1887

Chapter 19 : Prospects for Methanol Production

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Prospects for Methanol Production, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap19-2.gif

Abstract:

This chapter discusses the potential of methanol as an alternative fuel along with the prospects for its production using biomimetic pathways for efficient conversion of carbon dioxide to methanol based on single-carbon biotransformations. It focuses on methanol production through biocatalysis and is organized in three parts. First, the effects of fuel sources and their influence on the global carbon cycle and atmospheric accumulations of CO are discussed. Second, the potential utility of methanol as an alternative fuel and the scope of different methods for its commercial production are outlined. Finally, the use of biological systems in efficient conversion processes leading to methanol is elucidated with specific emphasis on dehydrogenase-catalyzed synthesis of methanol from carbon dioxide. The stabilization of enzymes in sol-gel materials provides a strategy for efficient utilization of enzymes in conversion of carbon dioxide to methanol. Immobilization of these enzymes confers additional thermal and environmental stability to the enzyme structure due to elimination or minimization of protein unfolding pathways. The moles of methanol produced are plotted as a function of the moles of the terminal electron donor (NADH). The enhancement of methanol production in sol-gel was due to confinement and matrix effects. The overall yield of the reaction for methanol production through this pathway depended on several factors. The sequential enzymatic conversion pathway to methanol production from CO provides several significant advantages. In the long range, with appropriate resource allocations, enzymatic biomethanol production pathways offer appealing prospects for practical development of new self-sustainable technologies.

Citation: Dave B. 2008. Prospects for Methanol Production, p 235-245. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch19

Key Concept Ranking

Enzymes and Coenzymes
0.6848083
Carbon Dioxide
0.5419967
Formic Acid
0.45252407
0.6848083
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Reactions involved in production and combustion of methanol.

Citation: Dave B. 2008. Prospects for Methanol Production, p 235-245. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Dave B. 2008. Prospects for Methanol Production, p 235-245. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Dave B. 2008. Prospects for Methanol Production, p 235-245. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Schematic depiction of enzyme-catalyzed sequential reduction of carbon dioxide to methanol in a sol-gel matrix.

Citation: Dave B. 2008. Prospects for Methanol Production, p 235-245. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Relative yields of methanol formation from carbon dioxide in solution versus sol-gel matrix ( ).

Citation: Dave B. 2008. Prospects for Methanol Production, p 235-245. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Schematic depiction of implications of enzymatic bioconversion of carbon dioxide to methanol.

Citation: Dave B. 2008. Prospects for Methanol Production, p 235-245. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch19
1. Aresta, M. 2003. Carbon dioxide utilization: greening both the energy and chemical industry: an overview. ACS Symp. Ser. 852:239.
2. Armaroli, A., and, V. Balzani. 2007. The future of energy supply: challenges and opportunities. Angew. Chem. Int. Ed. 46:5266.
3. Attwood, M. M. 1990. Formaldehyde dehydrogenases from methylotrophs. Methods Enzymol. 188:314327.
4. Bungay, H. R. 2004. Confessions of a bioenergy advocate. Trends Biotechnol. 22:6771.
5. Burton, S. 2003. Oxidizing enzymes as biocatalysts. Trends Biotechnol. 21:543549.
6. Celayeta, J. F.,, A. H. Silva,, V. M. Balcao, and, F. X. Malcata. 2001. Maximisation of the yield of final product on substrate in the case of sequential reactions catalysed by coimmobilised enzymes: a theoretical analysis. Bioprocess Biosyst. Eng. 24:143149.
7. Comfort, D. A.,, S. R. Chhabra,, S. B. Conners,, C.-J. Chou,, K. L. Epting,, M. R. Johnson,, K. L. Jones,, A. C. Sehgal, and, R. M. Kelly. 2004. Strategic biocatalysis with hyperthermophilic enzymes. Green Chem. 6:459465.
8. Dave, B. C.,, B. Dunn,, J. S. Valentine, and, J. I. Zink. 1994. Sol-gel encapsulation methods for biosensors. Anal. Chem. 66:1120A1127A.
9. Dave, B. C.,, B. Dunn,, J. S. Valentine, and, J. I. Zink. 1996. Nanoconfined proteins and enzymes: sol-gel based biomolecular materials, p. 351365. In G.-M. Chow and, K. E. Gonsalves (ed.), Nanotechnology. American Chemical Society, Washington, DC.
10. Dave, B. C.,, B. Dunn,, J. S. Valentine, and, J. I. Zink. 1998. Sol-gel matrices for protein entrapment, p. 113134. In F. S. Ligler and, A. E. G. Cass (ed.), Immobilized Biomolecules in Analysis: A Practical Approach. Oxford University Press, Oxford, United Kingdom.
11. Deamer, D. W. 1997. The first living systems: a bioenergetic perspective. Microbiol. Mol. Biol. Rev. 61:239261.
12. Dunn, S. 2002. Hydrogen futures: toward a sustainable energy system. Int. J. Hydrogen Energy 27:235264.
13. Ehrlich, P. R., and, J. P. Holdren. 1974. Human population and the global environment. Am. Sci. May–June:282292.
14. Falkowski, P.,, R. J. Scholes,, E. Boyle,, J. Canadell,, D. Canfield,, J. Elser,, N. Gurber,, K. Hibbard,, P. Hogberg,, S. Linder,, F. T. Mackenzie,, B. Moore,, T. Pedersen,, Y. Rosenthal,, S. Seitzinger,, V. Smetacek, and, W. Steffen. 2000. The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291296.
15. Greene, N.,, F. E. Celik,, B. Dale,, M. Jackson,, K. Jayawardhana,, H. Jin,, E. D. Larson,, M. Laser,, L. Lynd,, D. MacKenzie,, J. Mark,, J. McBride,, S. McLaughlin, and, D. Saccardi. 2004. Growing energy: How Biofuels Can Help End America’s Oil Dependence. Natural Resources Defense Council, New York, NY.
16. Hahn-Hågerdal, B.,, M. Galbe,, M., F. Gorwa-Grauslund,, G. Lidén, and, G. Zacchi. 2006. Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol. 24:549556.
17. Hanson, R. S., and, T. E. Hanson. 1996. Methanotrophic bacteria. Microbiol. Rev. 6:439471.
18. Held, M.,, A. Schmid,, J. B. van Beilan, and, B. Witholt. 2000. Biocatalysis: biological systems for the production of chemicals. Pure Appl. Chem. 72:13371343.
19. Houghton, J. T.,, Y. Ding,, D. J. Griggs,, M. Noguer,, P. J. van der Linden,, X. Dai,, K. Maskell, and, C. A. Johnson (ed.). 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Cambridge University Press, Cambridge, United Kingdom.
20. Huber, G. W.,, S. Iborra, and, A. Corma. 2006. Transportation fuels from biomass: chemistry, catalysis, and engineering. Chem. Rev. 106:40444098.
21. Kaya, Y. 1995. The role of CO2 removal and disposal. Energy Convers. Mgmt. 36:375380.
22. Kheshgi, H. S.,, R. C. Prince, and, G. Marlend. 2000. The potential of biomass fuels in the context of global climate change: focus on transportation fuels. Annu. Rev. Energy. Environ. 25:199244.
23. Lemus, R., and, R. Lal. 2005. Bioenergy crops and carbon sequestration. Crit. Rev. Plant Sci. 24:121.
24. Lieberman, R. L., and, A. C. Rosenzweig. 2004. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygense. Crit. Rev. Biochem. Mol. Biol. 39:147164.
25. Lynd, L. R. 1996. Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu. Rev. Energy Environ. 21:403465.
26. Marsden, S. S. 1983. Methanol as a viable energy source in today’s world. Annu. Rev. Energy 8:333354.
27. Mazen, M. A.-K. 2006. Recent progress in CO2 capture/sequestration: a review. Energy Sources A 28:12611279.
28. McGrath, K. M.,, G. K. S. Prakash, and, G. A. Olah. 2004. Direct methanol fuel cells. J. Ind. Eng. Chem. 10:10631080.
29. Meher, L. C.,, D. V. Sagar, and, S. N. Naik. 2006. Technical aspects of biodiesel production by transesterification—a review. Renew. Sust. Energ. Rev. 10:248268.
30. Moreira, J. R., and, J. Goldemberg. 1999. The alcohol program. Energy Policy 27:229245.
31. Obert, R., and, B. C. Dave. 1999. Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica solgel matrices. J. Am. Chem. Soc. 121:1219212193.
32. Okkerse, C., and, H. van Bekkum. 1999. From fossil to green. Green Chem. 1:107114.
33. Olah, G. A. 2005. Beyond oil and gas: the methanol economy. Angew. Chem. Int. Ed. 44:26362639.
34. Olah, G. A.,, A. Goeppert, and, G. K. S. Prakash. 2006. Beyond Oil and Gas: The Methanol Economy. Wiley–VCH, Weinheim, Germany.
35. Petrus, L., and, M. A. Noordermeer. 2006. Biomass to biofuels: a chemical perspective. Green Chem. 8:861867.
36. Popov, V. O., and, V. S. Lamzin. 1994. NAD( ) dependent formate dehydrogenase. Biochem. J. 301:625643.
37. Reeburgh, W. S. 2007. Oceanic methane biogeochemistry. Chem. Rev. 107:486513.
38. Reid, M. F., and, C. A. Fewson. 1994. Molecular characterization of microbial alcohol dehydrogenases. Crit. Rev. Microbiol. 20:1356.
39. Rouviére, P. E., and, R. S. Wolfe. 1988. Novel biochemistry of methanogenesis. J. Biol. Chem. 263:79137916.
40. Schåfer, G., M. Engelhard, and, V. Müller. 1999. Bioenergetics of archaea. Microbiol. Mol. Biol. Rev. 63:570620.
41. Schink, B., and, J. G. Zeikus. 1980. Microbial methanol formation: a major end product of pectin metabolism. Curr. Microbiol. 4:387389.
42. Song, C. S. 2006. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption, and chemical processing. Catal. Today 115:232.
43. Trotsenko, Y. A., and, V. N. Khymelenina. 2005. Aerobic methanotrophic bacteria of cold ecosystems. FEMS Microbiol. Ecol. 53:1526.
44. Weimer, T.,, K. Schaber,, M. Specht, and, A. Bandi. 1996. Methanol from atmospheric carbon dioxide: a liquid zero emission fuel for the future. Energy Convers. Mgmt. 37:13511356.
45. Wyman, C. E. 1999. Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu. Rev. Energy Environ. 24:189226.
46. Zeikus, J. G. 1977. The biology of methanogenic bacteria. Bacteriol. Rev. 41:514541.

Tables

Generic image for table
Table 1.

Methanol properties and characteristics

Citation: Dave B. 2008. Prospects for Methanol Production, p 235-245. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch19
Generic image for table
Table 2.

Advantages of sol-gel enzymatic methanol production

Citation: Dave B. 2008. Prospects for Methanol Production, p 235-245. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error