1887

Chapter 18 : Methanol from Biomass

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Methanol from Biomass, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap18-2.gif

Abstract:

Methanol is an easily storable source of hydrogen. As a motor fuel, methanol has a favorable octane rating of 110, and most of today’s production goes directly into motor fuels or becomes a component of methyl tertiary-butyl ether, a fuel additive, or an esterification component of vegetable fatty acids in biodiesel. Today, methanol is produced by three main processes that are differentiated by the raw materials used: coal and oil, natural gas, and carbon dioxide. Catalytic reduction of carbon dioxide with hydrogen to methanol is inherent in every commercial methanol production process from coal, oil, or gas. The residual carbon dioxide formed from burning fossil carbon raw materials can be reduced with hydrogen produced by nonfossil energy sources. It has been shown recently that direct electrolysis of carbon dioxide and water can be applied to produce methanol. A considerable part of the organic component of the biomass is converted into end products, CH and CO. The fermentation pathway from sugars and other substances (such as fats and amino acids) via acetic acid to methane is very straightforward, although there must be strictly anaerobic conditions in the fermentation system. Methane is the end product of this anaerobic conversion pathway. It can be oxidized to methanol and finally to carbon dioxide.

Citation: Ringpfeil M, Sander H, Gerhardt M, Wolf M. 2008. Methanol from Biomass, p 223-233. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch18

Key Concept Ranking

Hydrogen Sulfide
0.8958334
Carbon monoxide
0.84716797
0.8958334
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Technology-oriented scheme for microbial biomass conversion under exclusion of oxygen and addition of chemical methanol synthesis.

Citation: Ringpfeil M, Sander H, Gerhardt M, Wolf M. 2008. Methanol from Biomass, p 223-233. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Schematic overview of the treatment of solid and liquid wastes (from SVZ, 2007).

Citation: Ringpfeil M, Sander H, Gerhardt M, Wolf M. 2008. Methanol from Biomass, p 223-233. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Methane decomposition by methanotrophic microorganisms (from ). Abbreviations: sMMO and pMMO, methane monooxygenase, soluble and particulate, respectively; CycC, cytochrome ; FADH, formalde-hyde dehydrogenase; GDH, formate dehydrogenase; RuMP, ribulose monophosphate pathway.

Citation: Ringpfeil M, Sander H, Gerhardt M, Wolf M. 2008. Methanol from Biomass, p 223-233. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Pathway of methanol synthesis from carbon dioxide (1a) and reducing-equivalent regeneration by methane (1b) (from ).

Citation: Ringpfeil M, Sander H, Gerhardt M, Wolf M. 2008. Methanol from Biomass, p 223-233. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch18
1. Althapp, A. 2003. Kraftstoffe aus Biomasse mit dem Carbo-V® Vergasungsverfahren. Fachtagung Regenerative Kraftstoffe, 13 to 14 November 2003, Stuttgart, Germany.
2. Aulrich, K., and, G. Flachowsky. 2001. Studies on the mode of action of non-starch-polysaccharides (NSP)-degrading enzymes in vitro. 2. Communication: effects on nutrient release and hydration properties. Arch. Tierernähr. 54:1932.
3. Bayer, E. A.,, H. Chanzy,, R. Lamed, and, Y. Shoham. 1998. Cellulose, cellulases and cellulosomes. Curr. Opin. Struct. Biol. 8:548557.
4. Boetius, A., K., Ravenschlag, C., J. Schubert,, D. Rickert,, F. Widdel,, A. Gieseke,, R. Amann,, B. B. Jorgensen,, U. Witte, and, O. Pfannkuche. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623626.
5. Buswell, A. M., and, H. F. Mueller. 1952. Mechanism of methane fermentation. Ind. Eng. Chem. 44:550552.
6. Chistoserdova, L.,, J. A. Vorholt, and, M. E. Lidstrom. 2005. A genomic view of methane oxidation by aerobic bacteria and anaerobic archea. Genome Biol. 6:208.
7. Daniels, L.,, R. Sparling, and, G. D. Sprott. 1984. The bioenergetics of methanogenesis. Biochim. Biophys. Acta 768:113163.
8. Furuto, T.,, M. Takeguchi, and, I. Okura. 1999. Semicontinuous methanol biosynthesis by Methylosinus trichosporium OB3b. J. Mol. Catal. A 144:257261.
9. Gerhardt, M. 2006. Optimisation of agricultural biogas production plants by application of hydrolytic enzymes, abstr. 61. Abstr. Third Annual World Congress on Industrial Biotechnology and Bio-processing, 11 to 14 July 2006, Toronto, Canada.
10. Gerhardt, M.,, V. Svetlichny,, T. G. Sokolova,, G. A. Zavarzin, and, M. Ringpfeil. 1991. Bacterial CO utilization with H2 production by the strictly anaerobic lithoautotrophic thermophilic bacterium Carboxydothermus hydrogenus DSM 6008 isolated from a hot swamp. FEMS Microbiol. Lett. 83:267272.
11. Gomez, C., da Costa. 2007. Biogas im Jahr 2020: wo werden wir stehen?, p. 6368. Jahrestagung des Fachverbandes Biogas, 31 January to 2 February 2007, Leipzig, Germany.
12. Gou, Z.,, X. H. Xing,, M. Luo,, H. Jiang,, B. Han,, H. Wu,, L. Wang, and, F. Zhang. 2006. Functional expression of the particulate methane mono-oxygenase gene in recombinant Rhodococcus erythropolis. FEMS Microbiol. Lett. 263:136141.
13. Hanson, R. S., and, T. E. Hanson. 1996. Methanotrophic bacteria. Microbiol. Rev. 60:439471.
14. Heider, J. 2006a. Anaerobe Atmung, p. 395. In G. Fuchs (ed.), Allgemeine Mikrobiologie. G. Thieme Verlag, Stuttgart, Germany.
15. Heider, J. 2006b. Mikrobielle Gärungen, p. 352. In G. Fuchs (ed.), Allgemeine Mikrobiologie. G. Thieme Verlag, Stuttgart, Germany.
16. Islas-Lima, S.,, F. Thalasso, and, J. Gomes-Hernandez. 2004. Evidence of anoxic methane oxidation coupled to denitrification. Water Res. 38:1316.
17. Koss, U., and, H. Schlichtig. 2005. Lurgi’s MPG Gasification plus Rectisol gas purification—advanced process combination for reliable syngas production. Gasification Technologies 2005, San Francisco, CA, October 2005.
18. KTBL. 2005. Gasausbeute in landwirtschaftlichen Biogasanlagen. Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V., Darmstadt, Germany.
19. Leadbetter, E. R., and, J. W. Foster. 1959. Incorporation of molecular oxygen in bacterial cells utilizing hydrocarbons for growth. Nature 184:14281429.
20. Metz, B., et al. (ed.). 2005. Special Report on Safeguarding the Ozone Lazer and the Global Climate System: Issues Related Hydro-fluorocarbons and Perfluorocarbons. IPCC/TEAP. Cambridge University Press, Cambridge, United Kingdom.
21. Pell, A. N., and, P. Schofield. 1993. Microbial adhesion and degradation of plant cell walls, p. 397423. In H. G. Jung,, D. R. Buxton,, R. D. Hartfield, and, J. Ralph (ed.), Forage Cell Walls Structure and Digestibility. American Society of Agronomy Inc.; Soil Science Society America Inc., Madison, WI.
22. Peter, S., and, H. Woy. 1969. Gewinnung von Schwefel aus Schwefelwasserstoff nach dem Claus-Verfahren. Chemie Ingenieur Technik—CIT 41:17.
23. Schink, B., and, G. Zeikus. 1980. Microbial methanol formation: a major end product of pectin metabolism. Curr. Microbiol. 4:387389.
24. Shoham, Y.,, R. Lamed, and, E. A. Bayer. 1999. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7:275281.
25. Supp, E. 1990. How to Produce Methanol from Coal. Springer-Verlag, Berlin, Germany.
26. Svetlichny, V. A.,, T. G. Sokolova,, M. Gerhardt,, M. Ringpfeil,, N. A. Kostrikina, and, G. A. Zavarzin. 1991a. Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island. Syst. Appl. Microbiol. 14:254260.
27. Svetlichny, V. A.,, T. G. Sokolova,, M. Gerhardt,, N. A. Kostrikina, and, G. A. Zavarzin. 1991b. Anaerobic extremely thermophilic carboxydotrophic bacteria in hydrotherms of Kuril Islands. Microb. Ecol. 21:110.
28. SVZ. 2001. News-Letter. Sonderausgabe 2001. SekundärrohstoffVerwertungszentrum Schwarze Pumpe (SVZ), Spreetal, Germany.
29. Tonge, G. M.,, E. F. Harrison, and, I. J. Higgins. 1977. Purification and properties of the methane mono-oxygenase enzyme system from Methylosinus trichosporium OB3b. Biochem. J. 161:333344.
30. Vriens, R. 1994. How will Europe survive, methanol supply/demand outlook 1993–1997. World Methanol Conference, Geneva, Switzerland.
31. Xin, J. Y.,, J. R. Cui,, J. Z. Niu,, S. F. Hua,, C. G. Xia,, S. B. Li, and, L. M. Zhu. 2004a. Production of methanol from methane by methanotrophic bacteria. Biocatal. Biotransformation 22:225229.
32. Xin, Y. Y.,, J. R. Cui,, J. Z. Niu,, S. F. Hua,, C. G. Xia,, S. B. Li, and, L. M. Zhu. 2004b. Biosynthesis of methanol from CO2 and CH 4 by methanotrophic bacteria. Biotechnology 3:6771.

Tables

Generic image for table
Untitled

Citation: Ringpfeil M, Sander H, Gerhardt M, Wolf M. 2008. Methanol from Biomass, p 223-233. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch18
Generic image for table
Untitled

Citation: Ringpfeil M, Sander H, Gerhardt M, Wolf M. 2008. Methanol from Biomass, p 223-233. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch18
Generic image for table
Table 1.

Conversion of substrates into biogas

Citation: Ringpfeil M, Sander H, Gerhardt M, Wolf M. 2008. Methanol from Biomass, p 223-233. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error