1887

Chapter 24 : Microbial Fuel Cells as an Engineered Ecosystem

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Microbial Fuel Cells as an Engineered Ecosystem, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap24-2.gif

Abstract:

This chapter provides an overview of the microbial communities found in microbial fuel cells (MFCs), the interactions that drive the community structure, the processes performed by the communities, and how engineering affects the microbial resources within MFCs. Microbial electricity generation in MFCs relies on the drive of bacteria to acquire maximum energy. The electrode potential represents an important tool to control and increase the biocatalyst activity in relation to electricity generation. Moreover, the electrode potential will, as the key factor in the energy metabolism, determine the trade-off between fermenting and respiring organisms, thereby influencing the microbial composition. Several studies have described the microbial composition in MFCs. When comparing these data, several conclusions regarding the microbial community composition can be derived. First, various inocula can be used to successfully enrich electron-transferring organisms in an MFC. Second, several authors have concluded that MFCs strongly enrich organisms that utilize the electrode as final electron acceptor, both in a direct and in an indirect way. Third, although the MFC is an appropriate device to enrich electricity-producing communities, a typical electricity-generating microbial community has not been established yet. The majority of reported taxonomic classes are (64%) followed by (13%) and nonclassified sequences (13%). The large variety of microorganisms found in MFCs suggests that many organisms can interact within the electricity-generating process. The influences of both the electron transfer interactions and the substrate transport within the biofilm on the development of the microbial community are discussed.

Citation: Aelterman P, Rabaey K, De Schamphelaire L, Clauwaert P, Boon N, Verstraete W. 2008. Microbial Fuel Cells as an Engineered Ecosystem, p 307-320. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch24

Key Concept Ranking

Confocal Laser Scanning Microscopy
0.4463501
0.4463501
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Overview of the possible microbial degradation pathways of acetate (A) and glucose (B) within the biofilm on the anode of an MFC. Fermenting cells are crosshatched. Cells using alternative electron acceptors are shaded. Microorganisms transferring electrons to the electrode by using mediators (M) or nanowires are dotted. Full lines indicate the use of acetate (A) or glucose (B) as the electron donor, while dotted lines indicate the use of intermediate electron donors. Striped lines represent possible losses of electron donors. Triangles represent gaseous components, and diamonds are aqueous components. Gibbs free values are expressed per mole of (intermediate) substrate as shown in reactions 1 to 12 and are calculated based on Thauer et al. ( ) and assuming substrate and intermediary product concentrations of 0.01 M, an anode potential of –150 mV versus standard hydrogen for both direct and mediated electron transfer, a pH of 7, and hydrogen partial pressures as indicated in panels A and B. Interspecies electron transfer is grouped by a frame; the division of the available Gibbs free energy is not taken into account. Reactions are as follows: (1) CHCOO + 4HO → 2HCO + 9H + 8 e; (2) CHCOO + HO → CH + HCO ; (3) CHCOO + 4HO → 4H + 2HCO + H; (4) H + 1/4HCO + 1/4H → 1/4CH + 3/4HO; (5) H → 2H + 2e; (6) CHCOO + SO → 2HCO + HS; (7) HS → S + H + 2e; (8) CHO + 12HO → 6HCO + 30H + 24e; (9) CHO + 4HO → 2CHCOO + 2HCO + 12H + 8e; (10) CHO + 4HO → 2CHCOO + 2HCO + 4H + 4H; (11) CHO + 3HO → 3CH + 3HCO + 3H; (12) CHO + 3SO → 6HCO + 3HS + 3H.

Citation: Aelterman P, Rabaey K, De Schamphelaire L, Clauwaert P, Boon N, Verstraete W. 2008. Microbial Fuel Cells as an Engineered Ecosystem, p 307-320. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Evolution of the polarization curves of an acetate-fed MFC during a 3-month period (adapted from ). While at Time 1 (152 days after start-up) a linear decrease of the voltage is noted at increasing currents, the polarization curve at Time 2 (175 days after start-up) is dominated by a sharp decrease of the voltage at maximum current production. At Time 3 (201 days after start-up) the overall performance of the MFC had increased and maximum current production had tripled. In addition, the sharp decrease of the voltage at high currents, attributed to mass transfer losses, was not noted any more.

Citation: Aelterman P, Rabaey K, De Schamphelaire L, Clauwaert P, Boon N, Verstraete W. 2008. Microbial Fuel Cells as an Engineered Ecosystem, p 307-320. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Overview of the different taxonomic classes in microbial fuel cells, examined by clone libraries and sequencing in eight different setups ( ). The different phyla are represented by different patterns. The relative amount of the different phyla is given between brackets: , dotted pattern (64%); , black (13%); , vertical pattern (7%); other phyla, crosshatched (3%); nonclassified sequences, horizontal pattern (13%).

Citation: Aelterman P, Rabaey K, De Schamphelaire L, Clauwaert P, Boon N, Verstraete W. 2008. Microbial Fuel Cells as an Engineered Ecosystem, p 307-320. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Overview of the potential working range of the different direct and indirect electron transfer mechanisms (direct cell contact, single nanowires, intertwined nanowires, and mediators), assuming a biofilm thickness of 100 μm.

Citation: Aelterman P, Rabaey K, De Schamphelaire L, Clauwaert P, Boon N, Verstraete W. 2008. Microbial Fuel Cells as an Engineered Ecosystem, p 307-320. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Schematic overview of the cathode reactions catalyzed by microorganisms (represented by dotted ovals). (A) Direct transfer of electrons from the cathode to the microorganisms ( ); (B) metal-mediated electron transfer ( ); and (C) bioelectrochemically driven dechlori-nation at the cathode ( ). The free Gibbs energy values are expressed per mole of electron acceptor and are calculated using the represented electrode potentials expressed versus standard hydrogen, a saturated oxygen concentration of 8 mg/liter and a NO concentration of 0.01 M, both at pH 7 unless noted otherwise.

Citation: Aelterman P, Rabaey K, De Schamphelaire L, Clauwaert P, Boon N, Verstraete W. 2008. Microbial Fuel Cells as an Engineered Ecosystem, p 307-320. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch24
1. Aelterman, P.,, K. Rabaey,, P. Clauwaert, and, W. Verstraete. 2006a. Microbial fuel cells for wastewater treatment. Water Sci. Technol. 54:915.
2. Aelterman, P.,, K. Rabaey,, H. T. Pham,, N. Boon, and, W. Verstraete. 2006b. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40:33883394.
3. Allen, R. M., and, H. P. Bennetto. 1993. Microbial fuel-cells—electricity production from carbohydrates. Appl. Biochem. Biotechnol. 39:2740.
4. Aulenta, F.,, A. Catervi,, M. Majone,, S. Panero,, P. Reale, and, S. Rossetti. 2007. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlori-nation of TCE. Environ. Sci. Technol. 41:25542559.
5. Back, J. H.,, M. S. Kim,, H. Cho,, I. S. Chang,, J. Y. Lee,, K. S. Kim,, B. H. Kim,, Y. I. Park, and, Y. S. Han. 2004. Construction of bacterial artificial chromosome library from electrochemical microorganisms. FEMS Microbiol. Lett. 238:6570.
6. Beratan, D. N.,, J. N. Onuchic,, J. R. Winkler, and, H. B. Gray. 1992. Electron-tunneling pathways in proteins. Science 258:17401741.
7. Bergel, A.,, D. Feron, and, A. Mollica. 2005. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem. Commun. 7:900904.
8. Bond, D. R.,, D. E. Holmes,, L. M. Tender, and, D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483485.
9. Bond, D. R., and, D. R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69:15481555.
10. Bond, D. R., and, D. R. Lovley. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71:21862189.
11. Cheng, S.,, H. Liu, and, B. E. Logan. 2006. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol. 40:24262432.
12. Clauwaert, P.,, K. Rabaey,, P. Aelterman,, L. De Schamphelaire,, H. T. Pham,, P. Boeckx,, N. Boon, and, W. Verstraete. 2007a. Biological denitrification in microbial fuel cells. Environ. Sci. Technol. 41:33543360.
13. Clauwaert, P.,, D. Van der Ha, N. Boon, K. Verbeken, M. Verhaege, K. Rabaey, and, W. Verstraete. 2007b. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ. Sci. Technol. 41:75647569.
14. Costerton, J. W. 1995. Overview of microbial biofilms. J. Ind. Micro-biol. 15:137140.
15. Freguia, S.,, K. Rabaey,, S. Yuan, and, J. Keller. 2007. Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. Environ. Sci. Technol. 41:29152921.
16. Gorby, Y. A.,, S. Yanina,, J. S. McLean,, K. M. Rosso,, D. Moyles,, A. Dohnalkova,, T. J. Beveridge,, I. S. Chang,, B. H. Kim,, K. S. Kim,, D. E. Culley,, S. B. Reed,, M. F. Romine,, D. A. Saffarini,, E. A. Hill,, L. Shi,, D. A. Elias,, D. W. Kennedy,, G. Pinchuk,, K. Watanabe,, S. Ishii,, B. Logan,, K. H. Nealson, and, J. K. Fredrickson. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 103:1135811363.
17. Grasso, D.,, B. F. Smets,, K. A. Strevett,, B. D. Machinist,, C. J. VanOss,, R. F. Giese, and, W. Wu. 1996. Impact of physiological state on surface thermodynamics and adhesion of Pseudomonas aeruginosa. Environ. Sci. Technol. 30:36043608.
18. Gregory, K. B.,, D. R. Bond, and, D. R. Lovley. 2004. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6:596604.
19. Habermann, W., and, E. H. Pommer. 1991. Biological fuel-cells with sulfide storage capacity. Appl. Microbiol. Biotechnol. 35:128133.
20. He, Z.,, S. D. Minteer, and, L. T. Angenent. 2005. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol. 39:52625267.
21. Heijnen, J. J. 1999. Bioenergetics of microbial growth, p. 267291. In M. C. Flickinger and, S. W. Drew (ed.), Bioprocess Technology: Fermentation, Biocatalysis, Bioseparation. John Wiley and Sons, Hoboken, NJ.
22. Heilmann, J., and, B. E. Logan. 2006. Production of electricity from proteins using a microbial fuel cell. Water Environ. Res. 78:531537.
23. Hernandez, M. E., and, D. K. Newman. 2001. Extracellular electron transfer. Cell. Mol. Life Sci. 58:15621571.
24. Holmes, D. E.,, D. R. Bond, and, D. R. Lovley. 2004a. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70:12341237.
25. Holmes, D. E.,, D. R. Bond,, R. A. O’Neill,, C. E. Reimers,, L. R. Tender, and, D. R. Lovley. 2004b. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol. 48:178190.
26. Holmes, D. E.,, S. K. Chaudhuri,, K. P. Nevin,, T. Mehta,, B. A. Methe,, A. Liu,, J. E. Ward,, T. L. Woodard,, J. Webster, and, D. R. Lovley. 2006. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ. Microbiol. 8:18051815.
27. Ishii, S.,, T. Kosaka,, K. Hori,, Y. Hotta, and, K. Watanabe. 2005. Co-aggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl. Environ. Microbiol. 71:78387845.
28. Kim, B. H.,, H. J. Kim,, M. S. Hyun, and, D. H. Park. 1999. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9:127131.
29. Kim, B. H.,, H. S. Park,, H. J. Kim,, G. T. Kim,, I. S. Chang,, J. Lee, and, N. T. Phung. 2004. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63:672681.
30. Kim, G. T.,, G. Webster,, J. W. T. Wimpenny,, B. H. Kim,, H. J. Kim, and, A. J. Weightman. 2006. Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J. Appl. Microbiol. 101:698710.
31. Kim, H. J.,, H. S. Park,, M. S. Hyun,, I. S. Chang,, M. Kim, and, B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30:145152.
32. Kim, J. R.,, B. Min, and, B. E. Logan. 2005. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol. 68:2330.
33. Kim, N.,, Y. Choi,, S. Jung, and, S. Kim. 2000. Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol. Bioeng. 70:109114.
34. Lee, J.,, N. T. Phung,, I. S. Chang,, B. H. Kim, and, H. C. Sung. 2003. Use of acetate for enrichment of electrochemically active micro-organisms and their 16s rDNA analyses. FEMS Microbiol. Lett. 223:185191.
35. Liu, H.,, S. A. Cheng, and, B. E. Logan. 2005. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol. 39:658662.
36. Liu, H., and, B. E. Logan. 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38:40404046.
37. Liu, H.,, R. Ramnarayanan, and, B. E. Logan. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38:22812285.
38. Logan, B. E.,, B. Hamelers,, R. Rozendal,, U. Schrorder,, J. Keller,, S. Freguia,, P. Aelterman,, W. Verstraete, and, K. Rabaey. 2006. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40:51815192.
39. Logan, B. E.,, C. Murano,, K. Scott,, N. D. Gray, and, I. M. Head. 2005. Electricity generation from cysteine in a microbial fuel cell. Water Res. 39:942952.
40. Logan, B. E., and, J. M. Regan. 2006. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 14:512518.
41. Madigan, M. T.,, J. M. Martinko, and, J. Parker. 2000. Brock Biology of Microorganisms. Prentice-Hall, Upper Saddle River, NJ.
42. Milliken, C. E., and, H. D. May. 2007. Sustained generation of electricity by the spore-forming, gram-positive, Desulfitobacterium hafniense strain DCB2. Appl. Microbiol. Biotechnol. 73:11801189.
43. Min, B., and, B. E. Logan. 2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 38:58095814.
44. Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen trnasfer by a chemiosmotic type of mechanism. Nature (London) 191:144148.
45. Moon, H.,, I. S. Chang, and, B. H. Kim. 2006. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresour. Technol. 97:621627.
46. Newman, D. K., and, R. Kolter. 2000. A role for excreted quinones in extracellular electron transfer. Nature 405:9497.
47. Page, C. C.,, C. C. Moser,, X. X. Chen, and, P. L. Dutton. 1999. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402:4752.
48. Park, D. H., and, J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66:12921297.
49. Park, H. S.,, B. H. Kim,, H. S. Kim,, H. J. Kim,, G. T. Kim,, M. Kim,, I. S. Chang,, Y. K. Park, and, H. I. Chang. 2001. A novel electro-chemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297306.
50. Phung, N. T.,, J. Lee,, K. H. Kang,, I. S. Chang,, G. M. Gadd, and, B. H. Kim. 2004. Analysis of microbial diversity in oligotrophic microbial fuel cells using 16s rDNA sequences. FEMS Microbiol. Lett. 233:7782.
51. Prasad, D.,, T. K. Sivaram,, S. Berchmans, and, V. Yegnaraman. 2006. Microbial fuel cell constructed with a microorganism isolated from sugar industry effluent. J. Power Sources 160:991996.
52. Rabaey, K.,, N. Boon,, M. Hofte, and, W. Verstraete. 2005a. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39:34013408.
53. Rabaey, K.,, N. Boon,, S. D. Siciliano,, M. Verhaege, and, W. Verstraete. 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70:53735382.
54. Rabaey, K.,, P. Clauwaert,, P. Aelterman, and, W. Verstraete. 2005b. Tubular microbial fuel cells for effcient electricity generation. Environ. Sci. Technol. 39:80778082.
55. Rabaey, K.,, G. Lissens,, S. D. Siciliano, and, W. Verstraete. 2003. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 25:15311535.
56. Rabaey, K.,, J. Rodriguez,, L. Blackall,, J. Keller,, D. Batstone,, W. Verstraete, and, K. H. Nealson. 2007. Microbial ecology meets electrochemistry: electricity driven and driving communities. ISME J. 1:918.
57. Rabaey, K.,, K. Van de Sompel,, L. Maignien,, N. Boon,, P. Aelterman,, P. Clauwaert,, L. De Schamphelaire,, H. T. Pham,, J. Vermeulen,, M. Verhaege,, P. Lens, and, W. Verstraete. 2006. Microbial fuel cells for sulfide removal. Environ. Sci. Technol. 40:52185224.
58. Reguera, G.,, K. D. McCarthy,, T. Mehta,, J. S. Nicoll,, M. T. Tuominen, and, D. R. Lovley. 2005. Extracellular electron transfer via microbial nanowires. Nature 435:10981101.
59. Reguera, G.,, K. P. Nevin,, J. S. Nicoll,, S. F. Covalla,, T. L. Woodard, and, D. R. Lovley. 2006. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72:73457348.
60. Reguera, G.,, R. B. Pollina,, J. S. Nicoll, and, D. R. Lovley. 2007. Possible nonconductive role of Geobacter sulfurreducens pilus nanowires in biofilm formation. J. Bacteriol. 189:21252127.
61. Rhoads, A.,, H. Beyenal, and, Z. Lewandowski. 2005. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol. 39:46664671.
62. Ringeisen, B. R.,, E. Henderson,, P. K. Wu,, J. Pietron,, R. Ray,, B. Little,, J. C. Biffinger, and, J. M. Jones-Meehan. 2006. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol. 40:26292634.
63. Ryckelynck, N.,, H. A. Stecher, and, C. E. Reimers. 2005. Understanding the anodic mechanism of a seafloor fuel cell: interactions between geochemistry and microbial activity. Biogeochemistry 76:113139.
64. Schlegel, H. 1992. General Microbiology, 7th ed. Cambridge University Press, Cambridge, United Kingdom.
65. Schroder, U.,, J. Niessen, and, F. Scholz. 2003. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem.-Int. Ed. 42:28802883.
66. Shantaram, A.,, H. Beyenal,, R. Raajan,, A. Veluchamy, and, Z. Lewandowski. 2005. Wireless sensors powered by microbial fuel cells. Environ. Sci. Technol. 39:50375042.
67. Straub, K. L., and, B. Schink. 2004. Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. Appl. Environ. Microbiol. 70:57445749.
68. Sutherland, I. W. 2001. The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol. 9:222227.
69. Ter Heijne, A.,, H. V., M. Hamelers, and, C. J. N. Buisman. 2007. Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environ. Sci. Technol. 41:41304134.
70. Ter Heijne, A.,, H. V. M. Hamelers,, V. De Wilde,, R. A. Rozendal, and, C. J. N. Buisman. 2006. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ. Sci. Technol. 40:52005205.
71. Thauer, R. K.,, K. Jungermann, and, K. Decker. 1977. Energy-conservation in chemotropic anaerobic bacteria. Bacteriol. Rev. 41:100180.
72. Zhao, F.,, F. Harnisch,, U. Schroder,, F. Scholz,, P. Bogdanoff, and, I. Herrmann. 2006. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ. Sci. Technol. 40:51935199.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error