1887

Chapter 25 : Molecular Aspects of Butanol Fermentation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Molecular Aspects of Butanol Fermentation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap25-2.gif

Abstract:

This chapter focuses on the regulation of solvent formation in solventogenic clostridia and in particular in ATCC 824, the most widely studied solventogenic at a genetic level, and until recently the only sequenced one. and other clostridia are also discussed to the extent that relevant molecular details are known and pertinent to the subject matter. When grown at neutral pH under conditions of high NAD(P)H availability, the culture of is termed alcohologenic as only butanol and ethanol are produced. The chapter focuses on these and related questions with emphasis on more-recent and genomically based work that has not been previously reviewed. The five solventogenic genes on pSOL1 are organized into three operons. Solvent and acid tolerance can be classified as a complex genetic trait, and its characterization requires not only the study of the ''key players'' but also the study of the organism response as a whole. Notable among the methodological improvements in this work were the improved performances of gene inserts from serial enrichment as opposed to a single round of enrichment in batch culture. It seems likely that one or more of the 178 pSOL1 genes is responsible for increased tolerance to butanol. Early attempts relied on the first systematic use of metabolic stoichiometry in order to calculate metabolic fluxes and carry out a large-scale metabolic flux analysis on the overall primary metabolism of .

Citation: Paredes C, Jones S, Senger R, Borden J, Sillers R, Papoutsakis E. 2008. Molecular Aspects of Butanol Fermentation, p 323-334. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch25

Key Concept Ranking

Branched-Chain Amino Acid Biosynthesis
0.4365542
0.4365542
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Metabolic pathways leading to acid and solvent formation in clostridia. The gene names shown correspond to those in ATCC 824. Genes belonging to the same transcriptional unit share the same background (i.e., shaded or unshaded) on the left-hand table. The two boxes correspond to the genes encoding the proteins shown in the graph. Systematic gene names are shown according to the genome annotation of ATCC 824 ( ) whereby CAC is used for genes located on the chromosome and CAP is used for genes located on the pSOL1 megaplasmid.

Citation: Paredes C, Jones S, Senger R, Borden J, Sillers R, Papoutsakis E. 2008. Molecular Aspects of Butanol Fermentation, p 323-334. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Schematic depiction of the morphological changes during sporulation and solventogenesis in clostridia. Each stage is named after the equivalent one in , and the main sporulation sigma factors expressed at each stage are also indicated.

Citation: Paredes C, Jones S, Senger R, Borden J, Sillers R, Papoutsakis E. 2008. Molecular Aspects of Butanol Fermentation, p 323-334. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch25
1. Alper, H.,, J. Moxley,, E. Nevoigt,, G. R. Fink, and, G. Stephanopoulos. 2006. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:15651568.
2. Alsaker, K. V. 2006. Microarray-based transcriptional analyses of stationary phase phenomena and stress responses in Clostridium acetobutylicum. Ph.D. thesis. Northwestern University, Evanston, IL.
3. Alsaker, K. V., and, E. T. Papoutsakis. 2005. Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J. Bacteriol. 187:71037118.
4. Alsaker, K. V.,, T. R. Spitzer, and, E. T. Papoutsakis. 2004. Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell’s response to butanol stress. J. Bacteriol. 186:19591971.
5. Andersch, W.,, H. Bahl, and, G. Gottschalk. 1983. Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum. Eur. J. Appl. Microbiol. Biotechnol. 18:327332.
6. Annous, B. A., and, H. P. Blaschek. 1991. Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity. Appl. Environ. Microbiol. 57:25442548.
7. Annous, B. A., and, H. P. Blaschek. 1990. Regulation and localization of amylolytic enzymes in Clostridium acetobutylicum ATCC-824. Appl. Environ. Microbiol. 56:25592561.
8. Azcarate-Peril, M. A.,, E. Altermann,, R. L. Hoover-Fitzula,, R. J. Cano, and, T. R. Klaenhammer. 2004. Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid tolerance. Appl. Environ. Microbiol. 70:53155322.
9. Baer, S. H.,, H. P. Blaschek, and, T. L. Smith. 1987. Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl. Environ. Microbiol. 53:28542861.
10. Baer, S. H.,, D. L. Bryant, and, H. P. Blaschek. 1989. Electron spin resonance analysis of the effect of butanol on the membrane fluidity of intact cells of Clostridium acetobutylicum. Appl. Environ. Microbiol. 55:27292731.
11. Bahl, H.,, M. Gottwald,, A. Kuhn,, V. Rale,, W. Andersch, and, G. Gottschalk. 1986. Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum. Appl. Environ. Micro-biol. 52:169172.
12. Baronofsky, J. J.,, W. J. Schreurs, and, E. R. Kashket. 1984. Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermoaceticum. Appl. Environ. Microbiol. 48:11341139.
13. Bertram, J.,, A. Kuhn, and, P. Durre. 1990. Tn916-induced mutants of Clostridium acetobutylicum defective in regulation of solvent formation. Arch. Microbiol. 153:373377.
14. Borden, J. R., and, E. T. Papoutsakis. 2007. Dynamics of genomic-library enrichment and identification of solvent tolerance genes in Clostridium acetobutylicum. Appl. Environ. Microbiol. 73:30613068.
15. Bowles, L. K., and, W. L. Ellefson. 1985. Effects of butanol on Clostridium acetobutylicum. Appl. Environ. Microbiol. 50:11651170.
16. Chiu, H. C.,, T. L. Lin, and, J. T. Wang. 2007. Identification and characterization of an organic solvent tolerance gene in Helicobacter pylori. Helicobacter 12:7481.
17. Choi, S. H.,, D. J. Baumler, and, C. W. Kaspar. 2000. Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7. Appl. Environ. Microbiol. 66:39113916.
18. Clark, S. W.,, G. N. Bennett, and, F. B. Rudolph. 1989. Isolation and characterization of mutants of Clostridium acetobutylicum ATCC-824 deficient in acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase (EC 2.8.3.9) and in other solvent pathway enzymes. Appl. Environ. Microbiol. 55:970976.
19. Cornillot, E.,, R. V. Nair,, E. T. Papoutsakis, and, P. Soucaille. 1997. The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J. Bacteriol. 179:54425447.
20. Desai, R. P.,, L. K. Nielsen, and, E. T. Papoutsakis. 1999. Stoichiometric modeling of Clostridium acetobutylicum fermentations with non-linear constraints. J. Biotechnol. 71:191205.
21. Dürre, P. 2005. Formation of solvents in clostridia, p. 671693. In P. Dürre (ed.), Handbook on Clostridia. CRC Press, Boca Raton, FL.
22. Dürre, P.,, R. J. Fischer,, A. Kuhn,, K. Lorenz,, W. Schreiber,, B. Sturzenhofecker,, S. Ullmann,, K. Winzer, and, U. Sauer. 1995. Solventogenic enzymes of Clostridium acetobutylicum—catalytic properties, genetic organization, and transcriptional regulation. FEMS Microbiol. Rev. 17:251262.
23. Dürre, P., and, C. Hollergschwandner. 2004. Initiation of endospore formation in Clostridium acetobutylicum. Anaerobe 10:6974.
24. Edwards, E. S.,, R. Ramakrishna,, C. H. Schilling, and, B. O. Palsson. 1999. Metabolic flux analysis, p. 1357. In S. Y. Lee and, E. T. Papoutsakis (ed.), Metabolic Engineering. Marcel Dekker, New York, NY.
25. Edwards, J. S.,, R. U. Ibarra, and, B. O. Palsson. 2001. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19:125130.
26. Fabret, C.,, V. A. Feher, and, J. A. Hoch. 1999. Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J. Bacteriol. 181:19751983.
27. Feustel, L.,, S. Nakotte, and, P. Dürre. 2004. Characterization and development of two reporter gene systems for Clostridium acetobutylicum. Appl. Environ. Microbiol. 70:798803.
28. Fontaine, L.,, I. Meynial-Salles, L. Girbal, X. Yang, C. Croux, and, P. Soucaille. 2002. Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J. Bacteriol. 184:821830.
29. Gerischer, U., and, P. Durre. 1992. mRNA analysis of the adc gene region of Clostridium acetobutylicum during the shift to solventogenesis. J. Bacteriol. 174:426433.
30. Gill, R. T.,, S. Wildt,, Y. T. Yang,, S. Ziesman, and, G. Stephanopoulos. 2002. Genome-wide screening for trait conferring genes using DNA microarrays. Proc. Natl. Acad. Sci. USA 99:70337038.
31. Girbal, L.,, C. Croux,, I. Vasconcelos, and, P. Soucaille. 1995a. Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiol. Rev. 17:287297.
32. Girbal, L., and, P. Soucaille. 1994. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J. Bacteriol. 176:64336438.
33. Girbal, L., and, P. Soucaille. 1998. Regulation of solvent production in Clostridium acetobutylicum. Trends Biotechnol. 16:1116.
34. Girbal, L.,, I. Vasconcelos,, S. Saintamans, and, P. Soucaille. 1995b. How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH. FEMS Microbiol. Rev. 16:151162.
35. Gorwa, M. F.,, C. Croux, and, P. Soucaille. 1996. Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824. J. Bacteriol. 178:26682675.
36. Green, E. M.,, Z. L. Boynton,, L. M. Harris,, F. B. Rudolph,, E. T. Papoutsakis, and, G. N. Bennett. 1996. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142:20792086.
37. Grupe, H., and, G. Gottschalk. 1992. Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Appl. Environ. Microbiol. 58:38963902.
38. Harris, L. M.,, L. Blank,, R. P. Desai,, N. E. Welker, and, E. T. Papoutsakis. 2001. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J. Ind. Microbiol. Biotechnol. 27:322328.
39. Harris, L. M.,, R. P. Desai,, N. E. Welker, and, E. T. Papoutsakis. 2000. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol. Bioeng. 67:111.
40. Harris, L. M.,, N. E. Welker, and, E. T. Papoutsakis. 2002. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J. Bacteriol. 184:35863597.
41. Hartmanis, M. G. N., T. Klason, and, S. Gatenbeck. 1984. Uptake and activation of acetate and butyrate in Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 20:6671.
42. Heinemann, M.,, A. Kummel,, R. Ruinatscha, and, S. Panke. 2005. In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol. Bioeng. 92:850864.
43. Husemann, M. H. W., and, E. T. Papoutsakis. 1989. Comparison between in vivo and in vitro enzyme activities in continuous and batch fermentations of Clostridium acetobutylicum. Appl. Micro-biol. Biotechnol. 30:585595.
44. Hüsemann, M. H. W., and, E. T. Papoutsakis. 1988. Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic-acid and proton concentrations. Biotechnol. Bioeng. 32:843852.
45. Ingram, L. O. 1976. Adaptation of membrane lipids to alcohols. J. Bacteriol. 125:670678.
46. Jesse, T. W.,, T. C. Ezeji,, N. Qureshi, and, H. P. Blaschek. 2002. Production of butanol from starch-based waste packing peanuts and agricultural waste. J. Ind. Microbiol. Biotechnol. 29:117123.
47. Jiang, M.,, W. Shao,, M. Perego, and, J. A. Hoch. 2000. Multiple histi-dine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38:535542.
48. Jones, D. T.,, A. van der Weshuizen,, S. Long,, E. R. Allcock,, S. J. Reid, and, D. R. Woods. 1982. Solvent production and morphological changes in Clostridium acetobutylicum. Appl. Environ. Micro-biol. 43:14341439.
49. Jones, D. T., and, D. R. Woods. 1986. Acetone-butanol fermentation revisited. Microbiol. Rev. 50:484524.
50. Junelles, A. M.,, R. Janatiidrissi,, A. Elkanouni,, H. Petitdemange, and, R. Gay. 1987. Acetone-butanol fermentation by mutants selected for resistance to acetate and butyrate halogen analogs. Biotechnol. Lett. 9:175178.
51. Kanehisa, M.,, S. Goto,, M. Hattori,, K. F. Aoki-Kinoshita,, M. Itoh,, S. Kawashima,, T. Katayama,, M. Araki, and, M. Hirakawa. 2006. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34:D354–D357.
52. Kashket, E. R. 1987. Bioenergetics of lactic-acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol. Rev. 46:233244.
53. Keis, S.,, R. Shaheen, and, D. T. Jones. 2001. Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int. J. Syst. Evol. Micro-biol. 51:20952103.
54. Kim, M. J.,, G. H. Lim,, E. S. Kim,, C. B. Ko,, K. Y. Yang,, J. A. Jeong,, M. C. Lee, and, C. S. Kim. 2007. Abiotic and biotic stress tolerance in Arabidopsis overexpressing the multiprotein bridging factor 1a (MBF1a) transcriptional coactivator gene. Biochem. Biophys. Res. Commun. 354:440446.
55. Klapatch, T. R.,, A. L. Demain, and, L. R. Lynd. 1996. Restriction endonuclease activity in Clostridium thermocellum and Clostridium thermosaccharolyticum. Appl. Microbiol. Biotechnol. 45:127131.
56. Labie, C.,, F. Bouche, and, J. P. Bouche. 1989. Isolation and mapping of Escherichia coli mutations conferring resistance to division inhibition protein DicB. J. Bacteriol. 171:43154319.
57. Laursen, R. A., and, F. H. Westheimer. 1966. Active site of acetoacetate decarboxylase. J. Am. Chem. Soc. 88:34263430.
58. Lesnik, E. A.,, R. Sampath,, H. B. Levene,, T. J. Henderson,, J. A. McNeill, and, D. J. Ecker. 2001. Prediction of rho-independent transcriptional terminators in Escherichia coli. Nucleic Acids Res. 29:35833594.
59. Liu, Y.,, J. Zhou,, M. V. Omelchenko,, A. S. Beliaev,, A. Venkateswaran,, J. Stair,, L. Wu,, D. K. Thompson,, D. Xu,, I. B. Rogozin,, E. K. Gaidamakova,, M. Zhai,, K. S. Makarova,, E. V. Koonin, and, M. J. Daly. 2003. Transcriptome dynamics of Deinococcus radio-durans recovering from ionizing radiation. Proc. Natl. Acad. Sci. USA 100:41914196.
60. Long, S.,, D. T. Jones, and, D. R. Woods. 1984a. Initiation of solvent production, clostridial stage and endospore formation in Clostridium acetobutylicum P262. Appl. Microbiol. Biotechnol. 20:256261.
61. Long, S.,, D. T. Jones, and, D. R. Woods. 1984b. The relationship between sporulation and solvent production in Clostridium acetobutylicum-P262. Biotechnol. Lett. 6:529534.
62. Long, S.,, D. T. Jones, and, D. R. Woods. 1983. Sporulation of Clostridium acetobutylicum P262 in a defined medium. Appl. Environ. Microbiol. 45:13891393.
63. Mermelstein, L. D.,, N. E. Welker,, G. N. Bennett, and, E. T. Papoutsakis. 1992. Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Biotechnology (New York) 10:190195.
64. Meyer, C. L., and, E. T. Papoutsakis. 1989. Increased levels of ATP and NADH are associated with increased solvent production in continuous cultures of Clostridium acetobutylicum. Appl. Micro-biol. Biotechnol. 30:450459.
65. Minnikin, D. E.,, L. Kremer,, L. G. Dover, and, G. S. Besra. 2002. The methyl-branched fortifications of Mycobacterium tuberculosis. Chem. Biol. 9:545553.
66. Mitchell, W. J., and, M. Tangney. 2005. Carbohydrate uptake by the phosphotransferase system and other mechanisms, p. 155175. In P. Dürre (ed.), Handbook on Clostridia. CRC Press, Boca Raton, FL.
67. Murray, W. D.,, K. B. Wemyss, and, A. W. Khan. 1983. Increased ethanol-production and tolerance by a pyruvate-negative mutant of Clostridium saccharolyticum. Eur. J. Appl. Microbiol. Biotechnol. 18:7174.
68. Nair, R. 1995. Molecular characterization and regulation of a multifunctional aldehyde/alcohol dehydrogenase gene and its use for metabolic engineering of Clostridium acetobutylicum ATCC 824. Ph.D. thesis. Northwestern University, Evanston, IL.
69. Nair, R. V., and, E. T. Papoutsakis. 1994. Expression of plasmid-encoded aad in Clostridium acetobutylicum M5 restores vigorous butanol production. J. Bacteriol. 176:58435846.
70. Nölling, J.,, G. Breton,, M. V. Omelchenko,, K. S. Makarova,, Q. Zeng,, R. Gibson,, H. M. Lee,, J. Dubois,, D. Qiu,, J. Hitti,, Y. Wolf,, R. L. Tatusov,, F. Sabathe,, L. Doucette-Stamm,, P. Soucaille,, M. J. Daly,, G. N. Bennett,, E. V. Koonin, and, D. R. Smith. 2001. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 183:48234838.
71. Ounine, K.,, H. Petitdemange,, G. Raval, and, R. Gay. 1985. Regulation and butanol inhibition of D-xylose and D-glucose uptake in Clostridium acetobutylicum. Appl. Environ. Microbiol. 49:874878.
72. Ozkan, M.,, S. G. Desai,, Y. Zhang,, D. M. Stevenson,, J. Beane,, E. A. White,, M. L. Guerinot, and, L. R. Lynd. 2001. Characterization of 13 newly isolated strains of anaerobic, cellulolytic, thermophilic bacteria. J. Ind. Microbiol. Biotechnol. 27:275280.
73. Papoutsakis, E. T. 1984. Equations and calculations for fermentations of butyric-acid bacteria. Biotechnol. Bioeng. 26:174187.
74. Paquet, V.,, C. Croux,, G. Goma, and, P. Soucaille. 1991. Purification and characterization of the extracellular alpha-amylase from Clostridium acetobutylicum ATCC-824. Appl. Environ. Microbiol. 57:212218.
75. Paredes, C. J.,, K. V. Alsaker, and, E. T. Papoutsakis. 2005. A comparative genomic view of clostridial sporulation and physiology. Nat. Rev. Microbiol. 3:969978.
76. Paredes, C. J.,, I. Rigoutsos, and, E. T. Papoutsakis. 2004. Transcriptional organization of the Clostridium acetobutylicum genome. Nucleic Acids Res. 32:19731981.
77. Predich, M.,, G. Nair, and, I. Smith. 1992. Bacillus subtilis early sporulation genes kinA, spo0F, and spo0A are transcribed by the RNA polymerase containing sigma-H. J. Bacteriol. 174:27712778.
78. Qureshi, N.,, A. Lolas, and, H. P. Blaschek. 2001. Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. J. Ind. Microbiol. Biotechnol. 26:290295.
79. Ragauskas, A. J.,, C. K. Williams,, B. H. Davison,, G. Britovsek,, J. Cairney,, C. A. Eckert,, W. J. Frederick,, J. P. Hallett,, D. J. Leak,, C. L. Liotta,, J. R. Mielenz,, R. Murphy,, R. Templer, and, T. Tschaplinski. 2006. The path forward for biofuels and biomaterials. Science 311:484489.
80. Ravagnani, A.,, K. C. Jennert,, E. Steiner,, R. Grunberg,, J. R. Jefferies,, S. R. Wilkinson,, D. I. Young,, E. C. Tidswell,, D. P. Brown,, P. Youngman,, J. G. Morris, and, M. Young. 2000. Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Mol. Microbiol. 37:11721185.
81. Ren, Q.,, K. Chen, and, I. T. Paulsen. 2007. TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res. 35:D274D279.
82. Reysenbach, A. L.,, N. Ravenscroft,, S. Long,, D. T. Jones, and, D. R. Woods. 1986. Characterization, biosynthesis, and regulation of granulose in Clostridium acetobutylicum. Appl. Environ. Micro-biol. 52:185190.
83. Rogers, P. 1986. Genetics and biochemistry of Clostridium relevant to development of fermentation processes. Adv. Appl. Microbiol. 31:160.
84. Sabathe, F.,, C. Croux,, E. Cornillot, and, P. Soucaille. 2002. amyP, a reporter gene to study strain degeneration in Clostridium acetobutylicum ATCC 824. FEMS Microbiol. Lett. 210:9398.
85. Saier, M. H., Jr.,, C. V. Tran, and, R. D. Barabote. 2006. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res. 34:D181–D186.
86. Sardessai, Y., and, S. Bhosle. 2002. Tolerance of bacteria to organic solvents. Res. Microbiol. 153:263268.
87. Sauer, U., and, P. Durre. 1995. Differential induction of genes related to solvent formation during the shift from acidogenesis to solventogenesis in continuous culture of Clostridium acetobutylicum. FEMS Microbiol. Lett. 125:115120.
88. Schomburg, I.,, A. Chang,, C. Ebeling,, M. Gremse,, C. Heldt,, G. Huhn, and, D. Schomburg. 2004. BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res. 32:D431D433.
89. Shimizu, K.,, S. Hayashi,, T. Kako,, M. Suzuki,, N. Tsukagoshi,, N. Doukyu,, T. Kobayashi, and, H. Honda. 2005. Discovery of glpC, an organic solvent tolerance-related gene in Escherichia coli, using gene expression profiles from DNA microarrays. Appl. Environ. Microbiol. 71:10931096.
90. Soucaille, P.,, G. Joliff,, A. Izard, and, G. Goma. 1987. Butanol tolerance and autobacteriocin production by Clostridium acetobutylicum. Curr. Microbiol. 14:295299.
91. Stragier, P., and, R. Losick. 1996. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30:297341.
92. Tangney, M.,, J. K. Brehm,, N. P. Minton, and, W. J. Mitchell. 1998. A gene system for glucitol transport and metabolism in Clostridium beijerinckii NCIMB 8052. Appl. Environ. Microbiol. 64:16121619.
93. Tangney, M.,, A. Galinier,, J. Deutscher, and, W. J. Mitchell. 2003. Analysis of the elements of catabolite repression in Clostridium acetobutylicum ATCC 824. J. Mol. Microbiol. Biotechnol. 6:611.
94. Tangney, M., and, W. J. Mitchell. 2000. Analysis of a catabolic operon for sucrose transport and metabolism in Clostridium acetobutylicum ATCC 824. J. Mol. Microbiol. Biotechnol. 2:7180.
95. Tangney, M., and, W. J. Mitchell. 2007. Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824. Appl. Microbiol. Biotechnol. 74:398405.
96. Tangney, M.,, G. T. Winters, and, W. J. Mitchell. 2001. Characterization of a maltose transport system in Clostridium acetobutylicumATCC 824. J. Ind. Microbiol. Biotechnol. 27:298306.
97. Tani, T. H.,, A. Khodursky,, R. M. Blumenthal,, P. O. Brown, and, R. G. Matthews. 2002. Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 99:1347113476.
98. Thaw, P.,, S. E. Sedelnikova,, T. Muranova,, S. Wiese,, S. Ayora,, J. C. Alonso,, A. B. Brinkman,, J. Akerboom,, J. van der Oost, and, J. B. Rafferty. 2006. Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family. Nucleic Acids Res.. 34:14391449.
99. Thormann, K.,, L. Feustel,, K. Lorenz,, S. Nakotte, and, P. Dürre. 2002. Control of butanol formation in Clostridium acetobutylicum by transcriptional activation. J. Bacteriol. 184:1966-1973.
100. Tomas, C. A.,, J. Beamish, and, E. T. Papoutsakis. 2004. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J. Bacteriol. 186:20062018.
101. Tomas, C. A.,, N. E. Welker, and, E. T. Papoutsakis. 2003. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl. Environ. Microbiol. 69:49514965.
102. Tummala, S. B.,, S. G. Junne, and, E. T. Papoutsakis. 2003a. Anti-sense RNA downregulation of coenzyme A transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations. J. Bacteriol. 185:36443653.
103. Tummala, S. B.,, S. G. Junne,, C. J. Paredes, and, E. T. Papoutsakis. 2003b. Transcriptional analysis of product-concentration driven changes in cellular programs of recombinant Clostridium acetobutylicum strains. Biotechnol. Bioeng. 84:842854.
104. Tummala, S. B.,, N. E. Welker, and, E. T. Papoutsakis. 1999. Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 65:37933799.
105. Vasconcelos, I.,, L. Girbal, and, P. Soucaille. 1994. Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J. Bacteriol. 176:14431450.
106. Vollherbst-Schneck, K.,, J. A. Sands, and, B. S. Montenecourt. 1984. Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 47:193194.
107. Walter, K. A.,, G. N. Bennett, and, E. T. Papoutsakis. 1992. Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes. J. Bacteriol. 174:71497158.
108. Weber, F. J., and, J. A. de Bont. 1996. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim. Biophys. Acta 1286:225245.
109. Winzer, K.,, K. Lorenz, and, P. Durre. 1997. Acetate kinase from Clostridium acetobutylicum: a highly specific enzyme that is actively transcribed during acidogenesis and solventogenesis. Microbiology 143:32793286.
110. Winzer, K.,, K. Lorenz,, B. Zickner, and, P. Durre. 2000. Differential regulation of two thiolase genes from Clostridium acetobutylicumDSM 792. J. Mol. Microbiol. Biotechnol. 2:531541.
111. Wong, J., and, G. N. Bennett. 1996. The effect of novobiocin on solvent production by Clostridium acetobutylicum. J. Ind. Microbiol. 16:354359.
112. Woods, D. R. 1995. The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259264.
113. Wu, J. J.,, P. J. Piggot,, K. M. Tatti, and, C. P. Moran. 1991. Transcription of the Bacillus subtilis SpoIIA locus. Gene 101:113116.
114. Yomano, L. P.,, S. W. York, and, L. O. Ingram. 1998. Isolation and characterization of ethanol-tolerant mutants of Escherichia coliKO11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol. 20:132138.
115. Zhao, Y. S.,, C. A. Tomas,, F. B. Rudolph,, E. T. Papoutsakis, and, G. N. Bennett. 2005. Intracellular butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implications for solvent formation. Appl. Environ. Microbiol. 71:530537.
116. Zverlov, V. V.,, O. Berezina,, G. A. Velikodvorskaya, and, W. H. Schwarz. 2006. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl. Microbiol. Biotechnol. 71:587597.

Tables

Generic image for table
Table 1.

Effects of substrates and medium composition on solvent production

Citation: Paredes C, Jones S, Senger R, Borden J, Sillers R, Papoutsakis E. 2008. Molecular Aspects of Butanol Fermentation, p 323-334. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch25

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error