:699703.
10. Claypool, G. E., and, I. R. Kaplan. 1974. The origin and distribution of methane in marine sediments, p. 99139. In I. R. Kaplan (ed.), Natural Gases in Marine Sediments. Plenum Press, New York, NY..
11. Clennell, M. B.,, M. Hovland,, J. S. Booth,, P. Henry, and, W. J. Winters. 1999. Formation of natural gas hydrates in marine sediments 1: conceptual model of gas hydrate growth conditioned by host sediment properties. J. Geophys. Res. B 104:2298523004.
12. Dallimore, S. R., and, T. S. Collett (ed.). 2005. Scientific Results from the 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada Bulletin 585. Geological Survey of Canada, Ottawa, Ontario, Canada.
13. Dallimore, S. R.,, T. Uchida, and, T. S. Collett (ed.). 1999. Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada Bulletin 544. Geological Survey of Canada, Ottawa, Ontario, Canada.
14. Devol, A. H. 1978. Bacterial oxygen uptake kinetics as related to biological processes in oxygen deficient zones of the oceans. Deep Sea Res. 25:137146.
15. Froelich, P. N.,, G. P. Linkhammer,, M. L. Bender,, N. A. Luedtke,, G. R. Heath,, D. Cullen,, P. Dauphin,, D. Hammond,, B. Hartman, and, V. Maynard. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43:10751090.
16. Ginsburg, G. D.,, R. A. Guseynov,, A. A. Dadashev,, G. A. Ivanova,, S. A. Kazantsev,, V. A. Solviev,, E. V. Telepnev,, P. Y. Askeri-Nasirov,, A. A. Yesikov,, V. I. Mal’tseva,, G. Y. Mashirov, and, I. Shabayeva. 1992. Gas hydrates of the southern Caspian. Int. Geol. Rev. 43:765782.
17. Ginsburg, G. D.,, A. N. Kremlev,, M. N. Grigorev,, G. V. Larkin,, A. D. Pavlenkin, and, N. A. Saltykova. 1990. Filtrogenic gas hydrates in the Black Sea (twenty-first voyage of the research vessel Evapatoriya). Geol. Geofiz. 31:1019.
18. Ginsburg, G. D.,, A. V. Milnov,, V. A. Solviev,, A. V. Egorov,, G. A. Cherdashev,, P. R. Vogt,, K. Crane,, T. D. Lorenson, and, M. D. Khutorsky. 1999. Gas hydrate accumulation at the Haakon-Mosby mud volcano. Geo-Mar. Lett. 19:5767.
19. Handa, Y. P. 1986. Compositions, enthalpies of dissociation, and heat-capacities. in the range 85-k to 270-k for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutane hydrate, as determined by a heat-flow calorimeter. J. Chem. Thermodyn. 18:915921.
20. Hesse, R. 1990. Early diagenetic pore water/sediment interaction: modern offshore basins, p. 277316. In I. A. Mcllreath and, D. W. Morrow (ed.), Diagenesis: Geoscience Canada Reprint Series 4. Runge Press, Ottawa, Ontario, Canada.
21. Hovland, M.,, J. W. Gallagher,, M. B. Clennell, and, K. Lekvam. 1997. Gas hydrate and free gas volumes in marine sediments: example from the Niger Delta front. Mar. Petrol. Geol. 14:245255.
22. Johnson, A. H., and, M. D. Max. 2006. The path to commercial hydrate gas production. Leading Edge 25:648651.
23. Kastner, M.,, K. A. Kvenvolden, and, T. D. Lorenson. 1998. Chemistry, isotopic composition, and origin of methane-hydrogen sulfide hydrates at the Cascadia subduction zone. Earth Planet. Sci. Lett. 156:173183.
24. Kvenvolden, K. A. 1988. Methane hydrates—a major reservoir of carbon in the shallow geosphere. Chem. Geol. 71:4151.
25. Kvenvolden, K. A. 1993. A primer on gas hydrates, p. 279291. In D. G. Howel (ed.), The Future of Energy Gases. U.S. Geological Survey Professional Paper, vol. 1570. U.S. Geological Survey, Reston, VA.
26. Kvenvolden, K. A. 1998. A primer on the geological occurrence of gas hydrate, p. 930. In J.-P. Henriet and, J. Meinert (ed.), Gas Hydrates: Relevance to World Margin Stability and Climatic Change. Geological Society of London Special Publication, vol. 137. Geological Society of London, London, United Kingdom.
27. Kvenvolden, K. A. 1999. Potential effects of gas hydrate on human welfare. Proc. Natl. Acad. Sci. USA 96:34203426.
28. Kvenvolden, K. A.,, G. E. Claypool,, C. N. Threlkeld, and, E. D. Sloan. 1984. Geochemistry of a naturally occurring massive marine gas hydrate. Org. Geochem. 6:703713.
29. Kvenvolden, K. A., and, M. Kastner. 1990. Gas hydrates of the Peruvian outer continental margin. Proc. Ocean Drill. Prog. Sci. Results 112:517526.
30. Kvenvolden, K. A., and, T. D. Lorenson. 2001. The global occurrence of natural gas hydrate, p. 318. In C. K. Paull and, W. P. Dillon (ed.),Natural Gas Hydrates: Occurrence, Distribution, and Detection. American Geophysical Union, Geophysical Monograph Series, vol. 124. American Geophysical Union, Washington, DC.
31. Lein, A.,, P. Vogt,, K. Crane,, A. Ergorov, and, M. Ivanov. 1999. Chemical and isotopic evidence for the nature of the fluid in CH4- containing sediments of the Haakon-Mosby mud volcano. GeoMar. Lett. 19:7683.
32. Lerche, I. 2000. Estimates of worldwide gas hydrate resource. Energ. Explor. Exploit. 18:329-337.
33. Lorenson, T. D., and, T. S. Collett. 1999. Gas content and composition of gas hydrate from sediments of the southeastern North American continental margin. Proc. Ocean Drill. Prog. Sci. Results 164:3746.
34. Lorenson, T. D.,, M. J. Whiticar,, A. Waseda,, S. R. Dallimore, and, T. S. Collet. 1999. Gas composition and isotopic geochemistry of cuttings, core, and gas hydrate from the JAPEX/JNOC/GSC Mallick 2L-38 gas hydrate research well. Geol. Surv. Canada Res. Bull. 544:143163.
35. Lovley, D. R.,, F. H. Chapelle, and, J. C. Woodward. 1994. Use of dissolved H2 concentrations to determine the distribution of microbially catalysed redox reactions in anoxic ground water. Environ. Sci. Technol. 28:10051210.
36. Makogon, Y. F.,, A. A. Trofimuk,, V. P. Tarsev, and, N. V. Cherskiy. 1971. Detection of a pool of natural gas in a solid (hydrated gas) state. Dok. Akad. Nauk. SSSR 196:203206.
37. Mao, W. L.,, H. Mao,, A. F. Goncharov,, V. V. Stuzhkin,, Q. Guo,, J. Hu,, J. Shu,, R. J. Hemley,, M. Somayazulu, and, Y. Zhao. 2002. Hydrogen clusters in clathrate hydrate. Science 297:22472249.
38. Milkov, A. V. 2004. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Sci. Rev. 66:183197.
39. Milkov, A. V., and, R. Sassen. 2002. Economic geology of offshore gas hydrate accumulations and provinces. Mar. Petrol. Geol. 19:111.
40. Nimblett, J., and, C. Ruppel. 2003. Permeability evolution during the formation of gas hydrates in marine sediments. J. Geophys. Res. B.108:2420.
41. Parkes, R. J.,, B. A. Cragg, and, P. Wellsbury. 2000. Recent studies on bacterial populations and processes in marine sediments: a review. Hydrogeol. J. 8:1128.
42. Paull, C. K.,, R. Matsumoto, and, P. J. Wallace (ed.). 1996. Proceedings of ODP, Initial Reports, vol. 164. Ocean Drilling Program, College Station, TX.
43. Pflaum, R. C.,, J. M. Brooks,, H. B. Cox,, M. C. Kennicutt, and, D. D. Sheu. 1986. Molecular and isotopic analysis of core gases and gas hydrates, Deep Sea Drilling Project Leg 96. Init. Rep. Deep Sea Drill. Proj. 96:781784.
44. Reuff, R. M., and, E. D. Sloan. 1988. Heat capacity and heat of dissociation of methane hydrates. AIChE J. 34:14681476.
45. Ripmeester, J. A.,, J. S. Tse,, C. I. Ratcliffe, and, B. M. Powell. 1987. A new clathrate hydrate structure. Nature 325:135136.
46. Ripmeester, J. A., and, C. I. Ratcliffe. 1990. 129Xe NMR Studies of clathrate hydrates: new guests for structure II and structure H. J. Phys. Chem. 94:87738776.
47. Schonheit, P.,, J. K. Kristjensson, and, R. K. Thauer. 1982. Kinetic mechanism for the ability of sulphate reducers to out-compete methanogens for acetate. Arch. Microbiol. 132:285288.
48. Shipley, T. H.,, M. H. Houston,, R. T. Buffler,, F. J. Shaub,, K. J. McMillen,, J. W. Ladd, and, J. L. Worzel. 1979. Seismic reflection evidence for the widespread occurrence of possible gas-hydrate horizons on continental slopes and rises. Am. Assoc. Pet. Geol. Bull. 62:22042213.
49. Sloan, E. D. 1998. Clathrate Hydrates of Natural Gases, 2nd ed. Marcel Dekker Inc., New York, NY..
50. Suess, E.,, M. E. Torres,, G. Bohrmann,, R. W. Collier,, J. Greinert,, P. Linke,, G. Rehder,, A. Tréhu,, K. Wallmann,, G. Winckler, and, E. Zuleger. 1999. Gas hydrate destabilization; enhanced dewatering, benthic material turnover and large methane plumes at the Cascadian convergent margin. Earth Planet. Sci. Lett. 170:115.
51. Takahashi, H. 2005. Multi-well exploration program in 2004 for natural hydrate in the Nankai-Trough offshore Japan, OTC17162. 2005 Offshore Technology Conference, Houston, Texas, 2 to 5 May 2005.
52. Takahashi, H.,, T. Yonezawa, and, Y. Takedomi. 2001. Exploration for natural hydrate in Nankai-Trough wells offshore Japan, OTC13040. 2001 Offshore Technology Conference, Houston, Texas, 30 April to 3 May 2001.
53. Tohidi, B.,, R. Anderson,, M. B. Clennell,, R. W. Burgass, and, A. B. Biderkab. 2001. Visual observation of gas-hydrate formation and dissociation synthetic porous media by means of glass micromodels. Geology 29:867870.
54. Tohidi, B.,, A. Danesh, and, A. C. Todd. 1997. On the mechanism of gas hydrate formation in subsea sediments. Abstr. Pap. Am. Chem. Soc. 213:37-Fuel.
55. Tréhu, A. M.,, G. Bohrmann,, F. R. Rack,, M. E. Torres, and, Shipboard. Scientific Party. 2003. Proceedings of ODP, Initial Reports, vol. 204. Ocean Drilling Program, College Station, TX.
56. U.S. National Research Council. 2004. Charting the Future of Methane Hydrate Research in the United States. The National Academies Press, Washington, DC.
57. Van der Waals, J. H., and, J. C. Platteeuw. 1959. Clathrate solutions. Adv. Chem. Phys. 2:157.
58. Vardaro, M. F.,, I. R. MacDonald,, L. C. Bender, and, N. L. Guinasso, Jr. 2006. Dynamic processes observed at a gas hydrate outcropping on the continental slope of the Gulf of Mexico. Geo-Mar. Lett. 26:615.
59. Vasil’ev, V. G.,, Y. F. Makogon,, F. A. Trebin,, A. A. Trofimuk, and, N. V. Cherskiy. 1970. The property of natural gases to occur in the Earth crust in a solid state and to form gas hydrate deposits. Otkrytiya v SSSR 1968–1969:1517.
60. Wellsbury, P., and, R. J. Parkes. 2000. Deep biosphere: source of methane for oceanic hydrate, p. 91104. In M. D. Max (ed.), Natural Gas Hydrates in Oceanic and Permafrost Environments. Kluwer Academic Publishers, Dordrecht, The Netherlands.
61. Westbrook, G. K.,, B. Carson,, R. J. Musgrave, and, Shipboard. Scientific Party. 1994. Proceedings of ODP, Initial Reports, vol. 146 (Pt.1). Ocean Drilling Program, College Station, TX.
62. Zatsepina, O. Y., and, B. A. Buffett. 1997. Phase equilibrium of gas hydrate: implications for the formation of hydrate in the deep sea floor. Geophys. Res. Lett. 24:15671570.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error