1887

Chapter 28 : Increased Biofuel Production by Metabolic Engineering of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Increased Biofuel Production by Metabolic Engineering of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap28-2.gif

Abstract:

Researched data suggest that membrane-associated proteins in the ethanol-adapted strain are either synthesized in lesser quantities or not properly incorporated into the cell membrane. In this study, 49 different proteins were identified and among them were two highly abundant surface layer proteins, flagellum components, and paralogs of the high-molecular-weight surface layer protein. These identified proteins may represent new virulence factors. The current status for reduction of expression of multiple genes is antisense RNA technology. The introduction of plasmids bearing genes of acid pathways showed only a modest effect on the acid content. This suggests that increasing the levels of certain enzymes may not affect the overall metabolite profile if they are already in adequate amount and the network is limited by other factors. Among the strategies discussed to increase the butanol fraction of solvents in , that is, by manipulating expression levels of genes for acid and solvent production, regulators, heat shock proteins, and sporulation, altering gene expression for cell membrane synthesis would be expected to directly address solvent tolerance as well as production capabilities. The study of the genes encoding the 1,3-PD operon of VPI1718 revealed three genes, dhaB1, dhaB2, and dhaT. Studies detailed in this chapter reflect an increased level of complexity in the process of metabolic engineering and recognize that attempts to improve the desired phenotype must be accompanied by a deeper understanding of the organism as a whole if success in strain engineering is to be achieved.

Citation: Sullivan L, Scotcher M, Bennett G. 2008. Increased Biofuel Production by Metabolic Engineering of , p 361-376. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch28

Key Concept Ranking

Transcription Start Site
0.57200134
Fatty Acid Synthase
0.45419934
0.57200134
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Metabolic pathways of . The acid and solvent products are in bold boxes: acetate, butyrate, ethanol, acetone, and butanol. Genes are shown in italics, with those underlined residing on the pSOL1 plasmid. Enzyme names are capitalized: AK, acetate kinase; PTA, phosphotransacetylase; THL, thiolase; CoAT, CoA transferase; AAD, alcohol/alde-hyde dehydrogenase; ADC, acetoacetate decarboxylase; BHBD, β-hydroxylbutyryl dehydrogenase; CRO, crotonase; BCD, butyryl-CoA dehydrogenase; BK, butyrate kinase; PTB, phosphotransbutyrylase; BDHA and BDHB, butanol dehydrogenase isozymes A and B (adapted from , and ).

Citation: Sullivan L, Scotcher M, Bennett G. 2008. Increased Biofuel Production by Metabolic Engineering of , p 361-376. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Metabolic engineering stands to gain significantly from advances in complementary biological fields. Omics technologies and computational systems biology can provide large amounts of data about a cellular state and the means by which to analyze it, whereas protein engineering and synthetic biology can provide tool sets for new ways to manipulate a cell to improve the cellular properties. These four fields have a unique set of expertise that could be applied to further metabolic engineering analysis and implementation. Reprinted from ( ) with permission of the publisher.

Citation: Sullivan L, Scotcher M, Bennett G. 2008. Increased Biofuel Production by Metabolic Engineering of , p 361-376. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Fermentation kinetics of 824(pSOS95del), 824(pCTFB1AS), and 824(pAADB1). (A) Glucose, acid, and solvent profiles. The name of each profile in 824(pSOS95del) (▪), 824(pCTFB1AS) ( ), and 824(pAADB1) ( ) is indicated above each graph. Reprinted from the ( ) with permission of the publisher.

Citation: Sullivan L, Scotcher M, Bennett G. 2008. Increased Biofuel Production by Metabolic Engineering of , p 361-376. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Fermentation profiles of WT (a) and PJC4BK (b) at pH 5.0. Shown are optical density (–X–) and product concentrations of acetate (– –), acetone (– –), butyrate (– –), butanol (– –), and ethanol (– –). The data at pH 5.0 show a more dramatic effect than those published earlier for pH 5.5 cultures by Green et al. ( ). Reprinted from ( ) with permission of the publisher.

Citation: Sullivan L, Scotcher M, Bennett G. 2008. Increased Biofuel Production by Metabolic Engineering of , p 361-376. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815547.ch28
1. Aiba, S.,, T. Imanaka, and, H. Tsunekawa. 1980. Enhancement of tryptophan production by Escherichia coli as an application of genetic-engineering. Biotechnol. Lett. 2:525530.
2. Alper, H.,, K. Miyaoku, and, G. Stephanopoulos. 2005. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol. 23:612616.
3. Alsaker, K. V., and, E. T. Papoutsakis. 2005. Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J. Bacteriol. 187:71037118.
4. Alsaker, K. V.,, T. R. Spitzer, and, E. T. Papoutsakis. 2004. Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell’s response to butanol stress. J. Bacteriol. 186:19591971.
5. Arigoni, F.,, L. Duncan,, S. Alper,, R. Losick, and, P. Stragier. 1996. SpoIIE governs the phosphorylation state of a protein regulating transcription factor sigma F during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93:32383242.
6. Baer, S. H., and, H. P. Blaschek. 1987. Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl. Environ. Microbiol. 53:28542861.
7. Bahl, H.,, H. Muller,, S. Behrens,, H. Joseph, and, F. Narberhaus. 1995. Expression of heat shock genes in Clostridium acetobutylicum. FEMS Microbiol. Rev. 17:341348.
8. Bahl, H., and, P. Durre. 2001. Clostridia—Biotechnology and Medical Applications. Wiley-VCH, New York, NY.
9. Bartel, P. L.,, C. B. Zhu,, J. S. Lampel,, D. C. Dosch,, N. C. Connors,, W. R. Strohl,, J. M. Beale, Jr., and, H. G. Floss. 1990. Biosynthesis of anthraquinones by interspecies cloning of actinorhodin biosyn-thesis genes in streptomycetes: clarification of actinorhodin gene functions. J. Bacteriol. 172:48164826.
10. Bertram, J.,, M. Stratz, and, P. Durre. 1991. Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria. J. Bacteriol. 173:443448.
11. Borden, J. R., and, E. T. Papoutsakis. 2007. Dynamics of genomic-library enrichment and identification of solvent-tolerance genes in Clostridium acetobutylicum. Appl. Environ. Microbiol. 73:30613068.
12. Bowles, L. K., and, W. L. Ellefson. 1985. Effects of butanol on Clostridium acetobutylicum. Appl. Environ. Microbiol. 50:11651170.
13. Boynton, Z. L.,, G. N. Bennett, and, F. B. Rudolph. 1994. Intracellular concentrations of coenzyme A and its derivatives from Clostridium acetobutylicum ATCC 824 and their roles in enzyme regulation. Appl. Environ. Microbiol. 60:3944.
14. Brown, D. P.,, L. Ganova-Raeva,, B. D. Green,, S. R. Wilkinson,, M. Young, and, P. Youngman. 1994. Characterization of spo0A homo-logues in diverse Bacillus and Clostridium species identifies a probable DNA-binding domain. Mol. Microbiol. 14:411426.
15. Buckland, B. C.,, S. W. Drew,, N. C. Connors,, M. M. Chartrain,, C. Lee,, P. M. Salmon,, K. Gbewonyo,, W. Zhou,, P. Gailliot,, R. Singhvi,, R. C. Olewinski, Jr.,, W. J. Sun,, J. Reddy,, J. Zhang,, B. A. Jackey,, C. Taylor,, K. E. Goklen,, B. Junker, and, R. L. Greasham. 1999. Microbial conversion of indene to indandiol: a key intermediate in the synthesis of CRIXIVAN. Metab. Eng. 1:6374.
16. Cameron, D. C.,, N. E. Altaras,, M. L. Hoffman, and, A. J. Shaw. 1998. Metabolic engineering of propanediol pathways. Biotechnol. Prog. 14:116125.
17. Cary, J. W.,, D. J. Petersen,, E. T. Papoutsakis, and, G. N. Bennett. 1988. Cloning and expression of Clostridium acetobutylicum phosphotransbutyrylase and butyrate kinase genes in Escherichia coli. J. Bacteriol. 170:46134618.
18. Cary, J. W.,, D. J. Petersen,, E. T. Papoutsakis, and, G. N. Bennett. 1990. Cloning and expression of Clostridium acetobutylicumATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A transferase in Escherichia coli. Appl. Environ. Microbiol. 56:15761583.
19. Cheng, N.,, S. W. Jones,, B. Tracey,, C. J. Paredes,, R. Sillers, and, E. T. Papoutsakis. The. transcriptional program of clostridial sporulation. Submitted for publication.
20. Clark, S. W.,, G. N. Bennett, and, F. B. Rudolph. 1989. Isolation and characterization of mutants of Clostridium acetobutylicum ATCC 824 deficient in acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A transferase (EC 2.8.3.9) and in other solvent pathway enzymes. Appl. Environ. Microbiol. 55:970976.
21. Colon, G. E.,, M. S. Jetten,, T. T. Nguyen,, M. E. Gubler,, M. T. Follettie,, A. J. Sinskey, and, G. Stephanopoulos. 1995a. Effect of inducible thrB expression on amino acid production in Corynebacterium lactofermentum ATCC 21799. Appl. Environ. Microbiol. 61:7478.
22. Colon, G. E.,, T. T. Nguyen,, M. S. Jetten,, A. J. Sinskey, and, G. Stephanopoulos. 1995b. Production of isoleucine by overexpression of ilvA in a Corynebacterium lactofermentum threonine producer. Appl. Microbiol. Biotechnol. 43:482488.
23. Desai, R. P.,, L. M. Harris,, N. E. Welker, and, E. T. Papoutsakis. 1999. Metabolic flux analysis elucidates the importance of the acid-formation pathways in regulating solvent production by Clostridium acetobutylicum. Metab. Eng. 1:206213.
24. Desai, R. P., and, E. T. Papoutsakis. 1999. Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl. Environ. Microbiol. 65:936945.
25. Durre, P., and, C. Hollergschwandner. 2004. Initiation of endospore formation in Clostridium acetobutylicum. Anaerobe 10:6974.
26. Durre, P. 2005. CRC Handbook of Clostridia. CRC Press, Taylor & Francis, Boca Raton, FL.
27. Feucht, A.,, R. A. Daniel, and, J. Errington. 1999. Characterization of a morphological checkpoint coupling cell-specific transcription to septation in Bacillus subtilis. Mol. Microbiol. 33:10151026.
28. Fischer, R. J.,, J. Helms, and, P. Durre. 1993. Cloning, sequencing, and molecular analysis of the sol operon of Clostridium acetobutylicum, a chromosomal locus involved in solventogenesis. J. Bacteriol. 175:69596969.
29. Girbal, L.,, G. von Abendroth,, M. Winkler,, P. M. Benton,, I. MeynialSalles,, C. Croux,, J. W. Peters,, T. Happe, and, P. Soucaille. 2005. Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities. Appl. Environ. Microbiol. 71:27772781.
30. Gonzalez-Pajuelo, M.,, I. Meynial-Salles,, F. Mendes,, J. C. Andrade,, I. Vasconcelos, and, P. Soucaille. 2005. Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab. Eng. 7:329336.
31. Gonzalez-Pajuelo, M., I. Meynial-Salles, F. Mendes, P. Soucaille, and, I. Vasconcelos. 2006. Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1(pSPD5). Appl. Environ. Microbiol. 72:96101.
32. Gorwa, M. F.,, C. Croux, and, P. Soucaille. 1996. Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824. J. Bacteriol. 178:26682675.
33. Green, E. M., and, G. N. Bennett. 1996. Inactivation of an aldehyde/ alcohol dehydrogenase gene from Clostridium acetobutylicumATCC 824. Appl. Biochem. Biotechnol. 57-58:213221.
34. Green, E. M., and, G. N. Bennett. 1998. Genetic manipulation of acid and solvent formation in Clostridium acetobutylicum ATCC 824. Biotechnol. Bioeng. 58:215221.
35. Green, E. M.,, Z. L. Boynton,, L. M. Harris,, F. B. Rudolph,, E. T. Papoutsakis, and, G. N. Bennett. 1996. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142:20792086.
36. Grupe, H., and, G. Gottschalk. 1992. Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Appl. Environ. Microbiol. 58:38963902.
37. Harris, L. M.,, L. Blank,, R. P. Desai,, N. E. Welker, and, E. T. Papoutsakis. 2001. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J. Ind. Microbiol. Biotechnol. 27:322328.
38. Harris, L. M.,, R. P. Desai,, N. E. Welker, and, E. T. Papoutsakis. 2000. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol. Bioeng. 67:111.
39. Harris, L. M.,, N. E. Welker, and, E. T. Papoutsakis. 2002. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J. Bacteriol. 184:35863597.
40. Hartmanis, M. G., and, S. Gatenbeck. 1984. Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate. Appl. Environ. Microbiol. 47:12771283.
41. Hong, S. H.,, J. S. Kim,, S. Y. Lee,, Y. H. In,, S. S. Choi,, J. K. Rih,, C. H. Kim,, H. Jeong,, C. G. Hur, and, J. J. Kim. 2004. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat. Biotechnol. 22:12751281.
42. Ikeda, M., and, R. Katsumata. 1992. Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Coryne-bacterium glutamicum strain. Appl. Environ. Microbiol. 58:781785.
43. Isogai, T.,, M. Fukagawa,, I. Aramori,, M. Iwami,, H. Kojo,, T. Ono,, Y. Ueda,, M. Kohsaka, and, H. Imanaka. 1991. Construction of a 7-aminocephalosporanic acid (7ACA) biosynthetic operon and direct production of 7ACA in Acremonium chrysogenum. Bio/Technology 9:188191.
44. Jones, D. T., and, D. R. Woods. 1986. Acetone-butanol fermentation revisited. Microbiol. Rev. 50:484524.
45. Koch, A. K.,, O. Kappeli,, A. Fiechter, and, J. Reiser. 1991. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J. Bacteriol. 173:42124219.
46. Kumagai, H. 2000. Microbial production of amino acids in Japan. Adv. Biochem. Eng. Biotechnol. 69:7185.
47. Liu, X.,, Y. Zhu, and, S. T. Yang. 2006. Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol. Prog. 22:12651275.
48. Lopez de Felipe, F.,, M. Kleerebezem,, W. M. de Vos, and, J. Hugenholtz. 1998. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J. Bacteriol. 180:38043808.
49. Lucet, I.,, A. Feucht,, M. D. Yudkin, and, J. Errington. 2000. Direct interaction between the cell division protein FtsZ and the cell differentiation protein SpoIIE. EMBO J. 19:14671475.
50. MacDonald, D. L., and, H. Goldfine. 1991. Effects of solvents and alcohols on the polar lipid composition of Clostridium butyricumunder conditions of controlled lipid chain composition. Appl. Environ. Microbiol. 57:35173521.
51. Madduri, K.,, J. Kennedy,, G. Rivola,, A. Inventi-Solari,, S. Filippini,, G. Zanuso,, A. L. Colombo,, K. M. Gewain,, J. L. Occi,, D. J. MacNeil, and, C. R. Hutchinson. 1998. Production of the antitumor drug epirubicin (4′-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nat. Biotechnol. 16:6974.
52. Malpartida, F., and, D. A. Hopwood. 1984. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature 309:462464.
53. Mattsson, D. M., and, P. Rogers. 1994. Analysis of Tn916-induced mutants of Clostridium acetobutylicum altered in solventogenesis and sporulation. J. Ind. Microbiol. 13:258268.
54. Mermelstein, L. D.,, N. E. Welker,, D. J. Petersen,, G. N. Bennett, and, G. N. Bennett. 1994. Genetic and metabolic engineering of Clostridium acetobutylicum ATCC 824. Ann. N. Y. Acad. Sci. 721:5468.
55. Mitchell, W. J. 1998. Physiology of carbohydrate to solvent conversion by clostridia. Adv. Microb. Physiol. 39:31130.
56. Morimoto, K.,, T. Kimura,, K. Sakka, and, K. Ohmiya. 2005. Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol. Lett. 246:229234.
57. Mullany, P.,, M. Wilks,, L. Puckey, and, S. Tabaqchali. 1994. Gene cloning in Clostridium difficile using Tn916 as a shuttle conjugative transposon. Plasmid 31:320323.
58. Nair, R. V.,, G. N. Bennett, and, E. T. Papoutsakis. 1994. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. J. Bacteriol. 176:871885.
59. Nair, R. V., and, E. T. Papoutsakis. 1994. Expression of plasmid-encoded aad in Clostridium acetobutylicum M5 restores vigorous butanol production. J. Bacteriol. 176:58435846.
60. Nair, R. V.,, E. M. Green,, D. E. Watson,, G. N. Bennett, and, E. T. Papoutsakis. 1999. Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J. Bacteriol. 181:319330.
61. Nakamura, C. E., and, G. M. Whited. 2003. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14:454459.
62. Narberhaus, F., and, H. Bahl. 1992. Cloning, sequencing, and molecular analysis of the groESL operon of Clostridium acetobutylicum. J. Bacteriol. 174:32823289.
63. Nolling, J.,, G. Breton,, M. V. Omelchenko,, K. S. Makarova,, Q. Zeng,, R. Gibson,, H. M. Lee,, J. Dubois,, D. Qiu,, J. Hitti,, Y. I. Wolf,, R. L. Tatusov,, F. Sabathe,, L. Doucette-Stamm,, P. Soucaille,, M. J. Daly,, G. N. Bennett,, E. V. Koonin, and, D. R. Smith. 2001. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 183:48234838.
64. Peguin, S., and, P. Soucaille. 1995. Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. Appl. Environ. Microbiol. 61:403405.
65. Peoples, O. P., and, A. J. Sinskey. 1989. Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J. Biol. Chem. 264:1529815303.
66. Petersen, D. J.,, J. W. Cary,, J. Vanderleyden, and, G. N. Bennett. 1993. Sequence and arrangement of genes encoding enzymes of the acetone-production pathway of Clostridium acetobutylicumATCC824. Gene 123:9397.
67. Pich, A.,, F. Narberhaus, and, H. Bahl. 1990. Induction of heat shock proteins during initiation of solvent formation in Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 33:697704.
68. Ravagnani, A.,, K. C. Jennert,, E. Steiner,, R. Grunberg,, J. R. Jefferies,, S. R. Wilkinson,, D. I. Young,, E. C. Tidswell,, D. P. Brown,, P. Youngman,, J. G. Morris, and, M. Young. 2000. Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Mol. Microbiol. 37:11721185.
69. Raynaud, C.,, P. Sarcabal,, I. Meynial-Salles,, C. Croux, and, P. Soucaille. 2003. Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum. Proc. Natl. Acad. Sci. USA 100:50105015.
70. Ro, D. K.,, E. M. Paradise,, M. Oullet,, K. J. Fisher,, K. L. Newman,, J. M. Ndungu,, K. A. Ho,, R. A. Eachus,, T. S. Ham,, J. Kirby,, M. C. Chang,, S. T. Withers,, Y. Shiba,, R. Sarpong, and, J. D. Keasling. 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940943.
71. Roberts, A. P.,, C. Hennequin,, M. Elmore,, A. Collignon,, T. Karjalainen,, N. Minton, and, P. Mullany. 2003. Development of an integrative vector for the expression of antisense RNA in Clostridium difficile. J. Microbiol. Methods 55:617624.
72. Sass, C.,, J. Walter, and, G. N. Bennett. 1993. Isolation of mutants of Clostridium acetobutylicum ATCC-824 deficient in protease activity. Curr. Microbiol. 26:151154.
73. Schaffer, S.,, N. Isci,, B. Zickner, and, P. Durre. 2002. Changes in protein synthesis and identification of proteins specifically induced during solventogenesis in Clostridium acetobutylicum. Electrophoresis 23:110121.
74. Schwarz, W. H., and, R. Gapes. 2006. Butanol—rediscovering a renewable fuel. BioWorld Europe 1:1619.
75. Scotcher, M. C., and, G. N. Bennett. 2005. SpoIIE regulates sporulation but does not directly affect solventogenesis in Clostridium acetobutylicum ATCC 824. J. Bacteriol. 187:19301936.
76. Scotcher, M. C.,, K. X. Huang,, M. L. Harrison,, F. B. Rudolph, and, G. N. Bennett. 2003. Sequences affecting the regulation of solvent production in Clostridium acetobutylicum. J. Ind. Microbiol. Biotechnol. 30:414420.
77. Scotcher, M. C.,, F. B. Rudolph, and, G. N. Bennett. 2005. Expression of abrB310 and sinR, and effects of decreased abrB310 expression on the transition from acidogenesis to solventogenesis, in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 71:19871995.
78. Shimada, H.,, K. Kondo,, P. D. Fraser,, Y. Miura,, T. Saito, and, N. Misawa. 1998. Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl. Environ. Microbiol. 64:26762680.
79. Shio, I. 1986. Production of individual amino acids: tryptophan, phenylalanine, and tyrosine, p. 188206. In I. Aida,, K. Nakayama,, K. Takinami, and, H. Yamada (ed.), Biotechnology of Amino Acid Production. Elsevier, Tokyo, Japan.
80. Smith, D. J.,, M. K. Burnham,, J. Edwards,, A. J. Earl, and, G. Turner. 1990. Cloning and heterologous expression of the penicillin bio-synthetic gene cluster from Penicillum [sic] chrysogenum. Bio/Technology 8:3941.
81. Stanzak, R.,, P. Matsushima,, R. H. Baltz, and, R. N. Rao. 1986. Cloning and expression in Streptomyces lividans of clustered erythromycin biosynthesis genes from Streptomyces erythreus. Bio/ Technology 4:229232.
82. Stephenson, K., and, R. J. Lewis. 2005. Molecular insights into the initiation of sporulation in gram-positive bacteria: new technologies for an old phenomenon. FEMS Microbiol. Rev. 29:281301.
83. Sullivan, L., and, G. N. Bennett. 2006. Proteome analysis and comparison of Clostridium acetobutylicum ATCC 824 and Spo0A strain variants. J. Ind. Microbiol. Biotechnol. 33:298308.
84. Thormann, K., and, P. Durre. 2001. Orf5/SolR: a transcriptional repressor of the sol operon of Clostridium acetobutylicum? J. Ind. Microbiol. Biotechnol. 27:307313.
85. Thormann, K.,, L. Feustel,, K. Lorenz,, S. Nakotte, and, P. Durre. 2002. Control of butanol formation in Clostridium acetobutylicum by transcriptional activation. J. Bacteriol. 184:19661973.
86. Tilly, K.,, N. McKittrick,, C. Georgopoulos, and, H. Murialdo. 1981. Studies on Escherichia coli mutants which block bacteriophage morphogenesis. Prog. Clin. Biol. Res. 64:3545.
87. Tomas, C. A.,, K. V. Alsaker,, H. P. Bonarius,, W. T. Hendriksen,, H. Yang,, J. A. Beamish,, C. J. Paredes, and, E. T. Papoutsakis. 2003a. DNA array-based transcriptional analysis of asporogenous, nonsolventogenic Clostridium acetobutylicum strains SKO1 and M5. J. Bacteriol. 185:45394547.
88. Tomas, C. A.,, J. Beamish, and, E. T. Papoutsakis. 2004. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J. Bacteriol. 186:20062018.
89. Tomas, C. A.,, N. E. Welker, and, E. T. Papoutsakis. 2003b. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl. Environ. Microbiol. 69:49514965.
90. Tong, I. T., and, D. C. Cameron. 1992. Enhancement of 1,3-propane-diol production by cofermentation in Escherichia coli expressing Klebsiella pneumoniae dha regulon genes. Appl. Biochem. Biotechnol. 34-35:149159.
91. Tong, I. T.,, H. H. Liao, and, D. C. Cameron. 1991. 1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. Appl. Environ. Microbiol. 57:35413546.
92. Trowsdale, J.,, S. M. Chen, and, J. A. Hoch. 1978. Evidence that spo0A mutations are recessive in spo0A/spo0A merodiploid strains of Bacillus subtilis. J. Bacteriol. 135:99113.
93. Tummala, S. B.,, S. G. Junne, and, E. T. Papoutsakis. 2003a. Anti-sense RNA downregulation of coenzyme A transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations. J. Bacteriol. 185:36443653.
94. Tummala, S. B.,, N. E. Welker, and, E. T. Papoutsakis. 2003b. Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. J. Bacteriol. 185:19231934.
95. Tyo, K. E.,, H. S. Alper, and, G. N. Stephanopoulos. 2007. Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol. 25:132137.
96. Walter, K. A.,, R. V. Nair,, J. W. Cary,, G. N. Bennett, and, E. T. Papoutsakis. 1993. Sequence and arrangement of two genes of the butyrate-synthesis pathway of Clostridium acetobutylicum ATCC 824. Gene 134:107111.
97. Walter, K. A.,, L. D. Mermelstein, and, E. T. Papoutsakis. 1994. Studies of recombinant Clostridium acetobutylicum with increased dosages of butyrate formation genes. Ann. N. Y. Acad. Sci. 2:6972.
98. Wang, H.,, A. P. Roberts, and, P. Mullany. 2000. DNA sequence of the insertional hot spot of Tn916 in the Clostridium difficile genome and discovery of a Tn916-like element in an environmental isolate integrated in the same hot spot. FEMS Microbiol. Lett. 192:1520.
99. Watrous, M. M.,, S. Clark,, R. Kutty,, S. Huang,, F. B. Rudolph,, J. B. Hughes, and, G. N. Bennett. 2003. 2,4,6-Trinitrotoluene reduction by an Fe-only hydrogenase in Clostridium acetobutylicum. Appl. Environ. Microbiol. 69:15421547.
100. Wiesenborn, D. P.,, F. B. Rudolph, and, E. T. Papoutsakis. 1988. Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Appl. Environ. Microbiol. 54:27172722.
101. Wiesenborn, D. P.,, F. B. Rudolph, and, E. T. Papoutsakis. 1989a. Coenzyme A transferase from Clostridium acetobutylicum ATCC 824 and its role in the uptake of acids. Appl. Environ. Microbiol. 55:323329.
102. Wiesenborn, D. P.,, F. B. Rudolph, and, E. T. Papoutsakis. 1989b. Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis. Appl. Environ. Microbiol. 55:317322.
103. Williams, T. I.,, J. C. Combs,, B. C. Lynn, and, H. J. Strobel. 2007. Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl. Microbiol. Biotechnol. 74:422432.
104. Woods, D. R. 1995. The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259264.
105. Wright, A.,, R. Wait,, S. Begum,, B. Crossett,, J. Nagy,, K. Brown, and, N. Fairweather. 2005. Proteomic analysis of cell surface proteins from Clostridium difficile. Proteomics 5:24432452.
106. Xu, Z., and, P. B. Sigler. 1998. GroEL/GroES: structure and function of a two-stroke folding machine. J. Struct. Biol. 124:129141.
107. Yan, Y.,, A. Kohli, and, M. A. Koffas. 2005. Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 71:56105613.
108. York, K.,, T. J. Kenney,, S. Satola,, C. P. Moran, Jr.,, H. Poth, and, P. Youngman. 1992. Spo0A controls the sigma A-dependent activation of Bacillus subtilis sporulation-specific transcription unit spoIIE1. J. Bacteriol. 174:26482658.
109. Zhao, Y.,, L. A. Hindorff,, A. Chuang,, M. Monroe-Augustus,, M. Lyristis,, M. L. Harrison,, F. B. Rudolph, and, G. N. Bennett. 2003. Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 69:28312841.
110. Zhao, Y.,, C. A. Tomas,, F. B. Rudolph,, E. T. Papoutsakis, and, G. N. Bennett. 2005. Intracellular butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implications for solvent formation. Appl. Environ. Microbiol. 71:530537.

Tables

Generic image for table
Table 1.

Proteomic analyses summarized

Citation: Sullivan L, Scotcher M, Bennett G. 2008. Increased Biofuel Production by Metabolic Engineering of , p 361-376. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch28

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error