1887

Chapter 22 : Photosynthetic Water-Splitting for Hydrogen Production

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Photosynthetic Water-Splitting for Hydrogen Production, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap22-2.gif

Abstract:

This chapter emphasizes photobiological, H producing organisms and processes that are able to link photosynthetic water oxidation (reductant-generation) directly to [FeFe]-hydrogenase-catalyzed H production function. The biological catalysts involved in H metabolism are either nitrogenases or hydrogenases. Interestingly, the [NiFe], [FeFe], and FeS-cluster free types of hydrogenases are almost completely segregated within specific groups of organisms, suggesting convergent evolution. Two distinct H photoproduction pathways have been described in green algae, and there is evidence for a third, light-independent, fermentative H pathway coupled to starch degradation. A section summarizes the genetics, expression, maturation, structure, and modeling aspects of [FeFe]-hydrogenases, which catalyze H production in green algae. The hydrogenase structural genes that have been cloned and sequenced from species of , , and are homologues of the [FeFe]-hydrogenases from bacterial organisms. A majority of the [FeFe]-hydrogenase genes and proteins so far isolated exhibit complex structures that are organized into modular domains. Experimental investigations on the molecular engineering of O accessibility in [FeFe]-hydrogenase are currently under way. A better understanding of anaerobic metabolism in and metabolic fluxes associated with diurnal periods of light and dark will facilitate the development of physiological models able to predict metabolic fluxes under various environmental conditions. Photosynthesis and H production in unicellular green algae can in principle operate with a nearly 100% absorbed photon utilization efficiency. The rate of electron transport in the thylakoid membrane of photosynthesis is of importance for defining yield and efficiency of the overall process.

Citation: Seibert M, King P, Posewitz M, Melis A, Ghirardi M. 2008. Photosynthetic Water-Splitting for Hydrogen Production, p 273-291. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch22

Key Concept Ranking

Green Algae
0.4232089
Time of Flight Mass Spectrometry
0.41456988
Gene Expression and Regulation
0.41370577
Transcription Start Site
0.4008799
0.4232089
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Approximate areas of the country required to displace all gasoline used in the United States using different technologies: algal H produced from water at a future 10% solar efficiency (1), corn grain ethanol at current production yields (2), and cellulosic ethanol from switchgrass at an estimated optimal yield (3). For comparison, box 4 represents the total area of the 2006 corn crop.

Citation: Seibert M, King P, Posewitz M, Melis A, Ghirardi M. 2008. Photosynthetic Water-Splitting for Hydrogen Production, p 273-291. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Seibert M, King P, Posewitz M, Melis A, Ghirardi M. 2008. Photosynthetic Water-Splitting for Hydrogen Production, p 273-291. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Enzymes that depend on electron transfer from reduced Fd in . The broad arrow from Fd to FNR represents the preferential flux of electrons under normal physiological conditions. Electrons are transported to Fd directly from PSI. This figure was provided by A. Dubini.

Citation: Seibert M, King P, Posewitz M, Melis A, Ghirardi M. 2008. Photosynthetic Water-Splitting for Hydrogen Production, p 273-291. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch22
1. Adams, M. W. 1990. The structure and mechanism of iron-hydrogenases. Biochim. Biophys. Acta 1020:115145.
2. Adams, M. W. W.,, L. E. Mortenson, and, J. S. Chen. 1980. Hydrogenase. Biochim. Biophys. Acta 594:105176.
3. Albracht, S. P. 1994. Nickel hydrogenases: in search of the active site. Biochim. Biophys. Acta 1188:167204.
4. Albracht, S. P.,, W. Roseboom, and, E. C. Hatchikian. 2006. The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuri-cans. I. Light sensitivity and magnetic hyperfine interactions as observed by electron paramagnetic resonance. J. Biol. Inorg. Chem. 11:88101.
5. Antal, T. K.,, T. E. Krendeleva,, T. V. Laurinavichene,, V. V. Makarova,, A. A. Tsygankov,, M. Seibert, and, A. B. Rubin. 2001. The relationship between the photosystem 2 activity and hydrogen production in sulfur deprived Chlamydomonas reinhardtii cells. Dokl. Biochem. Biophys. 381:371374.
6. Antal, T. K.,, T. E. Krendeleva,, T. V. Laurinavichene,, V. V. Makarova,, M. L. Ghirardi,, A. B. Rubin,, A. A. Tsygankov, and, M. Seibert. 2003. The dependence of algal H2 production on Photo-system II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim. Biophys. Acta 1607:153160.
7. Aparicio, P. J.,, M. P. Azuara,, A. Ballesteros, and, V. M. Fernandez. 1985. Effects of light-intensity and oxidized nitrogen-sources on hydrogen-production by Chlamydomonas reinhardtii. Plant Physiol. 78:803806.
8. Appel, J., and, R. Schulz. 1998. Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? J. Photochem. Photobiol. B 47:111.
9. Atta, M.,, M. E. Lafferty,, M. K. Johnson,, J. Gaillard, and, J. Meyer. 1998. Heterologous biosynthesis and characterization of the [2Fe-2S]-containing N-terminal domain of Clostridium pasteurianum hydrogenase. Biochemistry 37:1597415980.
10. Atteia, A.,, R. van Lis,, G. Gelius-Dietrich,, A. Adrait,, J. Garin,, J. Joyard,, N. Rolland, and, W. Martin. 2006. Pyruvate formatelyase and a novel route of eukaryotic ATP synthesis in Chlamydomonas mitochondria. J. Biol. Chem. 281:99099918.
11. Bagley, K. A.,, C. J. Van Garderen,, M. Chen,, E. C. Duin,, S. P. Albracht, and, W. H. Woodruff. 1994. Infrared studies on the interaction of carbon monoxide with divalent nickel in hydrogenase from Chromatium vinosum. Biochemistry 33:92299236.
12. Bagley, K. A.,, E. C. Duin,, W. Roseboom,, S. P. Albracht, and, W. H. Woodruff. 1995. Infrared-detectable groups sense changes in charge density on the nickel center in hydrogenase from Chromatium vinosum. Biochemistry 34:55275535.
13. Bennett, B.,, B. J. Lemon, and, J. W. Peters. 2000. Reversible carbon monoxide binding and inhibition at the active site of the Fe-only hydrogenase. Biochemistry 39:74557460.
14. Bhosale, S. H.,, A. Pant, and, M. I. Khan. 22. February 2007. Purification and characterization of putative alkaline [Ni-Fe] hydrogenase from unicellular marine green alga, Tetraselmis kochinensis NCIM 1605. Microbiol. Res. [Epub ahead of print.]
15. Blake, D. M.,, W. Amos,, M. G. Ghirardi, and, M. Seibert. 2007. Materials requirements for photobiological hydrogen production. In R. Jones and, G. Thomas (ed.), Materials for the Hydrogen Economy, in press. CRC Press, Boca Raton, FL.
16. Blankenship, R. E. 2002. Molecular Mechanisms of Photosynthesis. Blackwell Science, London, United Kingdom.
17. Bock, A.,, P. W. King,, M. Blokesch, and, M. C. Posewitz. 2006. Maturation of hydrogenases. Adv. Microb. Physiol. 51:171.
18. Boichenko, V. A., and, P. Hoffman. 1994. Photosynthetic hydrogen production in prokaryotes and eukaryotes: occurrence, mechanism, and functions. Photosynthetica 30:527552.
19. Boichenko, V. A.,, E. Greenbaum, and, M. Seibert. 2004. Hydrogen production by photosynthetic microorganisms, p. 397452. In M. D. Archer and, J. Barber (ed.), Photoconversion of Solar Energy: Molecular to Global Photosynthesis, vol. 2. Imperial College Press, London, United Kingdom.
20. Bölling, C., and, O. Fiehn. 2005. Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol. 139:19952005.
21. Brand, J. J.,, J. Wright, and, S. Lien. 1989. Hydrogen production by eukaryotic algae. Biotechnol. Bioeng. 33:14821488.
22. Brazzolotto, X.,, J. K. Rubach,, J. Gaillard,, S. Gambarelli,, M. Atta, and, M. Fontecave. 2006. The [Fe-Fe]-hydrogenase maturation protein HydF from Thermotoga maritima is a GTPase with an iron-sulfur cluster. J. Biol. Chem. 281:769774.
23. Brown, L. M., and, K. G. Zeiler. 1993. Aquatic biomass and carbondioxide trapping. Energy Conversion Manage. 34:10051013.
24. Bui, E. T., and, P. J. Johnson. 1996. Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis. Mol. Biochem. Parasitol. 76:305310.
25. Chang, C.,, D. Alber,, P. Graf,, K. Kim, and, M. Seibert. 2007. Addressing unknown constants and metabolic network behaviors through petascale computing: understanding H2 production in green algae. J. Phys. Conf. Ser. 38:012011.
26. Cheek, J., and, J. B. Broderick. 2001. Adenosylmethionine-dependent iron-sulfur enzymes: versatile clusters in a radical new role. J. Biol. Inorg. Chem. 6:209226.
27. Chen, H. C.,, K. Yokthongwattana,, A. J. Newton, and, A. Melis. 2003. SulP, a nuclear gene encoding a putative chloroplast-targeted sulfate permease in Chlamydomonas reinhardtii. Planta 218:98106.
28. Chen, H. C.,, A. J. Newton, and, A. Melis. 2005. Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii. Photosynth. Res. 84:289296.
29. Cicchillo, R. M., and, S. J. Booker. 2005. Mechanistic investigations of lipoic acid biosynthesis in Escherichia coli: both sulfur atoms in lipoic acid are contributed by the same lipoyl synthase polypeptide. J. Am. Chem. Soc. 127:28602861.
30. Cohen, J.,, K. Kim,, P. King,, M. Seibert, and, K. Schulten. 2005a. Finding gas diffusion pathways in proteins: application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects. Structure 13:13211329.
31. Cohen, J.,, K. Kim,, M. Posewitz,, M. L. Ghirardi,, K. Schulten,, M. Seibert, and, P. King. 2005b. Molecular dynamics and experimental investigation of H(2) and O(2) diffusion in [Fe]-hydrogenase. Biochem. Soc. Trans. 33:8082.
32. Cournac, L.,, K. Redding,, J. Ravenel,, D. Rumeau,, E. M. Josse,, M. Kuntz, and, G. Peltier. 2000. Electron flow between photosystem II and oxygen in chloroplasts of photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. J. Biol. Chem. 275:1725617262.
33. Cournac, L.,, F. Mus,, L. Bernard,, G. Gudeney,, P. Vignais, and, G. Peltier. 2002. Limiting steps of hydrogen production in Chlamydomonas reinhardtii and Synechocystis PCC 6803 as analysed by light-induced gas exchange transients. Int. J. Hydrogen Energy 27:12291237.
34. Curatti, L.,, P. W. Ludden, and, L. M. Rubio. 2006. NifB-dependent in vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Proc. Natl. Acad. Sci. USA 103:52975301.
35. de Vitry, C.,, Y. X. Ouyang,, G. Finazzi,, F. A. Wollman, and, T. Kallas. 2004. The chloroplast Rieske iron-sulfur protein—at the crossroad of electron transport and signal transduction. J. Biol. Chem. 279:4462144627.
36. Erbes, D. L.,, D. King, and, M. Gibbs. 1979. Inactivation of hydrogenase in cell-free extracts and whole cells of Chlamydomonas rein-hardtii by oxygen. Plant Physiol. 63:11381142.
37. Evans, D. J., and, C. J. Pickett. 2003. Chemistry and the hydrogenases. Chem. Soc. Rev. 32:268275.
38. Fan, H. J., and, M. B. Hall. 2001. A capable bridging ligand for Fe-only hydrogenase: density functional calculations of a low-energy route for heterolytic cleavage and formation of dihydrogen. J. Am. Chem. Soc. 123:38283829.
39. Fauque, G.,, H. D. Peck, Jr.,, J. J. Moura,, B. H. Huynh,, Y. Berlier,, D. V. DerVartanian,, M. Teixeira,, A. E. Przybyla,, P. A. Lespinat,, I. Moura, et al. 1988. The three classes of hydrogenases from sul-fate-reducing bacteria of the genus Desulfovibrio. FEMS Micro-biol. Rev. 4:299344.
40. Fedorov, A. S.,, S. Kosourov,, M. L. Ghirardi, and, M. Seibert. 2005. Continuous hydrogen photoproduction by Chlamydomonas rein-hardtii. Appl. Biochem. Biotechnol. 121:403412.
41. Filipiak, M.,, W. R. Hagen, and, C. Veeger. 1989. Hydrodynamic, structural and magnetic properties of Megasphaera elsdenii Fe hydrogenase reinvestigated. Eur. J. Biochem. 185:547553.
42. Florin, L.,, A. Tsokoglou, and, T. Happe. 2001. A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J. Biol. Chem. 276:61256132.
43. Fontecave, M. 2006. Iron-sulfur clusters: ever-expanding roles. Nat. Chem. Biol. 2:171174.
44. Forestier, M.,, P. King,, L. Zhang,, M. Posewitz,, S. Schwarzer,, T. Happe,, M. L. Ghirardi, and, M. Seibert. 2003. Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur. J. Biochem. 270:27502758.
45. Forzi, L., and, R. Sawers. 2007. Maturation of [NiFe}-hydrogenases in Escherichia coli. BioMetals 20:565578.
46. Fouchard, S.,, A. Hemschemeier,, A. Caruana,, K. Pruvost,, J. Legrand,, T. Happe,, G. Peltier, and, L. Cournac. 2005. Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl. Environ. Microbiol. 71:61996205.
47. Frey, M. 2002. Hydrogenases: hydrogen-activating enzymes. Chembiochem 3:153160.
48. Frey, P. A., and, O. T. Magnusson. 2003. S-Adenosylmethionine: a wolf in sheep’s clothing, or a rich man’s adenosylcobalamin? Chem. Rev. 103:21292148.
49. Gaffron, H. 1939. Reduction of CO2 with H2 in green plants. Nature 143:204205.
50. Gaffron, H., and, J. Rubin. 1942. Fermentative and photochemical production of hydrogen in algae. J. Gen. Physiol. 26:219240.
51. Gfeller, R. P., and, M. Gibbs. 1984. Fermentative metabolism of Chlamydomonas reinhardtii. 1. Analysis of fermentative products from starch in dark and light. Plant Physiol. 75:212218.
52. Ghirardi, M. L.,, R. K. Togasaki, and, M. Seibert. 1997. Oxygen sensitivity of algal H-2-production. Appl. Biochem. Biotechnol. 63:141151.
53. Ghirardi, M. L.,, L. Zhang,, J. W. Lee,, T. Flynn,, M. Seibert,, E. Green-baum, and, A. Melis. 2000. Microalgae: a green source of renewable H(2). Trends Biotechnol. 18:506511.
54. Ghirardi, M. L., and, W. Amos. 2004. Renewable hydrogen from green algae. BioCycle 45:5962.
55. Ghirardi, M. L.,, P. King,, S. Kosourv,, M. Forestier,, L. Zhang, and, M. Seibert. 2005. Development of algal systems for hydrogen photoproduction—addressing the hydrogenase oxygen-sensitivity problem, p. 213. In C. Collings (ed.), Artificial Photosynthesis. Wiley-VCH Verlag, Weinheim, Germany.
56. Ghirardi, M. L. 2006. Hydrogen production by photosynthetic green algae. Indian J. Biochem. Biophys. 43:201210.
57. Ghirardi, M. L.,, M. C. Posewitz,, P.-C. Maness,, A. Dubini,, J. Yu, and, M. Seibert. 2007. Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu. Rev. Plant Biol. 58:7191.
58. Gorwa, M. F.,, C. Croux, and, P. Soucaille. 1996. Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824. J. Bacteriol. 178:26682675.
59. Gray, C. T., and, H. Gest. 1965. Biological formation of molecular hydrogen. Science 148:186192.
60. Greenbaum, E. 1982. Photosynthetic hydrogen and oxygen production—kinetic-studies. Science 215:291293.
61. Greenbaum, E.,, R. R. L. Guillard, and, W. G. Sunda. 1983. Hydrogen and oxygen photoproduction by marine-algae. Photochem. Photo-biol. 37:649655.
62. Greenbaum, E. 1988. Energetic efficiency of hydrogen photoevolution by algal water splitting. Biophys. J. 54:365368.
63. Greenbaum, E.,, C. V. Tevault, and, C. Y. Ma. 1995. New photosynthesis—direct photoconversion of biomass to molecular-oxygen and volatile hydrocarbons. Energy Fuels 9:163167.
64. Grossman, A. R.,, M. Croft,, V. N. Gladyshev,, S. S. Merchant,, M. C. Posewitz,, S. Prochnik, and, M. H. Spalding. 2007. Novel metabolism in Chlamydomonas through the lens of genomics. Curr. Opin. Plant Biol. 10:190198.
65. Guan, Y.,, M. Deng,, X. Yu, and, W. Zhang. 2004. Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem. Eng. J. 19:6973.
66. Gumpel, N. J., and, S. Purton. 1994. Playing tag with Chlamydomonas. Trends Cell. Biol. 4:299301.
67. Happe, T., and, J. D. Naber. 1993. Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur. J. Biochem. 214:475481.
68. Happe, T.,, B. Mosler, and, J. D. Naber. 1994. Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur. J. Biochem. 222:769774.
69. Happe, T.,, A. Hemschemeier,, M. Winkler, and, A. Kaminski. 2002. Hydrogenases in green algae: do they save the algae’s life and solve our energy problems? Trends Plant Sci. 7:246250.
70. Happe, T., and, A. Kaminski. 2002. Differential regulation of the Fehydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur. J. Biochem. 269:10221032.
71. Hartmann, G. C.,, A. R. Klein,, M. Linder, and, R. K. Thauer. 1996. Purification, properties and primary structure of H2-forming N5, N10-methylenetetrahydromethanopterin dehydrogenase from Methanococcus thermolithotrophicus. Arch. Microbiol. 165:187193.
72. Healey, F. P. 1970. The mechanism of hydrogen evolution by Chlamydomonas moewusii. Plant Physiol. 45:153159.
73. Hemschemeier, A., and, T. Happe. 2005. The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii. Biochem. Soc. Trans. 33:3941.
74. Hieta, R., and, J. Myllyharju. 2002. Cloning and characterization of a low molecular weight prolyl 4-hydroxylase from Arabidopsis thaliana. J. Biol. Chem. 277:2396523971.
75. Homann, P. 2003. Hydrogen metabolism of green algae, discovery and early research—a tribute to Hans Gaffron and his coworkers. Photosynth. Res. 76:93103.
76. Horner, D. S.,, B. Heil,, T. Happe, and, T. M. Embley. 2002. Iron hydrogenases—ancient enzymes in modern eukaryotes. Trends Biochem. Sci. 27:148153.
77. Horner, J. K., and, M. A. Wolinsky. 2002. A power-law sensitivity analysis of the hydrogen-producing metabolic pathway in Chlamydomonas reinhardtii. Int. J. Hydrogen Energy 27:12511255.
78. Houchins, J. P., and, G. Hind. 1984. Concentration and function of membrane-bound cytochromes in cyanobacterial heterocysts. Plant Physiol. 76:456460.
79. Jackson, D. D., and, J. W. Ellms. 1896. On odors and tastes of surface waters with special reference to Anabaena, a microscopical organism found in certain water supplies of Massachusetts. Rep. Mass. State Board of Health 1897:410420.
80. Jarrett, J. 2005a. Biotin synthase: enzyme or reactant? Chem. Biol. 12:409410.
81. Jarrett, J. T. 2005b. The novel structure and chemistry of iron-sulfur clusters in the adenosylmethionine-dependent radical enzyme biotin synthase. Arch. Biochem. Biophys. 433:312321.
82. Johnson, J. 2006. Untold effects of energy farming. Chem. Eng. News 84:5762.
83. Kaska, D. D.,, V. Gunzler,, K. I. Kivirikko, and, R. Myllyla. 1987. Characterization of a low-relative-molecular-mass prolyl 4-hydroxylase from the green-alga Chlamydomonas-reinhardtii. Biochem. J. 241:483490.
84. Kennedy, R. A.,, M. E. Rumpho, and, T. C. Fox. 1992. Anaerobic metabolism in plants. Plant Physiol. 100:16.
85. Kindle, K. L. 1990. High-frequency nuclear transformation of Chlamydomonas-reinhardtii. Proc. Natl. Acad. Sci. USA 87:12281232.
86. King, P. W.,, M. C. Posewitz,, M. L. Ghirardi, and, M. Seibert. 2006a. Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J. Bacteriol. 188:21632172.
87. King, P. W.,, D. Svedruzic,, J. Cohen,, K. Schulten,, M. Seibert, and, M. L. Ghirardi. 2006b. Structural and functional investigations of biological catalysts for optimization of solar-driven H2 production systems Proc. Soc. Photo Opt. Instrum. Eng. 6340:63400Y.
88. Knaff, D. B. 1996. Ferredoxin and ferredoxin-dependent enzymes, p. 333361. In D. R. Ort and, C. F. Yocum (ed.), Advances in Photosynthesis, vol. 4. Oxygenic Photosynthesis: The Light Reactions. Kluwer Academic Publishers, Dordrecht, The Netherlands.
89. Kok, B. 1953. Experiments on photosynthesis by Chlorella in flashing light, p. 6375. In J. S. Burlew (ed.), Algal Culture: from Laboratory to Pilot Plant. Carnegie Institute of Washington, Washington, DC.
90. Kosourov, S.,, A. Tsygankov,, M. Seibert, and, M. L. Ghirardi. 2002. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnol. Bioeng. 78:731740.
91. Kosourov, S.,, M. Seibert, and, M. L. Ghirardi. 2003. Effects of extra-cellular pH on the metabolic pathways in sulfur-deprived, H2- producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol. 44:146155.
92. Kosourov, S.,, V. Makarova,, A. S. Fedorov,, A. Tsygankov,, M. Seibert, and, M. L. Ghirardi. 2005. The effect of sulfur re-addition on H(2) photoproduction by sulfur-deprived green algae. Photosynth. Res. 85:295305.
93. Kosourov, S.,, E. Patrusheva,, M. L. Ghirardi,, M. Seibert, and, A. Tsygankov. 2007. A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions. J. Biotechnol. 128:776787.
94. Kreuzberg, K. 1984. Starch fermentation via formate producing pathway in Chlamydomonas reinhardtii, Chlorogonium elongatum and Chlorella fusca. Physiol. Plant. 61:8794.
95. Kruse, O.,, J. Rupprecht,, J. H. Mussgnugn,, G. C. Dismukes, and, B. Hankamer. 2005a. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem. Photobiol. Sci. 4:957969.
96. Kruse, O.,, J. Rupprecht,, K. P. Bader,, S. Thomas-Hall,, P. M. Schenk,, G. Finazzi, and, B. Hankamer. 2005b. Improved photobiological H2 production in engineered green algal cells. J. Biol. Chem. 280:3417034177.
97. Kummerle, R.,, M. Atta,, J. Scuiller,, J. Gaillard, and, J. Meyer. 1999. Structural similarities between the N-terminal domain of Clostridium pasteurianum hydrogenase and plant-type ferredoxins. Biochemistry 38:19381943.
98. Kurisu, G.,, D. Nishiyama,, M. Kusunoki,, S. Fujikawa,, M. Katoh,, G. T. Hanke,, T. Hase, and, K. Teshima. 2005. A structural basis of Equisetum arvense ferredoxin isoform II producing an alternative electron transfer with ferredoxin-NADP -reductase. J. Biol. Chem. 280:22752281.
99. Laurinavichene, T.,, I. Tolstygina, and, A. Tsygankov. 2004. The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. J. Biotechnol. 114:143151.
100. Laurinavichene, T. V.,, I. V. Tolstygina,, R. R. Galiulina,, M. L. Ghirardi,, M. Seibert, and, A. A. Tsygankov. 2002. Dilution methods to deprive Chlamydomonas reinhardtii cultures of sulfur for subsequent hydrogen photoproduction. Int. J. Hydrogen Energy 27:12451249.
101. Laurinavichene, T. V.,, A. S. Fedorov,, M. L. Ghirardi,, M. Seibert, and, A. A. Tsygankov. 2006. Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. Int. J. Hydrogen Energy 31:659667.
102. Laurinavichene, T. V.,, S. N. Kosourov,, M. L. Ghirardi,, M. Seibert, and, A. Tsyganov. 2008. Prolongation of H2 photoproduction by sulfur-limited Chlamydomonas reinhardtii cultures. J. Biotechnol. 17: Epub ahead of print.
103. Layer, G.,, D. W. Heinz,, D. Jahn, and, W. D. Schubert. 2004. Structure and function of radical SAM enzymes. Curr. Opin. Chem. Biol. 8:468476.
104. Leach, M. R., and, D. B. Zamble. 2007. Metallocenter assembly of the hydrogenase enzymes. Curr. Opin. Chem. Biol. 11:159165.
105. Lee, J. W., and, E. Greenbaum. 2003. A new oxygen sensitivity and its potential application in photosynthetic H2 production. Appl. Biochem. Biotechnol. 105–108:303313.
106. Levin, D.,, L. Pitt, and, M. Love. 2004. Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy 29:173185.
107. Ley, A. C., and, D. C. Mauzerall. 1982. Absolute absorption cross-sections for photosystem-II and the minimum quantum requirement for photosynthesis in Chlorella-vulgaris. Biochim. Biophys. Acta 680:95106.
108. Ludwig, M.,, R. Schulz-Friedrich, and, J. Appel. 2006. Occurrence of hydrogenases in cyanobacteria and anoxygenic photosynthetic bacteria: implications for the phylogenetic origin of cyanobacterial and algal hydrogenases. J. Mol. Evol. 63:758768.
109. Lyon, E. J.,, S. Shima,, G. Buurman,, S. Chowdhuri,, A. Batschauer,, K. Steinbach, and, R. K. Thauer. 2004. UV-A/blue-light inactivation of the ‘metal-free’ hydrogenase (Hmd) from methanogenic archaea. Eur. J. Biochem. 271:195204.
110. McGlynn, S.,, S. Ruebush,, A. Naumov,, L. Nagy,, A. Dubini,, P. King,, J. Broderick,, M. Posewitz, and, J. Peters. 2007. In vitro activation of [FeFe] hydrogenase: new insight into hydrogenase maturation. J. Biol. Inorg. Chem. 12:443447.
111. Melis, A.,, J. Neidhardt, and, J. R. Benemann. 1998. Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J. Appl. Phycol. 10:515525.
112. Melis, A.,, L. Zhang,, M. Forestier,, M. L. Ghirardi, and, M. Seibert. 2000. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122:127136.
113. Melis, A., and, T. Happe. 2001. Hydrogen production. Green algae as a source of energy. Plant Physiol. 127:740748.
114. Melis, A. 2002. Green alga hydrogen production: progress, challenges and prospects. Int. J. Hydrogen Energy 27:12171228.
115. Melis, A., and, T. Happe. 2004. Trails of green alga hydrogen research—from Hans Gaffron to new frontiers. Photosynth. Res. 80:401409.
116. Melis, A.,, M. Seibert, and, T. Happe. 2004. Genomics of green algal hydrogen research. Photosynth. Res. 82:277288.
117. Melis, A. 2005. Bioengineering of green algae to enhance photosyn-thesis and hydrogen production, p. 229240. In A. F. Collins and, C. Critchley (ed.), Artificial Photosynthesis: From Basic Biology to Industrial Application. Wiley-VCH Verlag, Weinheim, Germany.
118. Melis, A., and, H. C. Chen. 2005. Chloroplast sulfate transport in green algae—genes, proteins and effects. Photosynth. Res. 86:299307.
119. Meyer, J. 2007. [FeFe] hydrogenases and their evolution: a genomic perspective. Cell. Mol. Life Sci. 64:10631084.
120. Mulloney, J. A. 1993. Mitigation of carbon-dioxide releases from power production via sustainable agri-power—the synergistic combination of controlled environmental agriculture (large commercial greenhouses) and disbursed fuel-cell power-plants. Energy Conversion Manage. 34:913920.
121. Mus, F.,, L. Cournac,, V. Cardettini,, A. Caruana, and, G. Peltier. 2005. Inhibitor studies on non-photochemical plastoquinone reduction and H(2) photoproduction in Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1708:322332.
122. Mus, F.,, A. Dubini,, M. Seibert,, M. C. Posewitz, and, A. R. Grossman. Anaerobic. acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J. Biol. Chem. 282:2547525486.
123. Myers, J. 1957. Algal culture, p. 649668. In R. E. Kirk and, D. E. Othmer (ed.), Encyclopedia of Chemical Technology. Interscience, New York, NY.
124. Nagy, L. E.,, J. E. Meuser,, S. Plummer,, M. Seibert,, M. L. Ghirardi,, P. W. King,, D. Ahmann, and, M. C. Posewitz. 2007. Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries. Biotechnol. Lett. 29:421430.
125. Nakicenovic, N. 1993. Carbon-dioxide mitigation measures and options. Environ. Sci. Technol. 27:19861989.
126. Nicolet, Y.,, C. Piras,, P. Legrand,, C. E. Hatchikian, and, J. C. Fontecilla-Camps. 1999. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7:1323.
127. Nicolet, Y.,, B. J. Lemon,, J. C. Fontecilla-Camps, and, J. W. Peters. 2000. A novel FeS cluster in Fe-only hydrogenases. Trends Biochem. Sci. 25:138143.
128. Nicolet, Y.,, A. L. de Lacey,, X. Vernede,, V. M. Fernandez,, E. C. Hatchikian, and, J. C. Fontecilla-Camps. 2001. Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc. 123:15961601.
129. Nicolet, Y., and, C. L. Drennan. 2004. AdoMet radical proteins— from structure to evolution—alignment of divergent protein sequences reveals strong secondary structure element conservation. Nucleic. Acids Res. 32:40154025.
130. Ohta, S.,, K. Miyamoto, and, Y. Miure. 1987. Hydrogen evolution as a consumption mode of reducing equivalents in green algal fermentation. Plant Physiol. 83:10221026.
131. Overpeck, J. T.,, B. L. Otto-Bliesner,, G. H. Miller,, D. R. Muhs,, R. B. Alley, and, J. T. Kiehl. 2006. Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:17471750.
132. Park, W., and, I. Moon. 2007. A discrete multi states model for the biological production of hydrogen by phototrophic microalga. Biochem. Eng. J. 36:1927.
133. Peters, J. W.,, W. N. Lanzilotta,, B. J. Lemon, and, L. C. Seefeldt. 1998. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:18531858.
134. Peters, J. W. 1999. Structure and mechanism of iron-only hydrogenases. Curr. Opin. Struct. Biol. 9:670676.
135. Peters, J. W.,, R. K. Szilagyi,, A. Naumov, and, T. Douglas. 2006. A radical solution for the biosynthesis of the H-cluster of hydrogenase. FEBS Lett. 580:363367.
136. Pierik, A. J.,, W. R. Hagen,, J. S. Redeker,, R. B. Wolbert,, M. Boersma,, M. F. Verhagen,, H. J. Grande,, C. Veeger,, P. H. Mutsaers,, R. H. Sands, et al. 1992. Redox properties of the iron-sulfur clusters in activated Fe-hydrogenase from Desulfovibrio vulgaris (Hilden-borough). Eur. J. Biochem. 209:6372.
137. Pierik, A. J.,, M. Hulstein,, W. R. Hagen, and, S. P. Albracht. 1998. A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases. Eur. J. Biochem. 258:572578.
138. Pilak, O.,, B. Mamat,, S. Vogt,, C. H. Hagemeier,, R. K. Thauer,, S. Shima,, C. Vonrhein,, E. Warkentin, and, U. Ermler. 2006. The crystal structure of the apoenzyme of the iron-sulphur cluster-free hydrogenase. J. Mol. Biol. 358:798809.
139. Polle, J. E. W.,, J. R. Benemann,, A. Tanaka, and, A. Melis. 2000. Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas rein-hardtii. Dependence on carbon source. Planta 211:335344.
140. Polle, J. E. W.,, K. K. Niyogi, and, A. Melis. 2001. Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not that of photosystem-I in the green alga Chlamydomonas reinhardtii. Plant Cell Physiol. 42:482491.
141. Polle, J. E. W.,, S. D. Kanakagiri, and, A. Melis. 2003. tla1, a DNA insertional transformant of the green alga Chlamydomonas rein-hardtii with a truncated light-harvesting chlorophyll antenna size. Planta 217:4959.
142. Pollock, S. V.,, W. Pootakham,, N. Shibagaki,, J. L. Moseley, and, A. R. Grossman. 2005. Insights into the acclimation of Chlamydomonas reinhardtii to sulfur deprivation. Photosynth. Res. 86:475489.
143. Posewitz, M. C.,, P. W. King,, S. L. Smolinski,, L. Zhang,, M. Seibert, and, M. L. Ghirardi. 2004a. Discovery of two novel radical Sadenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J. Biol. Chem. 279:2571125720.
144. Posewitz, M. C.,, S. L. Smolinski,, S. Kanakagiri,, A. Melis,, M. Seibert, and, M. L. Ghirardi. 2004b. Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas rein-hardtii. Plant Cell 16:21512163.
145. Pow, T., and, A. I. Krasna. 1979. Photoproduction of hydrogen from water in hydrogenase-containing algae. Arch. Biochem. Biophys. 194:413421.
146. Prince, R. C., and, H. S. Kheshgi. 2005. The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit. Rev. Microbiol. 31:1931.
147. Putz, S.,, P. Dolezal,, G. Gelius-Dietrich,, L. Bohacova,, J. Tachezy, and, K. Henze. 2006. Fe-hydrogenase maturases in the hydrogenosomes of Trichomonas vaginalis. Eukaryot. Cell 5:579586.
148. Radmer, R., and, B. Kok. 1977. Photosynthesis—limited yields, unlimited dreams. BioScience 27:599605.
149. Ragsdale, S. W. 2003. Pyruvate ferredoxin oxidoreductase and its radical intermediate. Chem. Rev. 103:23332346.
150. Randt, C., and, H. Senger. 1985. Participation of the two photosystems in light dependent hydrogen evolution in Scenedesmus obliquus. Photochem. Photobiol. Sci. 42:553557.
151. Rao, K. K., and, R. Cammack. 2001. Producing hydrogen as a fuel, p. 201230. In R. Cammack,, M. Frey, and, R. Robson (ed.), Hydrogen as a Fuel. Taylor and Francis, London, United Kingdom.
152. Rey, F. E.,, E. K. Heiniger, and, C. S. Harwood. 2007. Redirection of metabolism for biological hydrogen production. Appl. Environ. Microbiol. 73:16651671.
153. Roessler, P. G., and, S. Lien. 1984a. Activation and de novo synthesis of hydrogenase in Chlamydomonas. Plant Physiol. 76:10861089.
154. Roessler, P. G., and, S. Lien. 1984b. Purification of hydrogenase from Chlamydomonas reinhardtii. Plant Physiol. 75:705709.
155. Roseboom, W.,, A. L. De Lacey,, V. M. Fernandez,, E. C. Hatchikian, and, S. P. Albracht. 2006. The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy. J. Biol. Inorg. Chem. 11:102118.
156. Rubach, J. K.,, X. Brazzolotto,, J. Gaillard, and, M. Fontecave. 2005. Biochemical characterization of the HydE and HydG iron-only hydrogenase maturation enzymes from Thermatoga maritima. FEBS Lett. 579:50555060.
157. Saitoh, T.,, T. Ikegami,, M. Nakayama,, K. Teshima,, H. Akutsu, and, T. Hase. 2006. NMR study of the electron transfer complex of plant ferredoxin and sulfite reductase. J. Biol. Chem. 281:1048210488.
158. Soboh, B.,, D. Linder, and, R. Hedderich. 2004. A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology 150:24512463.
159. Sofia, H. J.,, G. Chen,, B. G. Hetzler,, J. F. Reyes-Spindola, and, N. E. Miller. 2001. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic. Acids Res. 29:10971106.
160. Stauber, E. J., and, M. Hippler. 2004. Chlamydomonas reinhardtii proteomics. Plant Physiol. Biochem. 42:9891001.
161. Stirnberg, M., and, T. Happe. 2004. Identification of a cis-acting element controlling anaerobic expression of the HYDA gene from Chlamydomonas reinhardtii, p. 117127. In J. Miyake,, Y. Igarashi, and, M. Rogner (ed.), Biohydrogen III. Elsevier, New York, NY.
162. Takahashi, H.,, C. E. Braby, and, A. R. Grossman. 2001. Sulfur economy and cell wall biosynthesis during sulfur limitation of Chlamydomonas reinhardtii. Plant Physiol. 127:665673.
163. Tamagnini, P.,, R. Axelsson,, P. Lindberg,, F. Oxelfelt,, R. Wunschiers, and, P. Lindblad. 2002. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol. Mol. Biol. Rev. 66:120.
164. Tetali, S. D.,, M. Mitra, and, A. Melis. 2007. Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene. Planta 225:813829.
165. Tsygankov, A.,, S. Kosourov,, M. Seibert, and, M. L. Ghirardi. 2002. Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures. Int. J. Hydrogen Energy 27:12391244.
166. Tsygankov, A. A.,, S. N. Kosourov,, I. V. Tolstygina,, M. L. Ghirardi, and, M. Seibert. 2006. Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int. J. Hydrogen Energy 31:15741584.
167. Ueno, Y.,, N. Kurano, and, S. Miyachi. 1999. Purification and characterization of hydrogenase from the marine green alga, Chlorococcum littorale. FEBS Lett. 443:144148.
168. Urbig, T.,, R. Schulz, and, H. Senger. 1993. Inactivation and reactivation of the hydrogenases of the green algae Scenedesmus obliquus and Chlamydomonas reinhardtii. Z. Naturforsch. Sect. C 48:4145.
169. Valentine, R. C., and, R. S. Wolfe. 1963. Role of ferredoxin in the metabolism of molecular hydrogen. J. Bacteriol. 85:11141120.
170. van der Spek, T. M.,, A. F. Arendsen,, R. P. Happe,, S. Yun,, K. A. Bagley,, D. J. Stufkens,, W. R. Hagen, and, S. P. Albracht. 1996. Similarities in the architecture of the active sites of Ni-hydrogenases and Fehydrogenases detected by means of infrared spectroscopy. Eur. J. Biochem. 237:629634.
171. Van Dijk, C., A. Van Berkel-Arts, and, C. Veeger. 1983. The effect of reoxidation on the reduced hydrogenase of Desulfovibrio vulgaris strain Hildenborough and its oxygen stability. FEBS Lett. 156:340344.
172. Van Ooteghem, S. A.,, S. K. Beer, and, P. C. Yue. 2002. Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Appl. Biochem. Biotechnol. 98:177189.
173. Van Ooteghem, S. A., A. Jones, D. van der Lelie, B. Dong, and, D. Mahajan. 2004. H-2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnol. Lett. 26:12231232.
174. Vazquezduhalt, R. 1991. Light effect on neutral lipids accumulation and biomass composition of Botryococcus sudeticus (Chlorophyceae). Cryptogam. Algol. 12:109119.
175. Vignais, P. M.,, A. Colbeau,, J. C. Willison, and, Y. Jouanneau. 1985. Hydrogenase, nitrogenase, and hydrogen metabolism in the photo-synthetic bacteria. Adv. Microb. Physiol. 26:155234.
176. Vignais, P. M.,, B. Billoud, and, J. Meyer. 2001. Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25:455501.
177. Vincent, K. A., and, F. A. Armstrong. 2005. Investigating metalloenzyme reactions using electrochemical sweeps and steps: fine control and measurements with reactants ranging from ions to gases. Inorg. Chem. 44:798809.
178. Voigt, J., and, R. Frank. 2003. 14-3-3 proteins are constituents of the insoluble glycoprotein framework of the Chlamydomonas cell wall. Plant Cell 15:13991413.
179. Volbeda, A.,, M. H. Charon,, C. Piras,, E. C. Hatchikian,, M. Frey, and, J. C. Fontecilla-Camps. 1995. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580587.
180. Voncken, F. G.,, B. Boxma,, A. H. van Hoek,, A. S. Akhmanova,, G. D. Vogels,, M. Huynen,, M. Veenhuis, and, J. H. Hackstein. 2002. A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp. L2. Gene 284:103112.
181. Wagner, A. F. V.,, M. Frey,, F. A. Neugebauer,, W. Schafer, and, J. Knappe. 1992. The free-radical in pyruvate formate-lyase is located on glycine-734. Proc. Natl. Acad. Sci. USA 89:9961000.
182. Weaver, P. F.,, S. Lien, and, M. Seibert. 1980. Photobiological production of hydrogen. Solar Energy 24:345.
183. Westermeier, R., and, I. Gomez. 1996. Biomass, energy contents and major organic compounds in the brown alga Lessonia nigrescens (Laminariales, Phaeophyceae) from Mehuin, south Chile. Botanica Marina 39:553559.
184. White, A. L., and, A. Melis. 2006. Biochemistry of hydrogen metabolism in Chlamydomonas reinhardtii wild type and a Rubisco-less mutant. Int. J. Hydrogen Energy 31:455464.
185. Winkler, M.,, B. Heil,, B. Heil, and, T. Happe. 2002. Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. Biochim. Biophys. Acta 1576:330334.
186. Winter, G.,, T. Buhrke,, A. K. Jones, and, B. Friedrich. 2004. The role of the active site-coordinating cysteine residues in the maturation of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha H16. Arch. Microbiol. 182:138146.
187. Wu, L. F., and, M. A. Mandrand. 1993. Microbial hydrogenases: primary structure, classification, signatures and phylogeny. FEMS Microbiol. Rev. 10:243269.
188. Wunschiers, R.,, K. Stangier,, H. Senger, and, R. Schulz. 2001. Molecular evidence for a Fe-hydrogenase in the green alga Scenedesmus obliquus. Curr. Microbiol. 42:353360.
189. Wykoff, D. D.,, J. P. Davies,, A. Melis, and, A. R. Grossman. 1998. The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol. 117:129139.
190. Zaborsky, O. R. 1998. BioHydrogen. Plenum Publishing Corporation, New York, NY.
191. Zhang, L.,, T. Happe, and, A. Melis. 2002. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214:552561.
192. Zhang, L. P., and, A. Melis. 2002. Probing green algal hydrogen production. Philos. Trans. R. Soc. Lond. B 357:14991507.
193. Zhang, Z. D.,, J. Shrager,, M. Jain,, C. W. Chang,, O. Vallon, and, A. R. Grossman. 2004. Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot. Cell 3:13311348.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error