1887

Chapter 26 : Practical Aspects of Butanol Production

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Practical Aspects of Butanol Production, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap26-2.gif

Abstract:

This chapter discusses practical approaches for biobutanol production, including strategies for reducing or eliminating butanol toxicity to the culture, as well as exploiting both physiological and nutritional aspects of the fermenting microorganisms in order to achieve better product specificity and yield. Recent developments in liquid biofuel technology, the uncertainty of petroleum supplies, the finite nature of fossil fuels, and environmental concerns have revived research efforts aimed at obtaining butanol from renewable resources. Solventogenic clostridia and many other anaerobes transport sugars into cell membranes through a phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS), and this PTS is involved in the transfer of a phosphate group from PEP to the substrate sugar. Generally, process controls during fermentations may be classified as physical (agitation speed, temperature, pressure, and aeration rate), chemical (pH, redox potential, dissolved oxygen, and dissolved CO), and biological (biomass concentration, oxygen uptake, and production rates of H, CO, CH, etc.) variables. The solventogenic clostridia have the ability to reassimilate the fermentation intermediates (acids) for solvent or butanol production and stabilize the pH in the process. pH measurement during butanol fermentation is important in order to accurately monitor the fermentation progress and in extreme cases prevent "acid crash." Accurate online pH monitoring is important for early detection of poorly buffered pH media.

Citation: Ezeji T, Blaschek H. 2008. Practical Aspects of Butanol Production, p 335-346. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch26

Key Concept Ranking

Carbon monoxide
0.57086617
Cell Division
0.53906417
Acetic Fermentation
0.5046039
0.57086617
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Simplified metabolism of glucose by solventogenic clostridia. Symbols: 1, glucose uptake by the PTS and conversion to pyruvate by the Embden-Meyerhof-Parnas pathway; 2, pyruvateferredoxin oxidoreductase; 3, thiolase; 4, 3-hydroxybutyryl-CoA dehydrogenase, crotonase, and butyryl-CoA dehydrogenase; 5, phosphate acetyltransferase and acetate kinase; 6, acetaldehyde dehydrogenase and ethanol dehydrogenase; 7, acetoacetyl-CoA:acetate/butyrate:CoA transferase and acetoacetate decarboxylase; 8, phosphate butyltransferase and butyrate kinase; 9, butyraldehyde dehydrogenase and butanol dehydrogenase.

Citation: Ezeji T, Blaschek H. 2008. Practical Aspects of Butanol Production, p 335-346. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Schematic diagram of ABE production by BA101 and recovery by gas stripping process with a separate stripping column.

Citation: Ezeji T, Blaschek H. 2008. Practical Aspects of Butanol Production, p 335-346. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch26
1. Adler, H. I., and, W. Crow. 1987. A technique for predicting the solvent-producing ability of Clostridium acetobutylicum. Appl. Environ. Microbiol. 53:24962499.
2. Annous, B. A., and, H. P. Blaschek. 1991. Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity. Appl. Environ. Microbiol. 57:25442548.
3. Baer, S. H.,, H. P. Blaschek, and, T. L. Smith. 1987. Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl. Environ. Microbiol. 53:28542861.
4. Bahl, H.,, W. Andersch, and, G. Gottschalk. 1982. Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat. Eur. J. Appl. Microbiol. Biotechnol. 15:201205.
5. Bowles, L. K., and, W. L. Ellefson. 1985. Effects of butanol on Clostridium acetobutylicum. Appl. Environ. Microbiol. 50:11651170.
6. Campos, E. J.,, N. Qureshi, and, H. P. Blaschek. 2002. Production of acetone butanol ethanol from degermed corn using Clostridium beijerinckii BA101. Appl. Biochem. Biotechnol. 98:552561.
7. Chen, C. K., and, H. P. Blaschek. 1999. Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckiiBA101. Appl. Microbiol. Biotechnol. 52:170173.
8. Chung, Y.-C., A. Bakalinsky, and, M. H. Penner. 2005. Enzymatic saccharification and fermentation of xylose-optimized dilute acid-treated lignocellulosics. Appl. Biochem. Biotechnol. 121-124:947961.
9. Daldal, F., and, J. Applebaum. 1985. Cloning and expression of Clostridium pasteurianum galactokinase gene in Escherichia coli K-12 and nucleotide sequence analysis of a region affecting the amount of the enzyme. J. Mol. Biol. 186:533545.
10. Dürre, P. 1998. New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl. Microbiol. Biotechnol. 49:639648.
11. Evans, P. J., and, H. W. Wang. 1988. Enhancement of butanol fermentation by Clostridium acetobutylicum in the presence of decanololeyl alcohol mixed extractants. Appl. Environ. Microbiol. 54:16621667.
12. Ezeji, T. C., and, H. P. Blaschek. Fermentation. of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresour. Technol. (Epub ahead of print.)
13. Ezeji, T. C.,, N. Qureshi, and, H. P. Blaschek. 2007a. Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol. Bioeng. 97:14601469.
14. Ezeji, T. C.,, N. Qureshi, and, H. P. Blaschek. 2007b. Bioproduction of butanol from biomass: from genes to bioreactors. Curr. Opin. Biotechnol. 18:220227.
15. Ezeji, T. C.,, N. Qureshi, and, H. P. Blaschek. 2007c. Production of acetone butanol ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii. Process Biochem. 42:3439.
16. Ezeji, T. C.,, N. Qureshi, and, H. P. Blaschek. 2005a. Continuous butanol fermentation and feed starch retrogradation: butanol fermentation sustainability using Clostridium beijerinckii BA101. J. Biotechnol. 115:179187.
17. Ezeji, T. C.,, N. Qureshi, and, H. P. Blaschek. 2005b. Industrially relevant fermentations, p. 797812. In P. Durre, (ed.), Handbook on Clostridia. Taylor and Francis, New York, NY.
18. Ezeji, T. C.,, N. Qureshi, and, H. P. Blaschek. 2004. Acetone-butanolethanol production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl. Microbiol. Biotechnol. 63:653658.
19. Ezeji, T. C.,, N. Qureshi, and, H. P. Blaschek. 2003. Production of butanol by Clostridium beijerinckii BA101 and in-situ recovery by gas stripping. World J. Microbiol. Biotechnol. 19:595603.
20. Garcia, A.,, E. L. Lanotti, and, J. L. Fischer. 1986. Butanol fermentation liquor production and separation by reverse osmosis. Biotechnol. Bioeng. 28:785791.
21. George, H. A., and, J.-S. Chen. 1983. Acidic conditions are not obligatory for onset on butanol formation by Clostridium beijerinckii (synonym, C. butylicum). Appl. Environ. Microbiol. 46:321327.
22. González-Pajuelo, M.,, I. Meynial-Salles,, M. F. Filipa,, P. Soucaille, and, I. Vasconcelos. 2006. Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1(pSPD5). Appl. Environ. Microbiol. 72:96101.
23. Gray, K. A.,, L. Zhao, and, M. Emptage. 2006. Bioethanol. Curr. Opinion. Chem. Biol. 10:141146.
24. Groot, W. J.,, R. G. J. M. van der Lans, and, K. C. A. M. Luyben. 1989. Batch and continuous butanol fermentation with free cells: integration with product recovery by gas stripping. Appl. Micro-biol. Biotechnol. 32:305308.
25. Groot, W. J.,, C. E. van den Oever, and, N. W. F. Kossen. 1984. Pervaporation for simultaneous product recovery in the butanol/ isopropanol batch fermentation. Biotechnol. Lett. 6:709714.
26. Gulati, M.,, K. Kohlmann,, M. R. Ladisch,, R. Hespell, and, R. J. Bothast. 1996. Assessment of ethanol production options for corn products. Bioresour. Technol. 58:253264.
27. Hartmanis, M. G. N., H. Ahlman, and, S. Gatenbeck. 1986. Stability of solvent formation in Clostridium acetobutylicum during repeated subculturing. Appl. Microbiol. Biotechnol. 23:369371.
28. Hull, S.,, B. Y. Yang,, D. Venzke,, K. Kulhavy, and, R. Montgomery. 1996. Composition of corn steep water during steeping. J. Agric. Food Chem. 44:18571863.
29. Hüsemann, M. H., and, E. T. Papoutsakis. 1990. Effects of propionate and acetate additions on solvent production in batch cultures of Clostridium acetobutylicum. Appl. Environ. Microbiol. 56:14971500.
30. Jones, D. T., and, D. R. Woods. 1986. Acetone-butanol fermentation revisited. Microbiol. Rev. 50:484524.
31. Kashket, E. R., and, Z.-Y. Cao. 1995. Clostridial strain degeneration. FEMS Microbiol. Rev. 17:307315.
32. Kutzenok, A., and, M. Aschner. 1952. Degenerative processes in a strain of Clostridium butylicum. J. Bacteriol. 64:829838.
33. Ladisch, M. R. 1991. Fermentation-derived butanol and scenarios for its uses in energy-related applications. Enzyme Microb. Technol. 13:280283.
34. Laureano-Perez, L., F. Teymouri, H. Alizadeh, and, B. E. Dale. 2005. Understanding factors that limit enzymatic hydrolysis of biomass. Appl. Biochem. Biotechnol. 121–124:10811099.
35. Lee, J. 1997. Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol. 56:124.
36. Lee, J., and, H. P. Blaschek. 2001. Glucose uptake in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101. Appl. Environ. Microbiol. 67:50255031.
37. Lee, J.,, W. J. Mitchell,, M. Tangney, and, H. P. Blaschek. 2005. Evidence for the presence of alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101. Appl. Environ. Microbiol. 71:33843387.
38. Long, S.,, D. T. Jones, and, D. R. Woods. 1984. The relationship between sporulation and solvent production in Clostridium acetobutylicum P262. Biotechnol. Lett. 6:529534.
39. Maddox, I. S.,, E. Steiner,, S. Hirsch,, S. Wessner,, N. A. Gutierrez,, J. R. Gapes, and, K. C. Schuster. 2000. The cause of “acid crash” and “acidogenic fermentations” during the batch acetone-butanolethanol (ABE-) fermentation process. J. Mol. Microbiol. Biotechnol. 2:95100.
40. Madihah, M. S.,, A. B. Ariff,, K. M. Sahaid,, A. A. Suraini, and, M. I. A. Karim. 2001. Direct fermentation of gelatinized sago starch to acetone-butanol-ethanol by Clostridium acetobutylicum. World J. Microbiol. Biotechnol. 17:567576.
41. McCutchan, W. N., and, R. J. Hickey. 1954. The butanol-acetone fermentations. Ind. Ferment. 1:347388.
42. McNeil, B., and, B. Kristiahsen. 1985. Effect of temperature upon growth rate and solvent production in batch cultures of Clostridium acetobutylicum. Biotechnol. Lett. 7:499502.
43. Mitchell, W. J. 1998. Physiology of carbohydrates to solvent conversion by clostridia. Adv. Microb. Physiol. 39:31130.
44. Monot, F.,, J. M. Engasser, and, H. Petitdemange. 1983. Regulation of acetone butanol production in batch and continuous cultures of Clostridium acetobutylicum. Biotechnol. Bioeng. Symp. 13:207216.
45. Montoya, D.,, S. Sandra,, S. Edelberto, and, W. H. Schwarz. 2000. Isolation of mesophilic solvent-producing clostridia from Colombian sources: physiological characterization, solvent production and polysaccharide hydrolysis. J. Biotechnol. 79:117126.
46. Nelson, D. L., and, B. P. Webb. 1979. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., vol. IV, p. 179190. John Wiley, New York, NY.
47. Nielson, L.,, M. Larsson,, O. Holst, and, B. Mattiasson. 1988. Adsorbents for extractive bioconversion applied to the acetone butanol fermentation. Appl. Microbiol. Biotechnol. 28:335339.
48. Parekh, M.,, J. Formanek, and, H. P. Blaschek. 1999. Pilot-scale production of butanol by Clostridium beijerinckii BA101 using a low-cost fermentation medium based on corn steep water. Appl. Microbiol. Biotechnol. 51:152157.
49. Parekh, M.,, J. Formanek, and, H. P. Blaschek. 1998. Development of a cost-effective glucose-corn steep medium for production of butanol by Clostridium beijerinckii. J. Ind. Microbiol. Biotechnol. 21:187191.
50. Qureshi, N., and, H. P. Blaschek. 2001a. ABE production from corn: a recent economic evaluation. J. Ind. Microbiol. Biotechnol. 27:292297.
51. Qureshi, N., and, H. P. Blaschek. 2001b. Evaluation of recent advances in butanol fermentation, upstream and downstream processing. Bioproc. Biosyst. Eng. 24:219226.
52. Qureshi, N., and, H. P. Blasche. 2000. Butanol production using hyper-butanol producing mutant strain of Clostridium beijerinckiiBA101 and recovery by pervaporation. Appl. Biochem. Biotechnol. 84:225235.
53. Qureshi, N., and, H. P. Blaschek. 1999. Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation. Biotechnol. Prog. 15:594602.
54. Qureshi, N.,, P. Karcher,, M. Cotta, and, H. P. Blaschek. 2004. High-productivity continuous biofilm reactor for butanol production. Appl. Biochem. Biotechnol. 113–116:713721.
55. Qureshi, N.,, I. S. Maddox, and, A. Friedl. 1992. Application of continuous substrate feeding to the ABE fermentation: relief of product inhibition using extraction, perstraction, stripping, and pervaporation. Biotechnol. Prog. 8:382390.
56. Qureshi, N.,, M. M., Meagher, J. Huang, and, H. P. Hutkins. 2002. Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite-silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum. J. Membr. Sci. 187:93102.
57. Sonnleitner, B.,, G. Locher, and, A. Fiechter. 1992. Biomass determination. J. Biotechnol. 25:522.
58. Stevens, G. M.,, R. A. Holt,, J. C. Gotschal, and, J. G. Morris. 1985. Studies on the stability of solvent production by Clostridium acetobutylicum in continuous culture. J. Appl. Bacteriol. 59:597605.
59. Tashiro, Y.,, K. Takeda,, G. Kobayashi,, K. Sonomoto,, A. Ishizaki, and, S. Yoshino. 2004. High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-stat continuous butyric acid and glucose feeding method, J. Biosci. Bioeng. 98:263268.
60. Zaldivar, J.,, A. Martinez, and, L. O. Ingram. 1999. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 65:2433.

Tables

Generic image for table
Table 1.

Composition of representative potential lignocellulosic raw materials for biobutanol production

Citation: Ezeji T, Blaschek H. 2008. Practical Aspects of Butanol Production, p 335-346. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error