1887

Chapter 23 : Electricity Production with Electricigens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Electricity Production with Electricigens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap23-2.gif

Abstract:

This chapter discusses the microbiology of microbial fuel cells with emphasis on fuel cells powered by electricigens. Electricity production with electricigens is significantly different from that of other types of microorganisms. The ability of electricigens to directly transfer electrons to the anode surface also alleviates the need for unstable, and potentially toxic, mediators. The fact that, as far as is known, there has been no evolutionary pressure on microorganisms to produce electricity suggests that electricigens may not be optimized for electricity production. Introducing genes to increase production of the outer surface cytochrome, OmcS, or pilin did not show increased power production. species are capable of accepting electrons from electrodes poised at low potential for the reduction of various electron acceptors. -catalyzed reduction of U(VI) to U(IV) at electrode surfaces can precipitate uranium contamination from groundwater, precipitating U(IV) on the electrode. Of the microorganisms known to contribute to electricity production in microbial fuel cells, only electricigens offer the possibility of highly efficient, self-sustaining conversion of waste organic matter and renewal biomass to electricity. However, the study of electricity production with electricigens is clearly in its infancy.

Citation: Lovley D, Nevin K. 2008. Electricity Production with Electricigens, p 295-306. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch23

Key Concept Ranking

Carbon Dioxide
0.51453537
Aromatic Hydrocarbon Degradation
0.47648317
0.51453537
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Types of fuel cells used in the study of electricigens. (A) H-cell-type fuel cell. (B) Ministack-type fuel cell. (C) Schematic of ministack-type fuel cell, indicating all parts of the compact design: anode (1), cathode (2), proton exchange membrane (3), connection wires (4), and sampling ports (5).

Citation: Lovley D, Nevin K. 2008. Electricity Production with Electricigens, p 295-306. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Model for electron transfer to electrodes. (A) Low-power fuel cell. Microbes directly attached to electrodes can transfer electrons via outer surface cytochromes, such as OmcS, consistent with the deletion mutant being greatly impaired in power production, but deletion of having no impact. (B) High-power density fuel cell. Microbes directly attached to the anode can transfer electrons via outer surface cytochromes. Microbes not attached to the anode can transfer electrons to the electrode and/or other cells closer to the electrodes via conductive pili.

Citation: Lovley D, Nevin K. 2008. Electricity Production with Electricigens, p 295-306. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch23
1. Anderson, R. T.,, J. Rooney-Varga,, C. V. Gaw, and, D. R. Lovley. 1998. Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers. Environ. Sci. Technol. 32:12221229.
2. Bennetto, H. P. 1990. ‘Bugpower’—electricity from microbes, p. 6682. In A. Scott (ed.), Frontiers of Science. Blackwell Publishing, Cambridge, MA.
3. Bond, D. R.,, D. E. Holmes,, L. M. Tender, and, D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483485.
4. Bond, D. R., and, D. R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69:15481555.
5. Bond, D. R., and, D. R. Lovley. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71:21862189.
6. Butler, J. E.,, R. H. Glaven,, A. Esteve-Nunez,, C. Nunez,, E. S. Shelobolina,, D. R. Bond, and, D. R. Lovley. 2006. Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducens. J. Bacteriol. 188:450455.
7. Caccavo, F.,, Jr., R. P. Blakemore, and, D. R. Lovley. 1992. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the great bay estuary, New Hampshire. Appl. Environ. Microbiol. 58:32113216.
8. Chaudhuri, S. K., and, D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21:12291232.
9. Cheng, S.,, H. Liu, and, B. E. Logan. 2006. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol. 40:24262432.
10. Childers, S. E.,, S. Ciufo, and, D. R. Lovley. 2002. Geobacter metal-lireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416:767769.
11. Coppi, M. V.,, C. Leang,, S. J. Sandler, and, D. R. Lovley. 2001. Development of a genetic system for Geobacter sulfurreducens. Appl. Environ. Microbiol. 67:31803187.
12. Ding, Y. H. R.,, K. K. Hixson,, C. S. Giometti,, A. Stanley,, A. EsteveNunez,, T. Khare,, S. L. Tollaksen,, W. H. Zhu,, J. N. Adkins,, M. S. Lipton,, R. D. Smith,, T. Mester, and, D. R. Lovley. 2006. The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions. Biochim. Biophys. Acta 1764:11981206.
13. Finneran, K.,, C. V. Johnsen, and, D. R. Lovley. 2003. Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int. J. Syst. Evol. Microbiol. 53:669673.
14. Gorby, Y. A.,, S. Yanina,, J. S. Mclean,, K. M. Rosso,, D. Moyles,, A. Dohnalkova,, T. J. Beveridge,, I. S. Chang,, B. H. Kim,, K. S. Kim,, D. E. Culley,, S. B. Reed,, M. F. Romine,, D. A. Saffarini,, E. A. Hill,, L. Shi,, D. A. Elias,, D. W. Kennedy,, G. Pinchuk,, K. Watanabe,, S. Ishii,, B. E. Logan, and, K. H. Nealson. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad Sci. USA 103:1135811363.
15. Gregory, K. B.,, D. R. Bond, and, D. R. Lovley. 2004. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6:596604.
16. Gregory, K. B., and, D. R. Lovley. 2005. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 39:89438947.
17. Holmes, D. E.,, D. R. Bond, and, D. R. Lovley. 2004a. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70:12341237.
18. Holmes, D. E.,, D. R. Bond,, R. A. O’Neil,, C. E. Reimers,, L. R. Tender, and, D. R. Lovley. 2004b. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol. 48:178190.
19. Holmes, D. E.,, S. K. Chaudhuri,, K. P. Nevin,, T. Mehta,, B. A. Methe,, A. Liu,, J. E. Ward,, T. L. Woodard,, J. Webster, and, D. R. Lovley. 2006. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ. Microbiol. 8:18051815.
20. Holmes, D. E.,, J. S. Nicoll,, D. R. Bond, and, D. R. Lovley. 2004c. Potential role of a novel psychrotolerant Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by the marine sediment fuel cell. Appl. Environ. Microbiol. 70:60236030.
21. Katz, E.,, A. N. Shipway, and, I. Wilner. 2003. Biochemical fuel cells, p. 355381. In W. Vielstich,, A. Lamm, and, H. A. Gasteiger (ed.), Handbook of Fuel Cells: Fundamentals, Technology, and Applications. John Wiley & Sons, Ltd., Chichester, United Kingdom.
22. Khare, T.,, A. Esteve-Nunez,, K. P. Nevin,, W. H. Zhu,, J. R. Yates,, D. R. Lovley, and, C. S. Giometti. 2006. Differential protein expression in the metal-reducing bacterium Geobacter sulfurreducens strain PCA grown with fumarate or ferric citrate. Proteomics 6:632640.
23. Kim, H. J.,, H. S. Park,, M. S. Hyun,, I. S. Chang,, M. Kim, and, B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30:145152.
24. Lanthier, M.,, K. B. Gregory, and, D. R. Lovley. 2007. Growth with high planctonic biomass in Shewanella oneidensis fuel cells. FEMS Microbiol. Lett. 278:2935.
25. Leang, C.,, M. V. Coppi, and, D. R. Lovley. 2003. Omcb, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J. Bacteriol. 185:20962103.
26. Lies, D. P.,, M. E. Hernandez,, A. Kappler,, R. E. Mielke,, J. A. Gral-nick, and, D. K. Newman. 2005. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl. Environ. Microbiol. 71:44144426.
27. Lin, B.,, M. Braster,, B. M. Van Breukelen,, H. W. Van Verseveld,, H. V. Westerhoff, and, W. F. M. Roling. 2005. Geobacteraceae community composition is related to hydrochemistry and biodegradation in an iron-reducing aquifer polluted by a neighboring landfill. Appl. Environ. Microbiol. 71:59835991.
28. Logan, B. E. 2005. Simultaneous wastewater treatment and biological electricity generation. Water Sci. Technol. 52:3137.
29. Logan, B. E.,, S. Cheng,, V. Watson, and, G. Estadt. 2007. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 41:33413346.
30. Lovley, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55:259287.
31. Lovley, D. R. 2006a. Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 4:497508.
32. Lovley, D. R. 2006b. Taming electricigens: how electricity-generating microbes can keep going, and going—faster. Scientist 20:46.
33. Lovley, D. R.,, M. J. Baedecker,, D. J. Lonergan,, I. M. Cozzarelli,, E. J. P. Phillips, and, D. I. Siegel. 1989. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297299.
34. Lovley, D. R.,, J. D. Coates,, E. L. Blunt-Harris,, E. J. P. Phillips, and, J. C. Woodward. 1996a. Humic substances as electron acceptors for microbial respiration. Nature 382:445448.
35. Lovley, D. R.,, D. E. Holmes, and, K. P. Nevin. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microbiol. Phys. 49:219286.
36. Lovley, D. R., and, E. J. Phillips. 1989. Requirement for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediments. Appl. Environ. Microbiol. 55:32343236.
37. Lovley, D. R., and, E. J. P. Phillips. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimila-tory reduction of iron or manganese. Appl. Environ. Microbiol. 54:14721480.
38. Lovley, D. R.,, J. F. Stolz,, G. L. Nord, and, E. J. P. Phillips. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252254.
39. Lovley, D. R.,, J. C. Woodward, and, F. H. Chapelle. 1994. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370:128131.
40. Lovley, D. R.,, J. C. Woodward, and, F. H. Chapelle. 1996b. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms. Appl. Environ. Microbiol. 62:288291.
41. Lowy, D.,, L. Tender,, J. Zeikus,, D. Park, and, D. R. Lovley. 2006. Harvesting energy from the marine sediment-water interface II— kinetic activity of anode materials. Biosens. Bioelectron. 21:20582063.
42. Mahadevan, R.,, D. R. Bond,, J. E. Butler,, A. Esteve-Nunez,, M. V. Coppi,, B. O. Palsson,, C. H. Schilling, and, D. R. Lovley. 2006. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl. Environ. Microbiol. 72:15581568.
43. Mehta, T.,, S. E. Childers,, R. Glaven,, D. R. Lovley, and, T. Mester. 2006. A putative multicopper protein secreted by an atypical type II secretion system involved in the reduction of insoluble electron acceptors in Geobacter sulfurreducens. Microbiology 152:22572264.
44. Mehta, T.,, M. V. Coppi,, S. E. Childers, and, D. R. Lovley. 2005. Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol. 71:86348641.
45. Methé, B. A.,, K. E. Nelson,, J. A. Eisen,, I. T. Paulsen,, W. Nelson,, J. F. Heidelberg,, D. Wu,, M. Wu,, N. Ward,, M. J. Beanan,, R. J. Dodson,, R. Madupu,, L. M. Brinkac,, S. C. Daugherty,, R. T. Deboy,, A. S. Durkin,, M. Gwinn,, J. F. Kolonay,, S. A. Sullivan,, D. H. Haft,, J. Selengut,, T. M. Davidsen,, N. Zafar,, O. White,, B. Tran,, C. Romero,, H. A. Forberger,, J. Weidman,, H. Khouri,, T. V. Feldblyum,, T. R. Utterback,, S. E. Van Aken,, D. R. Lovley, and, C. M. Fraser. 2003. The genome of Geobacter sulfurreducens: insights into metal reduction in subsurface environments. Science 302:19671969.
46. Methé, B. A.,, J. Webster,, K. P. Nevin,, J. Butler, and, D. R. Lovley. 2005. DNA microarray analysis of nitrogen fixation and Fe(III) reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol. 71:25302538.
47. Nevin, K. P., and, D. R. Lovley. 2000. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl. Environ. Microbiol. 66:22482251.
48. Nevin, K. P., and, D. R. Lovley. 2002a. Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol. J. 19:141159.
49. Nevin, K. P., and, D. R. Lovley. 2002b. Novel mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl. Environ. Microbiol. 68:22942299.
50. Newman, D. K., and, R. Kolter. 2000. A role for excreted quinones in extracellular electron transfer. Nature 405:9397.
51. Park, D. H.,, M. Laivenieks,, M. V. Guettler,, M. K. Jain, and, J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65:29122917.
52. Postier, B. L.,, R. Didonato, Jr.,, K. P. Nevin,, A. Liu,, B. Frank,, D. R. Lovley, and, B. A. Methé. 2007. Benefits of in-situ synthesized microarrays for analysis of gene expression in understudied microorganisms. J. Microbiol. Methods [Epub ahead of print.]
53. Potter, M. C. 1910. On the difference of potential due to the vital activity of microorganisms. Proc. Univ. Durham Phil. Soc. 3:245249.
54. Potter, M. C. 1911. Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. Lond. B 84:260276.
55. Rabaey, K., and, W. Verstraete. 2005. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 23:291298.
56. Reguera, G.,, K. D. McCarthy,, T. Mehta,, J. S. Nicoll,, M. T. Tuominen, and, D. R. Lovley. 2005. Extracellular electron transfer via microbial nanowires. Nature 435:10981101.
57. Reguera, G.,, K. P. Nevin,, J. S. Nicoll,, S. F. Covalla,, T. L. Woodard, and, D. R. Lovley. 2006. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72:73457348.
58. Reguera, G.,, R. B. Pollina,, J. S. Nicoll, and, D. R. Lovley. 2007. Possible non-conductive role of Geobacter sulfurreducens pili nanowires in biofilm formation. J. Bacteriol. 189:21252127.
59. Reimers, C. E.,, L. M. Tender,, S. Fertig, and, W. Wang. 2001. Harvesting energy from the marine sediment-water interface. Environ. Sci. Technol. 35:192195.
60. Richter, H.,, M. Lanthier,, K. P. Nevin, and, D. R. Lovley. 2007. Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes. Appl. Environ. Micro-biol. 73:53475353.
61. Richter, H.,, K. McCarthy,, K. P. Nevin,, J. P. Johnson,, V. M. Rotello, and, D. R. Lovley. 2008. Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir [Epub ahead of print.].
62. Roling, W. F. M.,, B. M. Van Breukelen,, B. L. Braster, and, H. W. Van Verseveld. 2001. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl. Environ. Microbiol. 67:46194629.
63. Rooney-Varga, J. N.,, R. T. Anderson,, J. L. Fraga,, D. Ringelberg, and, D. R. Lovley. 1999. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 65:30563064.
64. Rosso, K. M.,, J. M. Zachara,, J. K. Fredrickson,, Y. A. Gorby, and, S. C. Smith. 2003. Nonlocal bacterial electron transfer to hematite surfaces. Geochim. Cosmochim. Acta 67:10811087.
65. Shukla, A. K.,, P. Suresh,, S. Berchmans, and, A. Rajendran. 2004. Biological fuel cells and their applications. Curr. Sci. 87:455468.
66. Tender, L. M.,, C. E. Reimers,, H. A. Stecher,, D. E. Holmes,, D. R. Bond,, D. A. Lowy,, K. Pilobello,, S. J. Fertig, and, D. R. Lovley. 2002. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 20:821825.

Tables

Generic image for table
Table 1.

Comparison of benefits associated with production of electricity with different types of microorganisms

Citation: Lovley D, Nevin K. 2008. Electricity Production with Electricigens, p 295-306. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch23

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error