1887

Chapter 21 : Nitrogenase-Catalyzed Hydrogen Production by Purple Nonsulfur Photosynthetic Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Nitrogenase-Catalyzed Hydrogen Production by Purple Nonsulfur Photosynthetic Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap21-2.gif

Abstract:

This chapter focuses on a biological process for hydrogen generation that depends on the environmentally benign use of biomass and solar energy. A group of anoxygenic photosynthetic bacteria known as purple nonsulfur bacteria (PNSB) produce large amounts of hydrogen under normal growth conditions by using nitrogenases as opposed to hydrogenases. However, hydrogen production by this route tends to be short-lived because of the extreme oxygen sensitivity of hydrogenases and nitrogenases. The chapter reviews the fundamental biology of nitrogenase-catalyzed hydrogen production by PNSB. Researchers found that photohydrogen production was inhibited by nitrogen gas. There are numerous strategies for strain development that can be expected to lead to improvements and stabilization of the hydrogen production process. In addition to their practical usefulness, the application of such strategies will lead to an improved understanding of the hydrogen production process as it operates in the context of whole cells. The fundamental unit of peripheral light-harvesting systems, also known as light harvesting 2, consists of two other types of α and β polypeptides. Two metabolic processes that consume large quantities of reductant and thus have the potential to divert electrons away from nitrogenase-catalyzed hydrogen production by whole cells of PNSB are poly-hydroxyalkanoate (PHA) synthesis and carbon dioxide fixation. In many ways studies of nitrogenase-catalyzed hydrogen production by anoxygenic phototrophic bacteria are still in their infancy.

Citation: Harwood C. 2008. Nitrogenase-Catalyzed Hydrogen Production by Purple Nonsulfur Photosynthetic Bacteria, p 259-271. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch21

Key Concept Ranking

Acetyl Coenzyme A
0.48783228
Carbon Dioxide
0.4551883
0.48783228
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Nitrogenase-catalyzed hydrogen production by PNSB. PNSB can generate the electrons needed for hydrogen production by oxidizing organic compounds and selected inorganic compounds. They generate ATP by cyclic photophosphorylation. Protons derive from water or are generated along with electrons when organic compounds are oxidized. The theoretical stoichiometries for nitrogenase reactions for hydrogen production in the presence and absence of nitrogen gas are indicated. Reprinted from Rey et al. ( ) with permission of the publisher.

Citation: Harwood C. 2008. Nitrogenase-Catalyzed Hydrogen Production by Purple Nonsulfur Photosynthetic Bacteria, p 259-271. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

The nitrogenase reaction. Ferredoxins (Fd) and flavodoxins (Fld) transfer electrons generated from the oxidation of organic compounds during metabolism to the Fe protein to initiate a reaction cycle. Reprinted from Howard and Rees ( ) with permission from the .

Citation: Harwood C. 2008. Nitrogenase-Catalyzed Hydrogen Production by Purple Nonsulfur Photosynthetic Bacteria, p 259-271. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Organization of the molybdenum nitrogenase gene cluster in strain CGA009. Gene functions are annotated according to Rubio and Ludden ( ).

Citation: Harwood C. 2008. Nitrogenase-Catalyzed Hydrogen Production by Purple Nonsulfur Photosynthetic Bacteria, p 259-271. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

The photosynthetic apparatus of the PNSB, depicting ATP generation by cyclic photophosphorylation. Light energy absorbed by the peripheral light antenna (LH2) is transferred to the core light antenna (LH1) and then the reaction center (RC). These components can also absorb photons directly at the wavelengths indicated. The gray arrows indicate energy transfer reactions, and the black arrows indicate electron or proton transfer reactions. Ubiquinone molecules (Q), which are mobile in the membrane, accept two protons from the inside of membrane vesicles along with energized electrons from the reaction center. Cytochrome / catalyzes electron transfer between ubiquinol (QH) and the mobile electron carrier, cytochrome (cyt ). Electron transfer to cytochrome is coupled to the translocation of protons across the membrane to create a proton gradient. The cyclic flow of electrons back to the reaction center is completed by cytochrome . ATP synthase uses the proton gradient to generate ATP. Adapted from Cogdell et al. ( ).

Citation: Harwood C. 2008. Nitrogenase-Catalyzed Hydrogen Production by Purple Nonsulfur Photosynthetic Bacteria, p 259-271. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch21
1. Aagaard, J., and, W. R. Sistrom. 1972. Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem. Photobiol. 15:209225.
2. Angenent, L. T.,, K. Karim,, M. H. Al-Dahhan,, B. A. Wrenn, and, R. Domiguez-Espinosa. 2004. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22:477485.
3. Bahatyrova, S.,, R. N. Frese,, C. A. Siebert,, J. D. Olsen,, K. O. Van Der Werf,, R. Van Grondelle,, R. A. Niederman,, P. A. Bullough,, C. Otto, and, C. N. Hunter. 2004. The native architecture of a photo-synthetic membrane. Nature 430:10581062.
4. Barbosa, M. J.,, J. M. Rocha,, J. Tramper, and, R. H. Wijffels. 2001. Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J. Biotechnol. 85:2533.
5. Barney, B. M.,, R. Y. Igarashi,, P. C. Dos Santos,, D. R. Dean, and, L. C. Seefeldt. 2004. Substrate interaction at an iron-sulfur face of the FeMo-cofactor during nitrogenase catalysis. J. Biol. Chem. 279:5362153624.
6. Bell, J.,, A. J. Dunford,, E. Hollis, and, R. A. Henderson. 2003. The role of Mo atoms in nitrogen fixation: balancing substrate reduction and dihydrogen production. Angew. Chem. Int. Ed. Engl. 42:11491152.
7. Brenner, D. J.,, N. R. Krieg, and, J. T. Staley. 2001. The Apha-, Beta-, Delta-, and Epsilonproteobacteria, vol. 2, part C. In G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology. Springer, New York, NY.
8. Burns, R. C., and, W. A. Bulen. 1965. ATP-dependent hydrogen evolution by cell-free preparations of Azotobacter vinelandii. Biochim. Biophys. Acta 105:437445.
9. Burns, R. C., and, W. A. Bulen. 1966. A procedure for the preparation of extracts from Rhodospirillum rubrum catalyzing N2 reduction and ATP-dependent H2 evolution. Arch. Biochem. Biophys. 113:461463.
10. Carlozzi, P.,, B. Pushparaj,, A. Degl’Innocenti, and, A. Capperucci. 2006. Growth characteristics of Rhodopseudomonas palustris cultured outdoors, in an underwater tubular photobioreactor, and investigation on photosynthetic efficiency. Appl. Microbiol. Biotechnol. 73:789795.
11. Cogdell, R. J.,, A. Gall, and, J. Kohler. 2006. The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q. Rev. Biophys. 39:227324.
12. Connelly, H. M.,, D. A. Pelletier,, T. Y Lu.,, P. K. Lankford, and, R. L. Hettich. 2006. Characterization of PII family (GlnK1, GlnK2, and GlnB) protein uridylylation in response to nitrogen availability for Rhodopseudomonas palustris. Anal. Biochem. 357:93104.
13. Croal, L. R.,, Y. Jiao, and, D. K. Newman. 2007. The fox operon from Rhodobacter strain SW2 promotes phototrophic Fe(II) oxidation in Rhodobacter capsulatus SB1003. J. Bacteriol. 189:17741782.
14. Das, D., and, T. N. Veziroglu. 2001. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy 26:1328.
15. Dixon, R., and, D. Kahn. 2004. Genetic regulation of biological nitrogen fixation. Nat. Rev. Microbiol. 2:621631.
16. Do, Y. S.,, T. M. Schmidt,, J. A. Zahn,, E. S. Boyd,, A. de la Mora, and, A. A. DiSpirito. 2003. Role of Rhodobacter sp. strain PS9, a purple non-sulfur photosynthetic bacterium isolated from an anaerobic swine waste lagoon, in odor remediation. Appl. Environ. Microbiol. 69:17101720.
17. Drepper, T.,, S. Gross,, A. F. Yakunin,, P. C. Hallenbeck,, B. Masepohl, and, W. Klipp. 2003. Role of GlnB and GlnK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capsulatus. Microbiology 149:22032212.
18. Eady, R. R. 1996. Structure-function relationships of alternative nitrogenases. Chem. Rev. 96:30133030.
19. Edgren, T., and, S. Nordlund. 2004. The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase. J. Bacteriol. 186:20522060.
20. Edgren, T., and, S. Nordlund. 2005. Electron transport to nitrogenase in Rhodospirillum rubrum: identification of a new fdxN gene encoding the primary electron donor to nitrogenase. FEMS Micro-biol. Lett. 245:345351.
21. Evans, K.,, A. P. Fordham-Skelton,, H. Mistry,, C. D. Reynolds,, A. M. Lawless, and, M. Z. Papiz. 2005. A bacteriophytochrome regulates the synthesis of LH4 complexes in Rhodopseudomonas palustris. Photosynth. Res. 85:169180.
22. Fisher, K., and, W. E. Newton. 2002. Nitrogen fixation—a general overview, p. 134. In G. J. Leigh (ed.), Nitrogen Fixation at the Millennium. Elsevier, Amsterdam, The Netherlands.
23. Fißler, J., C. Schirra, G.-W. Koring, and, F. Giffhorn. 1994. Hydrogen production from aromatic acids by Rhodopseudomonas palustris. Appl. Microbiol. Biotechnol. 41:395399.
24. Flickinger, M. C.,, J. L. Schottel,, D. R. Bond,, A. Aksan, and, L. E. Scriven. 2007. Painting and printing living bacteria: engineering nanoporous biocatalytic coatings to preserve microbial viability and intensify reactivity. Biotechnol. Prog. 23:217.
25. Franchi, E.,, C. Tosi,, G. Scolla,, G. Della Penna,, F. Rodriguez, and, P. M. Pedroni. 2004. Metabolically engineered Rhodobacter sphaeroides RV strains for improved biohydrogen photoproduction combined with disposal of food wastes. Marine Biotechnol. 6:552565.
26. Gest, H., and, M. D. Kamen. 1949. Photochemical production of molecular hydrogen by Rhodospirillum rubrum. Science 109:558559.
27. Gest, H. 1999. Memoir of a 1949 railway journey with photosynthetic bacteria. Photosynth. Res. 61:9196.
28. Gibson, J., and, C. S. Harwood. 2002. Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu. Rev. Micro-biol. 56:345369.
29. Gosse, J. L.,, B. J. Engel,, F. E. Rey,, C. S. Harwood,, L. E. Scriven, and, M. C. Flickinger. 2007. Hydrogen production by photoreactive nanoporous latex coatings of nongrowing Rhodopseudomonas palustris CGA009. Biotechnol. Prog. 23:124130.
30. Hageman, R. V., and, R. H. Burris. 1978. Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle. Proc. Natl. Acad. Sci. USA 75:26992702.
31. Hales, B. J.,, E. E. Case,, J. E. Morningstar,, M. F. Dzeda, and, L. A. Mauterer. 1986. Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii. Biochemistry 25:72517255.
32. Hartigan, N.,, H. A. Tharia,, F. Sweeney,, A. M. Lawless, and, M. Z. Papiz. 2002. The 7.5-Å electron density and spectroscopic properties of a novel low-light B800 LH2 from Rhodopseudomonas palustris. Biophys. J. 82:963977.
33. Harwood, C. S., and, J. Gibson. 1988. Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris. Appl. Environ. Microbiol. 54:712717.
34. Henderson, R. A. 2002. Advances towards the mechanism of nitrogenase, p. 223261. In G. J. Leigh (ed.), Nitrogen Fixation at the Millennium. Elsevier, Amsterdam, The Netherlands.
35. Hillmer, P., and, H. Gest. 1977a. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. J. Bacteriol. 129:732739.
36. Hillmer, P., and, H. Gest. 1977b. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J. Bacteriol. 129:724731.
37. Hoekema, S.,, M. Bijmans,, M. Janssen,, J. Tramper, and, R. H. Wijffels. 2002. A pneumatically agitated flat-panel photobioreactor with gas re-circulation: anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium. Int. J. Hydrogen Energy 27:13311338.
38. Hoekema, S.,, R. D. Douma,, M. Janssen,, J. Tramper, and, R. H. Wijffels. 2006. Controlling light-use by Rhodobacter capsulatus continuous cultures in a flat-panel photobioreactor. Biotechnol. Bioeng. 95:613626.
39. Howard, J. B., and, D. C. Rees. 1994. Nitrogenase: a nucleotide-dependent molecular switch. Annu. Rev. Biochem. 63:235264.
40. Hunter, C. N.,, J. D. Tucker, and, R. A. Niederman. 2005. The assembly and organisation of photosynthetic membranes in Rhodobacter sphaeroides. Photochem. Photobiol. Sci. 4:10231027.
41. Hustede, E.,, A. Steinbuchel, and, H. G. Schlegel. 1993. Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulfur purple bacteria. Appl. Microbiol. Biotechnol. 39:8793.
42. Igarashi, R. Y., and, L. C. Seefeldt. 2003. Nitrogen fixation: the mechanism of the Mo-dependent nitrogenase. Crit. Rev. Biochem. Mol. Biol. 38:351384.
43. Igarashi, R. Y.,, M. Laryukhin,, P. C. Dos Santos,, H. I. Lee,, D. R. Dean,, L. C. Seefeldt, and, B. M. Hoffman. 2005. Trapping H-bound to the nitrogenase FeMo-cofactor active site during H2 evolution: characterization by ENDOR spectroscopy. J. Am. Chem. Soc. 127:62316241.
44. Jeong, H. S., and, Y. Jouanneau. 2000. Enhanced nitrogenase activity in strains of Rhodobacter capsulatus that overexpress the rnf genes. J. Bacteriol. 182:12081214.
45. Jiao, Y., and, D. K. Newman. 2007. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 189:17651773.
46. Joshi, H. M., and, F. R. Tabita. 1996. A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Proc. Natl. Acad. Sci. USA 93:1451514520.
47. Kaman, M. D., and, H. Gest. 1949. Evidence for a nitrogenase system in the photosynthetic bacterium Rhodospirillum rubrum. Science 109:560.
48. Kern, M.,, W. Klipp, and, J. H. Klemme. 1994. Increased nitrogenase-dependent H2 photoproduction by hup mutants of Rhodospirillum rubrum. Appl. Environ. Microbiol. 60:17681774.
49. Kobayashi, M., and, M. Kobayashi. 1995. Waste remediation and treatment using anoxygenic phototrophic bacteria, p. 12691282. In R. E. Blankenship,, M. T. Madigan, and, C. E. Bauer (ed.), Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
50. Kondo, T.,, T. Wakayama, and, J. Miyake. 2006. Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment. Int. J. Hydrogen Energy 31:15221526.
51. Kutsche, M.,, S. Leimkuhler,, S. Angermuller, and, W. Klipp. 1996. Promoters controlling expression of the alternative nitrogenase and the molybdenum uptake system in Rhodobacter capsulatus are activated by NtrC, independent of sigma54, and repressed by molybdenum. J. Bacteriol. 178:20102017.
52. Larimer, F. W.,, P. Chain,, L. Hauser,, J. Lamerdin,, S. Malfatti,, L. Do,, M. L. Land,, D. A. Pelletier,, J. T. Beatty,, A. S. Lang,, F. R. Tabita,, J. L. Gibson,, T. E. Hanson,, C. Bobst,, J. L. Torres,, C. Peres,, F. H. Harrison,, J. Gibson, and, C. S. Harwood. 2004. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat. Biotechnol. 22:5561.
53. Lehman, L. J., and, G. P. Roberts. 1991. Identification of an alternative nitrogenase system in Rhodospirillum rubrum. J. Bacteriol. 173:57055711.
54. Lindstrom, E. S.,, R. H. Burris, and, P. W. Wilson. 1949. Nitrogen fixation by photosynthetic bacteria. J. Bacteriol. 58:313316.
55. Ludden, P. W., and, G. P. Roberts. 1995. The biochemistry and genetics of nitrogen fixation by photosynthetic bacteria, p. 929947. In R. E. Blankenship,, M. T. Madigan, and, C. E. Bauer (ed.), Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
56. Mackenzie, C.,, J. M. Eraso,, M. Choudhary,, J. H. Roh,, X. Zeng,, P. Bruscella,, A. Puskas, and, S. Kaplan. 18. June 2006. Postgenomic adventures with Rhodobacter sphaeroides. Annu. Rev. Microbiol. 61:283307.
57. Madigan, M.,, S. S. Cox, and, R. A. Stegeman. 1984. Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. J. Bacteriol. 157:7378.
58. Madigan, M. T. 1995. Microbiology of nitrogen fixation by anoxygenic photosynthetic bacteria, p. 915928. In R. E. Blankenship,, M. T. Madigan, and, C. E. Bauer (ed.), Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
59. Madigan, M. T., and, J. F. Imhoff. 2007. International Committee on Systematics of Prokaryotes; Subcommittee on the Taxonomy of Phototrophic Bacteria: minutes of the meetings, 29 August 2006, Pau, France. Int. J. Syst. Evol. Microbiol. 57:11691171.
60. Masepohl, B.,, T. Drepper,, A. Paschen,, S. Gross,, A. Pawlowski,, K. Raabe,, K. U. Riedel, and, W. Klipp. 2002a. Regulation of nitrogen fixation in the phototrophic purple bacterium Rhodobacter capsulatus. J. Mol. Microbiol. Biotechnol. 4:243248.
61. Masepohl, B.,, K. Schneider,, T. Drepper,, A. Müller, and, W. Klipp. 2002b. Alternative nitrogenases, p. 191222. In G. J. Leigh (ed.), Nitrogen Fixation at the Millennium. Elsevier, Amsterdam, The Netherlands.
62. Melis, A., and, M. R. Melnicki. 2006. Integrated biological hydrogen production. Int. J. Hydrogen Energy 31:15631573.
63. Merrick, M. J. 2004. Regulation of nitrogen fixation in free-living diazotrophs, p. 197223. In W. Klipp,, B. Mesepohl,, J. R. Gallon, and, W. E. Newton (ed.), Genetics and Regulation of Nitrogen Fixation in Free-Living Bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
64. Oda, Y.,, S. K. Samanta,, F. E. Rey,, L. Wu,, X. Liu,, T. Yan,, J. Zhou, and, C. S. Harwood. 2005. Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris. J. Bacteriol. 187:77847794.
65. Okubo, Y.,, H. Futamata, and, A. Hiraishi. 2006. Characterization of phototrophic purple nonsulfur bacteria forming colored microbial mats in a swine wastewater ditch. Appl. Environ. Microbiol. 72:62256233.
66. Ormerod, J. G., and, H. Gest. 1962. Symposium on metabolism of inorganic compounds. IV. Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria. Bacteriol. Rev. 26:5166.
67. Ozturk, Y.,, M. Yucel,, F. Daldal,, S. Mandaci,, U. Gunduz,, L. Turker, and, I. Eroglu. 2006. Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains. Int. J. Hydrogen Energy 31:15451552.
68. Prince, R. C., and, H. S. Kheshgi. 2005. The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit. Rev. Microbiol. 31:1931.
69. Rey, F. E.,, Y. Oda, and, C. S. Harwood. 2006. Regulation of uptake hydrogenase and effects of hydrogen utilization on gene expression in Rhodopseudomonas palustris. J. Bacteriol. 188:61436152.
70. Rey, F. E.,, E. K. Heiniger, and, C. S. Harwood. 2007. Redirection of metabolism for biological hydrogen production. Appl. Environ. Microbiol. 73:16651671.
71. Richter, M. F.,, J. Baier,, T. Prem,, S. Oellerich,, F. Francia,, G. Venturoli,, D. Oesterhelt,, J. Southall,, R. J. Cogdell, and, J. Kohler. 2007. Symmetry matters for the electronic structure of core complexes from Rhodopseudomonas palustris and Rhodobacter sphaeroides PufX. Proc. Natl. Acad. Sci. USA 104:66616665.
72. Roh, J. H.,, W. E. Smith, and, S. Kaplan. 2004. Effects of oxygen and light intensity on transcriptome expression in Rhodobacter sphaeroides 2.4.1. Redox active gene expression profile. J. Biol. Chem. 279:91469155.
73. Roszak, A. W.,, T. D. Howard,, J. Southall,, A. T. Gardiner,, C. J. Law,, N. W. Isaacs, and, R. J. Cogdell. 2003. Crystal structure of the RCLH1 core complex from Rhodopseudomonas palustris. Science 302:19691972.
74. Rubio, L. M., and, P. W. Ludden. 2005. Maturation of nitrogenase: a biochemical puzzle. J. Bacteriol. 187:405414.
75. Rupprecht, J.,, B. Hankamer,, J. H. Mussgnug,, G. Ananyev,, C. Dismukes, and, O. Kruse. 2006. Perspectives and advances of biological H2 production in microorganisms. Appl. Microbiol. Biotechnol. 72:442449.
76. Scheuring, S., and, J. N. Sturgis. 2005. Chromatic adaptation of photosynthetic membranes. Science 309:484487.
77. Scheuring, S.,, R. P. Goncalves,, V. Prima, and, J. N. Sturgis. 2006. The photosynthetic apparatus of Rhodopseudomonas palustris: structures and organization. J. Mol. Biol. 358:8396.
78. Schneider, K.,, U. Gollan,, S. Selsemeier-Voigt,, W. Plass, and, A. Muller. 1994. Rapid purification of the protein components of a highly active “iron only” nitrogenase. Naturwissenschaften 81:405408.
79. Schneider, K.,, U. Gollan,, M. Drottboom,, S. Selsemeier-Voigt, and, A. Muller. 1997. Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus. Eur. J. Biochem. 244:789800.
80. Shi, X. Y., and, H. Q. Yu. 2006. Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata. Int. J. Hydrogen Energy 31:16411647.
81. Simpson, F. B., and, R. H. Burris. 1984. A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science 224:10951097.
82. Suriyamongkol, P.,, R. Weselake,, S. Narine,, M. Moloney, and, S. Shah. 2007. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol. Adv. 25:148175.
83. Tavano, C. L., and, T. J. Donohue. 2006. Development of the bacterial photosynthetic apparatus. Curr. Opin. Microbiol. 9:625631.
84. Tsygankov, A. A.,, A. S. Fedorov,, T. V. Laurinavichene,, I. N. Gogotov,, K. K. Rao, and, D. O. Hall. 1998. Actual and potential rates of hydrogen photoproduction by continuous culture of the purple non-sulphur bacterium Rhodobacter capsulatus. Appl. Microbiol. Biotechnol. 49:102107.
85. Turner, J. A. 2004. Sustainable hydrogen production. Science 305:972974.
86. VerBerkmoes, N. C.,, M. B. Shah,, P. K. Lankford,, D. A. Pelletier,, M. B. Strader,, D. L. Tabb,, W. H. McDonald,, J. W. Barton,, G. B. Hurst,, L. Hauser,, B. H. Davison,, J. T. Beatty,, C. S. Harwood,, F. R. Tabita,, R. L. Hettich, and, F. W. Larimer. 2006. Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris under its major metabolic states. J. Proteome Res. 5:287298.
87. Vignais, P. M., and, B. Toussaint. 1994. Molecular biology of membrane-bound H2 uptake hydrogenases. Arch. Microbiol. 161:110.
88. Vignais, P. M.,, B. Billoud, and, J. Meyer. 2001. Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25:455501.
89. Vignais, P. M.,, J. P. Magnin, and, J. C. Willison. 2006. Increasing bio-hydrogen production by metabolic engineering. Int. J. Hydrogen Energy 31:14781483.
90. Vincenzini, M.,, A. Marchini,, A. Ena, and, R. D. Philippis. 1997. H2 and poly-[H9252]-hydroxybutyrate, two alternative chemicals from purple non sulfur bacteria. Biotechnol. Lett. 19:759762.
91. Yoch, D. C. 1978. Nitrogen fixation and hydrogen metabolism by photosynthetic bacteria, p. 657676. In R. C. Clayton and, W. R. Sistrom (ed.), The Photosynthetic Bacteria. Plenum Press, New York, NY.
92. Zhang, Y.,, A. D. Cummings,, R. H. Burris,, P. W. Ludden, and, G. P. Roberts. 1995. Effect of an ntrBC mutation on the posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum. J. Bacteriol. 177:53225326.
93. Zhang, Y.,, E. L. Pohlmann,, P. W. Ludden, and, G. P. Roberts. 2001. Functional characterization of three GlnB homologs in the photo-synthetic bacterium Rhodospirillum rubrum: roles in sensing ammonium and energy status. J. Bacteriol. 183:61596168.
94. Zhang, Y.,, E. L. Pohlmann, and, G. P. Roberts. 2004. Identification of critical residues in GlnB for its activation of NifA activity in the photosynthetic bacterium Rhodospirillum rubrum. Proc. Natl. Acad. Sci. USA 101:27822787.
95. Zhang, Y.,, E. L. Pohlmann, and, G. P. Roberts. 2005. GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photo-synthetic, nitrogen-fixing bacterium Rhodospirillum rubrum. J. Bacteriol. 187:12541265.
96. Zhang, Y.,, E. L. Pohlmann,, M. C. Conrad, and, G. P. Roberts. 2006a. The poor growth of Rhodospirillum rubrum mutants lacking PII proteins is due to an excess of glutamine synthetase activity. Mol. Microbiol. 61:497510.
97. Zhang, Y.,, D. M. Wolfe,, E. L. Pohlmann,, M. C. Conrad, and, G. P. Roberts. 2006b. Effect of AmtB homologues on the post-translational regulation of nitrogenase activity in response to ammonium and energy signals in Rhodospirillum rubrum. Microbiology 152:20752089.
98. Zuber, H., and, R. J. Cogdell. 1995. Structure and organization of purple bacteria antenna complexes, p. 315348. In R. E. Blankenship,, M. T. Madigan, and, C. E. Bauer (ed.), Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error