Chapter 1 : Taxonomy of the Family

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Taxonomy of the Family , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap01-2.gif


This chapter presents an overview of the biological diversity of species and species and also addresses the taxonomic information that has become available through whole-genome sequence analysis. Classical biochemical tests routinely used for the identification of clinical bacteria often yielded negative or variable results within species. This poor biochemical reactivity and lack of clear-cut differential characters led to the wide application of vernacular names for many groups of Campylobacter-like organisms (CLOs). Some of the CLO groups were later classified as novel species, but several were identified as biochemical variants of well-known species. The first isolated was almost certainly . In 1914, a researcher observed a vibrio, later classified as , in sputum of a patient with bronchitis. Similar bacteria isolated from the bovine vagina and semen were classified as . During a study of the bacterial flora of the cloacae of whooping cranes, 10 atypical isolates were recovered on two separate occasions and were classified as . Strain NP4, isolated from groundwater with high arsenic concentrations, is classified as a species on the basis of 16S rRNA gene sequence analysis, and it differs from the other isolates in its carbon source and electron acceptor usage profiles. Representative strains of species were included in a polyphasic taxonomic study to elucidate their taxonomic status. Strains have been isolated from superficial ulcers and soft tissue infections, urethritis, vaginosis, and periodontal disease.

Citation: Debruyne L, Gevers D, Vandamme P. 2008. Taxonomy of the Family , p 3-25. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch1

Key Concept Ranking

Bacterial Classification
Restriction Fragment Length Polymorphism
Gram-Negative Bacteria
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Phylogenetic tree of the family and related bacteria, based on percentage of 16S rRNA gene sequence similarity.

Citation: Debruyne L, Gevers D, Vandamme P. 2008. Taxonomy of the Family , p 3-25. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Whole-genome-based phylogeny of and related bacteria. Out of 365 core gene families, a concatenation of 60 carefully selected genes was used to estimate the phylogeny of these bacteria by maximum likelihood. Orthologous protein families were determined by OrthoMCL ( ). Protein sequence alignments were generated by Muscle ( ), and poorly conserved regions were trimmed by Gblocks ( ). Phylogenetic trees with 100 bootstrap replicates were obtained by the PhyML algorithm ( ) with a JTT amino acid substitution matrix and a discrete gamma model. All nodes had 100% bootstrap support.

Citation: Debruyne L, Gevers D, Vandamme P. 2008. Taxonomy of the Family , p 3-25. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Genetic diversity among genomes of and related bacteria. Every data point represents a whole-genome comparison between two genomes (both intra- and interspecies) and shows the percentage ANI on the axes plotted against the percentage of gene content similarity on the axes. Only comparisons with ANI values above 70% are shown because this is the range in which ANI is considered to be a robust and sensitive method for measuring evolutionary relatedness ( ). ANI values were calculated as described previously ( ), and gene content similarity values were calculated on the basis of reciprocal best BLASTp hits.

Citation: Debruyne L, Gevers D, Vandamme P. 2008. Taxonomy of the Family , p 3-25. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

In silico MLSA analysis with variable loci count. For a variable number ( = 1–15) of concatenated loci ( axis) randomly selected from the set of best-performing genes ( Table 1 ), the differences in tree topology and branch lengths with the whole-genome-based phylogeny was determined and expressed as a tree distance value ( axis). For each number of loci, the procedure was repeated 100 times, and the distributions of the distances between the maximum likelihood trees are plotted as box and whisker plots.

Citation: Debruyne L, Gevers D, Vandamme P. 2008. Taxonomy of the Family , p 3-25. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aabenhus, R.,, S. L. On,, B. L. Siemer,, H. Permin, and, L. P. Andersen. 2005. Delineation of Campylobacter concisus genomo-species by amplified fragment length polymorphism analysis and correlation of results with clinical data. J. Clin. Microbiol. 43:50915096.
2. Abdelbaqi, K.,, A. Menard,, V. Prouzet-Mauleon,, F. Bringaud,, P. Lehours, and, F. Megraud. 2007. Nucleotide sequence of the gyrA gene of Arcobacter species and characterization of human ciprofloxacin-resistant clinical isolates. FEMS Immunol. Med. Microbiol. 49:337345.
3. Ahmann, D.,, A. L. Roberts,, L. R. Krumholz, and, F. M. Morel. 1994. Microbe grows by reducing arsenic. Nature 371:750.
4. Alderton, M. R.,, V. Korolik,, P. J. Coloe,, F. E. Dewhirst, and, B. J. Paster. 1995. Campylobacter hyoilei sp. nov., associated with porcine proliferative enteritis. Int. J. Syst. Bacteriol. 45:6166.
5. Atabay, H. I.,, J. E. Corry, and, S. L. On. 1997. Isolation and characterization of a novel catalase-negative, urease-positive Campylobacter from cattle faeces. Lett. Appl. Microbiol. 24:5964.
6. Benjamin, J.,, S. Leaper,, R. J. Owen, and, M. B. Skirrow. 1983. Description of Campylobacter laridis, a new species comprising the nalidixic-acid resistant thermophilic Campylobacter (NARTC) group. Curr. Microbiol. 8:231238.
7. Brightwell, G.,, E. Mowat,, R. Clemens,, J. Boerema,, D. J. Pulford, and, S. L. On. 2007. Development of a multiplex and real time PCR assay for the specific detection of Arcobacter butzleri and Arcobacter cryaerophilus. J. Microbiol. Methods 68:318325.
8. Bryans, J. T.,, A. G. Smith, and, A. J. Baker. 1960. Ovine vibrionic abortion caused by a new variety of Vibrio. Cornell Vet. 50:5459.
9. Bryner, J. H.,, J. Littleton,, C. Gates,, C. A. Kirkbride, and, A. E. Ritchie. 1986. Flexispira rappini gen. nov., sp. nov., a Gram-negative rod from mammalian fetus and feces, p. 1118. Microbe 86, Abstr. XIV Int. Cong. Microbiol., Manchester, England.
10. Buduneli, N.,, H. Baylas,, E. Buduneli,, O. Turkoglu,, T. Kose, and, G. Dahlen. 2005. Periodontal infections and pre-term low birth weight: a case-control study. J. Clin. Periodontol. 32:174181.
11. Butzler, J. P. 2004. Campylobacter, from obscurity to celebrity. Clin. Microbiol. Infect. 10:868876.
12. Butzler, J. P.,, P. Dekeyser,, M. Detrain, and, F. Dehaen. 1973. Related vibrio in stools. J. Pediatr. 82:493495.
13. Cardarelli-Leite, P.,, K. Blom,, C. M. Patton,, M. A. Nicholson,, A. G. Steigerwalt,, S. B. Hunter,, D. J. Brenner,, T. J. Barrett, and, B. Swaminathan. 1996. Rapid identification of Campylobacter species by restriction fragment length polymorphism analysis of a PCR-amplified fragment of the gene coding for 16S rRNA. J. Clin. Microbiol. 34:6267.
14. Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17:540552.
15. Chinivasagam, H. N.,, B. G. Corney,, L. L. Wright,, I. S. Diallo, and, P. J. Blackall. 2007. Detection of Arcobacter spp. in piggery effluent and effluent-irrigated soils in southeast Queensland. J. Appl. Microbiol. 103:418426.
16. Clayton, R. A.,, G. Sutton,, P. S. Hinkle,, C. Bult, and, C. Fields. 1995. Intraspecific variation in small-subunit ribosomal RNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int. J. Syst. Bacteriol. 45:595599.
17. Coleman, M. L.,, D. B. Hedrick,, D. R. Lovley,, D. C. White, and, K. Pye. 1993. Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature (London) 361:436438.
18. Costas, M.,, R. J. Owen, and, P. J. H. Jackman. 1987. Classification of Campylobacter sputorum and allied campylobacters based on numerical analysis of electrophoretic protein patterns. Syst. Appl. Microbiol. 9:125131.
19. Dagan, T., and, W. Martin. 2006. The tree of one percent. Genome Biol. 7:118.
20. deBoer, E.,, J. J. H. C. Tilburg,, D. L. Woodward,, H. Lior, and, W. M. Johnson. 1996. A selective medium for the isolation of Arcobacter from meats. Lett. Appl. Microbiol. 23:6466.
21. Dekeyser, P.,, J. P. Butzler,, J. Sternon, and, M. Gossuind. 1972. Acute enteritis due to related Vibrio—first positive stool cultures. J. Infect. Dis. 125:390392.
22. Didelot, X., and, D. Falush. 2007. Inference of bacterial microevolution using multilocus sequence data. Genetics 175:12511266.
23. Dingle, K. E.,, F. M. Colles,, D. Falush, and, M. C. Maiden. 2005. Sequence typing and comparison of population biology of Campylobacter coli and Campylobacter jejuni. J. Clin. Microbiol. 43:340347.
24. Dingle, K. E.,, F. M. Colles,, D. R. Wareing,, R. Ure,, A. J. Fox,, F. E. Bolton,, H. J. Bootsma,, R. J. Willems,, R. Urwin, and, M. C. Maiden. 2001. Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol. 39:1423.
25. Donachie, S. P.,, J. P. Bowman,, S. L. On, and, M. Alam. 2005. Arcobacter halophilus sp. nov., the first obligate halophile in the genus Arcobacter. Int. J. Syst. Evol. Microbiol. 55:12711277.
26. Doolittle, W. F., and, R. T. Papke. 2006. Genomics and the bacterial species problem. Genome Biol. 7:116.
27. Doyle, L. P. 1948. The etiology of swine dysentery. Am. J. Vet. Res. 9:5051.
28. Duim, B.,, P. A. Vandamme,, A. Rigter,, S. Laevens,, J. R. Dijkstra, and, J. A. Wagenaar. 2001. Differentiation of Campylobacter species by AFLP fingerprinting. Microbiology 147:27292737.
29. Duim, B.,, J. A. Wagenaar,, J. R. Dijkstra,, J. Goris,, H. P. Endtz, and, P. A. Vandamme. 2004. Identification of distinct Campylobacter lari genogroups by amplified fragment length polymorphism and protein electrophoretic profiles. Appl. Environ. Microbiol. 70:1824.
30. Duim, B.,, T. M. Wassenaar,, A. Rigter, and, J. Wagenaar. 1999. High-resolution genotyping of Campylobacter strains isolated from poultry and humans with amplified fragment length polymorphism fingerprinting. Appl. Environ. Microbiol. 65:23692375.
31. Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:17921797.
32. Endtz, H. P.,, J. S. Vliegenthart,, P. Vandamme,, H. W. Weverink,, N. P. van den Braak,, H. A. Verbrugh, and, A. van Belkum. 1997. Genotypic diversity of Campylobacter lari isolated from mussels and oysters in The Netherlands. Int. J. Food Microbiol. 34:7988.
33. Engberg, J.,, D. D. Bang,, R. Aabenhus,, F. M. Aarestrup,, V. Fussing, and, P. Gerner-Smidt. 2005. Campylobacter concisus: an evaluation of certain phenotypic and genotypic characteristics. Clin. Microbiol. Infect. 11:288295.
34. Escherich, T. 1886. Beiträge zur Kenntniss der Darmbacterien. III. Über das Vorkommen van Vibrionen im Darmcanal und den Stuhlgängen der Säuglinge. Münch. med. Wschr. 33:815817, 833835.
35. Etoh, Y.,, F. E. Dewhirst,, B. J. Paster,, A. Yamamoto, and, N. Goto. 1993. Campylobacter showae sp. nov., isolated from the human oral cavity. Int. J. Syst. Bacteriol. 43:631639.
36. Finster, K.,, W. Liesack, and, B. J. Tindall. 1997. Sulfurospirillum arcachonense sp. nov., a new-microaerophilic sulfur-reducing bacterium. Int. J. Syst. Bacteriol. 47:12121217.
37. Firehammer, B. D. 1965. The isolation of vibrios from ovine feces. Cornell Vet. 55:482494.
38. Florent, A. 1953. Isolement d’un vibrion saprophyte du sperme du taureau et du vagin de la vache (Vibrio bubulus). C. R. Soc. Biol. 147:20662069.
39. Foster, G.,, B. Holmes,, A. G. Steigerwalt,, P. A. Lawson,, P. Thorne,, D. E. Byrer,, H. M. Ross,, J. Xerry,, P. M. Thompson, and, M. D. Collins. 2004. Campylobacter insulaenigrae sp. nov., isolated from marine mammals. Int. J. Syst. Evol. Microbiol. 54:23692373.
40. Fouts, D. E.,, E. F. Mongodin,, R. E. Mandrell,, W. G. Miller,, D. A. Rasko,, J. Ravel,, L. M. Brinkac,, R. T. DeBoy,, C. T. Parker,, S. C. Daugherty,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, S. A. Sullivan,, J. U. Shetty,, M. A. Ayodeji,, A. Shvartsbeyn,, M. C. Schatz,, J. H. Badger,, C. M. Fraser, and, K. E. Nelson. 2005. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol. 3:e15.
41. Fox, J. G.,, T. Chilvers,, C. S. Goodwin,, N. S. Taylor,, P. Edmonds,, L. I. Sly, and, D. J. Brenner. 1989. Campylobacter mustelae, a new species resulting from the elevation of Campylobacter pylori subsp. mustelae to species status. Int. J. Syst. Bacteriol. 39:301303.
42. Gebhart, C. J.,, P. Edmonds,, G. E. Ward,, H. J. Kurtz, and, D. J. Brenner. 1985. Campylobacter hyointestinalis” sp. nov.: a new species of Campylobacter found in the intestines of pigs and other animals. J. Clin. Microbiol. 21:715720.
43. Gevers, D.,, F. M. Cohan,, J. G. Lawrence,, B. G. Spratt,, T. Coenye,, E. J. Feil,, E. Stackebrandt,, Y. Van de Peer,, P. Vandamme,, F. L. Thompson, and, J. Swings. 2005. Opinion: re-evaluating prokaryotic species. Nat. Rev. Microbiol. 3:733739.
44. Gevertz, D.,, A. J. Telang,, G. Voordouw, and, G. E. Jenneman. 2000. Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl. Environ. Microbiol. 66:24912501.
45. Gonzalez, A.,, Y. Moreno,, R. Gonzalez,, J. Hernandez, and, M. A. Ferrus. 2006. Development of a simple and rapid method based on polymerase chain reaction-based restriction fragment length polymorphism analysis to differentiate Helicobacter, Campylobacter, and Arcobacter species. Curr. Microbiol. 53:416421.
46. Goodwin, C. S.,, J. A. Armstrong,, T. Chilvers,, M. Peters,, M. D. Collins,, L. Sly,, W. Mcconnell, and, W. E. S. Harper. 1989. Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov. as Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov., respectively. Int. J. Syst. Bacteriol. 39:397405.
47. Goris, J.,, K. T. Konstantinidis,, J. A. Klappenbach,, T. Coenye,, P. Vandamme, and, J. M. Tiedje. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57:8191.
48. Gorkiewicz, G.,, G. Feierl,, C. Schober,, F. Dieber,, J. Kofer,, R. Zechner, and, E. L. Zechner. 2003. Species-specific identification of campylobacters by partial 16S rRNA gene sequencing. J. Clin. Microbiol. 41:25372546.
49. Guindon, S., and, O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696704.
50. Harrington, C. S., and, S. L. W. On. 1999. Extensive 16S rRNA gene sequence diversity in Campylobacter hyointestinalis strains: taxonomic and applied implications. Int. J. Syst. Bacteriol. 49:11711175.
51. Henikoff, S.,, J. G. Henikoff,, W. J. Alford, and, S. Pietrokovski. 1995. Automated construction and graphical presentation of protein blocks from unaligned sequences. Gene 163:GC1726.
52. Houf, K.,, L. A. Devriese,, L. De Zutter,, J. Van Hoof, and, P. Vandamme. 2001a. Development of a new protocol for the isolation and quantification of Arcobacter species from poultry products. Int. J. Food Microbiol. 71:189196.
53. Houf, K.,, L. A. Devriese,, L. De Zutter,, J. Van Hoof, and, P. Vandamme. 2001b. Susceptibility of Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii to antimicrobial agents used in selective media. J. Clin. Microbiol. 39:16541656.
54. Houf, K.,, S. L. On,, T. Coenye,, J. Mast,, J. Van Hoof, and, P. Vandamme. 2005. Arcobacter cibarius sp. nov., isolated from broiler carcasses. Int. J. Syst. Evol. Microbiol. 55:713717.
55. Houf, K., and, R. Stephan. 2007. Isolation and characterization of the emerging foodborn pathogen Arcobacter from human stool. J. Microbiol. Methods 68:408413.
56. Houf, K.,, A. Tutenel,, L. De Zutter,, J. Van Hoof, and, P. Vandamme. 2000. Development of a multiplex PCR assay for the simultaneous detection and identification of Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii. FEMS Microbiol. Lett. 193:8994.
57. Hubert, C., and, G. Voordouw. 2007. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl. Environ. Microbiol. 73:26442652.
58. Hurtado, A., and, R. J. Owen. 1997. A molecular scheme based on 23S rRNA gene polymorphisms for rapid identification of Campylobacter and Arcobacter species. J. Clin. Microbiol. 35:24012404.
59. Inglis, G. D.,, B. M. Hoar,, D. P. Whiteside, and, D. W. Morck. 2007. Campylobacter canadensis sp. nov., from captive whooping cranes in Canada. Int. J. Syst. Evol. Microbiol. 57:26362644.
60. Jackson, F. L., and, Y. E. Goodman. 1978. Bacteroides ureolyticus, a new species to accommodate strains previously identified as Bacteroides corrodens, anaerobic. Int. J. Syst. Bacteriol. 28:197200.
61. Jensen, A. N.,, M. T. Andersen,, A. Dalsgaard,, D. L. Baggesen, and, E. M. Nielsen. 2005. Development of real-time PCR and hybridization methods for detection and identification of thermophilic Campylobacter spp. in pig faecal samples. J. Appl. Microbiol. 99:292300.
62. Johnson, L. G., and, E. A. Murano. 1999a. Comparison of three protocols for the isolation of Arcobacter from poultry. J. Food Prot. 62:610614.
63. Johnson, L. G., and, E. A. Murano. 1999b. Development of a new medium for the isolation of Arcobacter spp. J. Food Prot. 62:456462.
64. Jones, F. S.,, M. Orcutt, and, R. B. Little. 1931. Vibrios (V. jejuni n. sp.) associated with intestinal disorders in cows and calves. J. Exp. Med. 53:853863.
65. Kabeya, H.,, Y. Kobayashi,, S. Maruyama, and, T. Mikami. 2003. One-step polymerase chain reaction-based typing of Arcobacter species. Int. J. Food Microbiol. 81:163168.
66. Kärenlampi, R. I.,, T. P. Tolvanen, and, M. L. Hanninen. 2004. Phylogenetic analysis and PCR-restriction fragment length polymorphism identification of Campylobacter species based on partial groEL gene sequences. J. Clin. Microbiol. 42:57315738.
67. Keller, J.,, B. Wieland,, M. Wittwer,, R. Stephan, and, V. Perreten. 2007. Distribution and genetic variability among Campylobacter spp. isolates from different animal species and humans in Switzerland. Zoonoses Public Health 54:27.
68. Kiehlbauch, J. A.,, D. J. Brenner,, M. A. Nicholson,, C. N. Baker,, C. M. Patton,, A. G. Steigerwalt, and, I. K. Wachsmuth. 1991. Campylobacter butzleri sp. nov. isolated from humans and animals with diarrheal illness. J. Clin. Microbiol. 29:376385.
69. Kiehlbauch, J. A.,, D. N. Cameron, and, I. K. Wachsmuth. 1994. Evaluation of ribotyping techniques as applied to Arcobacter, Campylobacter and Helicobacter. Mol. Cell. Probes 8:109116.
70. King, E. O. 1957. Human infections with Vibrio fetus and a closely related vibrio. J. Infect. Dis. 101:119128.
71. Kodama, Y.,, T. Ha le, and, K. Watanabe. 2007. Sulfurospirillum cavolei sp. nov., a facultatively anaerobic sulfur-reducing bacterium isolated from an underground crude oil storage cavity. Int. J. Syst. Evol. Microbiol. 57:827831.
72. Kokotovic, B., and, S. L. On. 1999. High-resolution genomic fingerprinting of Campylobacter jejuni and Campylobacter coli by analysis of amplified fragment length polymorphisms. FEMS Microbiol. Lett. 173:7784.
73. Konstantinidis, K. T.,, A. Ramette, and, J. M. Tiedje. 2006. The bacterial species definition in the genomic era. Phil. Trans. R. Soc. Lond. B Biol. Sci. 361:19291940.
74. Konstantinidis, K. T., and, J. M. Tiedje. 2005. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. USA 102:25672572.
75. Korczak, B. M.,, R. Stieber,, S. Emler,, A. P. Burnens,, J. Frey, and, P. Kuhnert. 2006. Genetic relatedness within the genus Campylobacter inferred from rpoB sequences. Int. J. Syst. Evol. Microbiol. 56:937945.
76. Kunin, V.,, R. Sorek, and, P. Hugenholtz. 2007. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 8:R61.
77. Laanbroek, H. J.,, W. Kingma, and, H. Veldkamp. 1977. Isolation of an aspartate-fermenting, free-living Campylobacter species. FEMS Microbiol. Lett. 1:99102.
78. Lawson, A. J.,, D. Linton, and, J. Stanley. 1998. 16S rRNA gene sequences of “Candidatus Campylobacter hominis,” a novel un-cultivated species, are found in the gastrointestinal tract of healthy humans. Microbiology 144(Pt. 8):20632071.
79. Lawson, A. J.,, S. L. On,, J. M. Logan, and, J. Stanley. 2001. Campylobacter hominis sp. nov., from the human gastrointestinal tract. Int. J. Syst. Evol. Microbiol. 51:651660.
80. Lawson, G. H. K.,, J. L. Leaver,, G. W. Pettigrew, and, A. C. Rowland. 1981. Some features of Campylobacter sputorum subsp. mucosalis subsp. nov., nom. rev. and their taxonomic significance. Int. J. Syst. Bacteriol. 31:385391.
81. Levy, A. J. 1946. A gastroenteritis outbreak probably due to a bovine strain of vibrio. Yale J. Biol. Med. 18:243.
82. Li, L.,, C. J. Stoeckert, Jr., and, D. S. Roos. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13:21782189.
83. Litrup, E.,, M. Torpdahl, and, E. M. Nielsen. 2007. Multilocus sequence typing performed on Campylobacter coli isolates from humans, broilers, pigs and cattle originating in Denmark. J. Appl. Microbiol. 103:210218.
84. Logan, J. M.,, A. Burnens,, D. Linton,, A. J. Lawson, and, J. Stanley. 2000. Campylobacter lanienae sp. nov., a new species isolated from workers in an abattoir. Int. J. Syst. Evol. Microbiol. 50(Pt. 2):865872.
85. Lübeck, P. S.,, P. Wolffs,, S. L. On,, P. Ahrens,, P. Radstrom, and, J. Hoorfar. 2003. Toward an international standard for PCR-based detection of food-borne thermotolerant campylobacters: assay development and analytical validation. Appl. Environ. Microbiol. 69:56645669.
86. Luijten, M.,, S. A. B. Weelink,, B. Godschalk,, A. A. M. Langenhoff,, M. H. A. van Eekert,, G. Schraa, and, A. J. M. Stams. 2004. Anaerobic reduction and oxidation of quinone moieties and the reduction of oxidized metals by halorespiring and related organisms. FEMS Microbiol. Ecol. 49:145150.
87. MacRae, J. D.,, I. N. Lavine,, K. A. McCaffery, and, K. Ricupero. 2007. Isolation and characterization of NP4, arsenate-reducing Sulfurospirillum, from Maine groundwater. J. Environ. Eng. 133:8188.
88. Mandrell, R. E.,, L. A. Harden,, A. Bates,, W. G. Miller,, W. F. Haddon, and, C. K. Fagerquist. 2005. Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 71:62926307.
89. Marshall, B. J.,, H. Royce,, D. I. Annear,, C. S. Goodwin,, J. W. Pearman,, J. R. Warren, and, J. A. Armstrong. 1984. Original isolation of Campylobacter pyloridis from human gastric mucosa. Microbios Lett. 25:8388.
90. Marshall, S. M.,, P. L. Melito,, D. L. Woodward,, W. M. Johnson,, F. G. Rodgers, and, M. R. Mulvey. 1999. Rapid identification of Campylobacter, Arcobacter, and Helicobacter isolates by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene. J. Clin. Microbiol. 37:41584160.
91. Matsheka, M. I.,, B. G. Elisha,, A. L. Lastovica, and, S. L. On. 2002. Genetic heterogeneity of Campylobacter concisus determined by pulsed field gel electrophoresis-based macrorestriction profiling. FEMS Microbiol. Lett. 211:1722.
92. Matsheka, M. I.,, A. J. Lastovica,, H. Zappe, and, B. G. Elisha. 2006. The use of (GTG)5 oligonucleotide as an RAPD primer to type Campylobacter concisus. Lett. Appl. Microbiol. 42:600605.
93. McClung, C. R.,, D. G. Patriquin, and, R. E. Davis. 1983. Campylobacter nitrofigilis sp. nov., a nitrogen-fixing bacterium associated with roots of Spartina alterniflora Loisel. Int. J. Syst. Bacteriol. 33:605612.
94. McFadyean, J., and, S. Stockman. 1913. Report of the Departemental Committee Appointed by the Board of Agriculture and Fisheries to Enquire into Epizootic Abortion. His Majesty’s Stationery Office, London.
95. Miller, W. G.,, S. L. On,, G. Wang,, S. Fontanoz,, A. J. Lastovica, and, R. E. Mandrell. 2005. Extended multilocus sequence typing system for Campylobacter coli, C. lari, C. upsaliensis, and C. helveticus. J. Clin. Microbiol. 43:23152329.
96. Miller, W. G.,, C. T. Parker,, S. Heath, and, A. J. Lastovica. 2007. Identification of genomic differences between Campylobacter jejuni subsp. jejuni and C. jejuni subsp. doylei at the nap locus leads to the development of a C. jejuni subspeciation multiplex PCR method. BMC Microbiol. 7:11.
97. Moussard, H.,, E. Corre,, M. A. Cambon-Bonavita,, Y. Fouquet, and, C. Jeanthon. 2006. Novel uncultured Epsilonproteobacteria dominate a filamentous sulphur mat from the 13 degrees N hydrothermal vent field, East Pacific Rise. FEMS Microbiol. Ecol. 58:449463.
98. Nayak, R.,, T. M. Stewart, and, M. S. Nawaz. 2005. PCR identification of Campylobacter coli and Campylobacter jejuni by partial sequencing of virulence genes. Mol. Cell. Probes 19:187193.
99. Neill, S. D.,, J. N. Campbell,, J. J. Obrien,, S. T. C. Weatherup, and, W. A. Ellis. 1985. Taxonomic position of Campylobacter cryaerophila sp. nov. Int. J. Syst. Bacteriol. 35:342356.
100. On, S. L. 1994. Confirmation of human Campylobacter concisus isolates misidentified as Campylobacter mucosalis and suggestions for improved differentiation between the two species. J. Clin. Microbiol. 32:23052306.
101. On, S. L. 1996. Identification methods for campylobacters, helicobacters, and related organisms. Clin. Microbiol. Rev. 9:405422.
102. On, S. L.,, H. I. Atabay,, J. E. Corry,, C. S. Harrington, and, P. Vandamme. 1998. Emended description of Campylobacter sputorum and revision of its infrasubspecific (biovar) divisions, including C. sputorum biovar paraureolyticus, a urease-producing variant from cattle and humans. Int. J. Syst. Bacteriol. 48(Pt. 1):195206.
103. On, S. L., and, C. S. Harrington. 2001. Evaluation of numerical analysis of PFGE-DNA profiles for differentiating Campylobacter fetus subspecies by comparison with phenotypic, PCR and 16S rDNA sequencing methods. J. Appl. Microbiol. 90:285293.
104. On, S. L., and, C. S. Harrington. 2000. Identification of taxonomic and epidemiological relationships among Campylobacter species by numerical analysis of AFLP profiles. FEMS Microbiol. Lett. 193:161169.
105. On, S. L.,, C. S. Harrington, and, H. I. Atabay. 2003. Differentiation of Arcobacter species by numerical analysis of AFLP profiles and description of a novel Arcobacter from pig abortions and turkey faeces. J. Appl. Microbiol. 95:10961105.
106. On, S. L.,, B. Holmes, and, M. J. Sackin. 1996. A probability matrix for the identification of campylobacters, helicobacters and allied taxa. J. Appl. Bacteriol. 81:425432.
107. On, S. L.,, T. K. Jensen,, V. Bille-Hansen,, S. E. Jorsal, and, P. Vandamme. 2002. Prevalence and diversity of Arcobacter spp. isolated from the internal organs of spontaneous porcine abortions in Denmark. Vet. Microbiol. 85:159167.
108. On, S. L. W., and, B. Holmes. 1995. Classification and identification of campylobacters, helicobacters and allied taxa by numerical analysis of phenotypic characters. Syst. Appl. Microbiol. 18:374390.
109. Oremland, R. S.,, J. S. Blum,, C. W. Culbertson,, P. T. Visscher,, L. G. Miller,, P. Dowdle, and, F. E. Strohmaier. 1994. Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl. Environ. Microbiol. 60:30113019.
110. Prévot, A. R. 1940. Etudes de systématique bactérienne. V. Essai de classification des vibrions anaérobies. Ann. Inst. Pasteur 64:117125.
111. Prouzet-Mauleon, V.,, L. Labadi,, N. Bouges,, A. Menard, and, F. Megraud. 2006. Arcobacter butzleri: underestimated enteropathogen. Emerg. Infect. Dis. 12:307309.
112. Puigbo, P.,, S. Garcia-Vallve, and, J. O. McInerney. 2007. TOPD/FMTS: a new software to compare phylogenetic trees. Bioinformatics 23:15561558.
113. Romero, J.,, M. Garcia-Varela,, J. P. Laclette, and, R. T. Espejo. 2002. Bacterial 16S rRNA gene analysis revealed that bacteria related to Arcobacter spp. constitute an abundant and common component of the oyster microbiota (Tiostrea chilensis). Microb. Ecol. 44:365371.
114. Roop, R. M.,, R. M. Smibert,, J. L. Johnson, and, N. R. Krieg. 1985a. Campylobacter mucosalis (Lawson, Leaver, Pettigrew, and Rowland 1981) comb. nov.: emended description. Int. J. Syst. Bacteriol. 35:189192.
115. Roop, R. M.,, R. M. Smibert,, J. L. Johnson, and, N. R. Krieg. 1985b. DNA homology studies of the catalase-negative campylobacters and Campylobacter fecalis, an emended description of Campylobacter sputorum, and proposal of the neotype strain of Campylobacter sputorum. Can. J. Microbiol. 31:823831.
116. Rose, T. M.,, E. R. Schultz,, J. G. Henikoff,, S. Pietrokovski,, C. M. McCallum, and, S. Henikoff. 1998. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res. 26:16281635.
117. Sails, A. D.,, A. J. Fox,, F. J. Bolton,, D. R. Wareing,, D. L. Green-way, and, R. Borrow. 2001. Development of a PCR ELISA assay for the identification of Campylobacter jejuni and Campylobacter coli. Mol. Cell. Probes 15:291300.
118. Sandstedt, K., and, J. Ursing. 1991. Description of Campylobacter upsaliensis sp. nov. previously known as the CNW group. Syst. Appl. Microbiol. 14:3945.
119. Scholzmuramatsu, H.,, A. Neumann,, M. Messmer,, E. Moore, and, G. Diekert. 1995. Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch. Microbiol. 163:4856.
120. Schouls, L. M.,, S. Reulen,, B. Duim,, J. A. Wagenaar,, R. J. Willems,, K. E. Dingle,, F. M. Colles, and, J. D. Van Embden. 2003. Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination. J. Clin. Microbiol. 41:1526.
121. Schuett, C.,, H. Doepke,, W. Groepler, and, A. Wichels. 2005. Diversity of intratunical bacteria in the tunic matrix of the colonial ascidian Diplosoma migrans. Helgoland Mar. Res. 59:136140.
122. Schumacher, W.,, P. M. H. Kroneck, and, N. Pfennig. 1992. Comparative systematic study on Spirillum 5175, Campylobacter and Wolinella species: description of Spirillum 5175 as Sulfurospirillum deleyianum gen. nov., spec. nov. Arch. Microbiol. 158:287293.
123. Sebald, M., and, M. Véron. 1963. Teneur en bases de l’ADN et classification des vibrions. Ann. Inst. Pasteur 105:897910.
124. Sette, L. D.,, K. C. Simioni,, S. P. Vasconcellos,, L. J. Dussan,, E. V. Neto, and, V. M. Oliveira. 2007. Analysis of the composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin. Antonie Leeuwenhoek 91:253266.
125. Siemer, B. L.,, E. M. Nielsen, and, S. L. On. 2005. Identification and molecular epidemiology of Campylobacter coli isolates from human gastroenteritis, food, and animal sources by amplified fragment length polymorphism analysis and Penner serotyping. Appl. Environ. Microbiol. 71:19531958.
126. Sievert, S. M.,, E. B. Wieringa,, C. O. Wirsen, and, C. D. Taylor. 2007. Growth and mechanism of filamentous-sulfur formation by “Candidatus Arcobacter sulfidicus” in opposing oxygen-sulfide gradients. Environ. Microbiol. 9:271276.
127. Skirrow, M. B. 1977. Campylobacter enteritis: a “new” disease. Br. Med. J. 2:911.
128. Skirrow, M. B. 2006. John McFadyean and the centenary of the first isolation of Campylobacter species. Clin. Infect. Dis. 43:12131217.
129. Smith, T., and, M. Orcutt. 1927. Vibrios from calves and their serological relation to Vibrio fetus. J. Exp. Med. 45:391397.
130. Smith, T., and, M. S. Taylor. 1919. Some morphological and biochemical characters of the spirilla (Vibrio fetus n. sp.) associated with disease of the fetal membranes in cattle. J. Exp. Med. 310:299312.
131. Snaidr, J.,, R. Amann,, I. Huber,, W. Ludwig, and, K. H. Schleifer. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63:28842896.
132. Stackebrandt, E., and, B. M. Goebel. 1994. A place for DNA-DNA reassociation and 16S ribosomal RNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846849.
133. Stoddard, R. A.,, W. G. Miller,, J. E. Foley,, J. Lawrence,, F. M. Gulland,, P. A. Conrad, and, B. A. Byrne. 2007. Campylobacter insulaenigrae isolated from Northern Elephant Seals (Mirounga angustirostris) in California. Appl. Environ. Microbiol. 73:17291735.
134. Stolz, J. F.,, D. J. Ellis,, J. S. Blum,, D. Ahmann,, D. R. Lovley, and, R. S. Oremland. 1999. Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the epsilon Proteobacteria. Int. J. Syst. Bacteriol. 49:11771180.
135. Stolz, J. F.,, R. S. Oremland,, B. J. Paster,, F. E. Dewhirst, and, P. Vandamme. 2005. Genus III. Sulfurospirillum Schumacher, Kroneck, and Pfennig 1993, 188VP (Effective publication: Schumacher, Kroneck, and Pfennig 1992, 291), emend. Fienster, Liesack and Tindall 1997d, 1216, p. 11651168. In D. J. Brenner,, N. R. Krieg,, J. T. Staley, and, G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, vol. 2. Springer-Verlag, New York.
136. Suerbaum, S.,, M. Lohrengel,, A. Sonnevend,, F. Ruberg, and, M. Kist. 2001. Allelic diversity and recombination in Campylobacter jejuni. J. Bacteriol. 183:25532559.
137. Tanner, A. C. R.,, S. Badger,, C. H. Lai,, M. A. Listgarten,, R. A. Visconti, and, S. S. Socransky. 1981. Wolinella g en. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et. al.) comb. nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus s p. nov., and Eikenella corrodens from humans with periodontal disease. Int. J. Syst. Bacteriol. 31:432445.
138. Tanner, A. C. R.,, M. A. Listgarten, and, J. L. Ebersole. 1984. Wolinella curva sp. nov.: “Vibrio succinogenes” of human origin. Int. J. Syst. Bacteriol. 34:275282.
139. Tatusov, R. L.,, E. V. Koonin, and, D. J. Lipman. 1997. A genomic perspective on protein families. Science 278:631637.
140. Teske, A.,, P. Sigalevich,, Y. Cohen, and, G. Muyzer. 1996. Molecular identification of bacteria from a coculture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures. Appl. Environ. Microbiol. 62:42104215.
141. Totten, P. A.,, C. L. Fennell,, F. C. Tenover,, J. M. Wezenberg,, P. L. Perine,, W. E. Stamm, and, K. K. Holmes. 1985. Campylobacter cinaedi (sp. nov.) and Campylobacter fennelliae (sp. nov.): two new Campylobacter species associated with enteric disease in homosexual men. J. Infect. Dis. 151:131139.
142. Tu, Z. C.,, W. Eisner,, B. N. Kreiswirth, and, M. J. Blaser. 2005. Genetic divergence of Campylobacter fetus strains of mammal and reptile origins. J. Clin. Microbiol. 43:33343340.
143. Tunicliff, R. 1914. An anaerobic vibrio isolated from a case of acute bronchitis. J. Infect. Dis. 15:350351.
144. Tyrrell, K. L.,, D. M. Citron,, Y. A. Warren,, S. Nachnani, and, E. J. Goldstein. 2003. Anaerobic bacteria cultured from the tongue dorsum of subjects with oral malodor. Anaerobe 9:243246.
145. Ursing, J. B.,, H. Lior, and, R. J. Owen. 1994. Proposal of minimal standards for describing new species of the family Campylobacteraceae. Int. J. Syst. Bacteriol. 44:842845.
146. van Bergen, M. A.,, K. E. Dingle,, M. C. Maiden,, D. G. Newell,, L. van der Graaf-Van Bloois,, J. P. van Putten, and, J. A. Wagenaar. 2005a. Clonal nature of Campylobacter fetus as defined by multilocus sequence typing. J. Clin. Microbiol. 43:58885898.
147. van Bergen, M. A.,, G. Simons,, L. van der Graaf-van Bloois,, J. P. van Putten,, J. Rombout,, I. Wesley, and, J. A. Wagenaar. 2005b. Amplified fragment length polymorphism based identification of genetic markers and novel PCR assay for differentiation of Campylobacter fetus subspecies. J. Med. Microbiol. 54:12171224.
148. Vandamme, P. 2000. Taxonomy of the family Campylobacteraceae, p. 326. In I. Nachamkin and, M. J. Blaser (ed.), Campylobacter, 2nd ed. ASM Press, Washington, DC.
149. Vandamme, P.,, M. I. Daneshvar,, F. E. Dewhirst,, B. J. Paster,, K. Kersters,, H. Goossens, and, C. W. Moss. 1995. Chemotaxonomic analyses of Bacteroides gracilis and Bacteroides ureolyticus and reclassification of B. gracilis as Campylobacter gracilis comb. nov. Int. J. Syst. Bacteriol. 45:145152.
150. Vandamme, P., and, J. De Ley. 1991. Proposal for a new family, Campylobacteraceae. Int. J. Syst. Bacteriol. 41:451455.
151. Vandamme, P.,, E. Falsen,, B. Pot,, B. Hoste,, K. Kersters, and, J. De Ley. 1989. Identification of EF group 22 campylobacters from gastroenteritis cases as Campylobacter concisus. J. Clin. Microbiol. 27:17751781.
152. Vandamme, P.,, E. Falsen,, R. Rossau,, B. Hoste,, P. Segers,, R. Tytgat, and, J. De Ley. 1991a. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int. J. Syst. Bacteriol. 41:88103.
153. Vandamme, P., and, H. Goossens. 1992. Taxonomy of Campylobacter, Arcobacter, and Helicobacter: a review. Zentralbl. Bakteriol. 276:447472.
154. Vandamme, P.,, B. Pot,, E. Falsen,, K. Kersters, and, J. De Ley. 1990. Intra- and interspecific relationships of veterinary campylobacters revealed by numerical analysis of electrophoretic protein profiles and DNA:DNA hybridizations. Syst. Appl. Microbiol. 13:295303.
155. Vandamme, P.,, B. Pot,, M. Gillis,, P. de Vos,, K. Kersters, and, J. Swings. 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60:407438.
156. Vandamme, P.,, B. Pot, and, K. Kersters. 1991b. Differentiation of campylobacters and Campylobacter-like organisms by numerical analysis of one-dimensional electrophoretic protein patterns. Syst. Appl. Microbiol. 14:5766.
157. Vandamme, P.,, L. J. Van Doorn,, S. T. al Rashid,, W. G. Quint,, J. van der Plas,, V. L. Chan, and, S. L. On. 1997. Campylobacter hyoilei Alderton et al. 1995 and Campylobacter coli Veron and Chatelain 1973 are subjective synonyms. Int. J. Syst. Bacteriol. 47:10551060.
158. Vandamme, P.,, M. Vancanneyt,, B. Pot,, L. Mels,, B. Hoste,, D. Dewettinck,, L. Vlaes,, C. van den Borre,, R. Higgins, and, J. Hommez. 1992. Polyphasic taxonomic study of the emended genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an aerotolerant bacterium isolated from veterinary specimens. Int. J. Syst. Bacteriol. 42:344356.
159. Van Driessche, E., and, K. Houf. 2007. Discrepancy between the occurrence of Arcobacter in chickens and broiler carcass contamination. Poult. Sci. 86:744751.
160. Van Driessche, E.,, K. Houf,, J. Van Hoof,, L. De Zutter, and, P. Vandamme. 2003. Isolation of Arcobacter species from animal feces. FEMS Microbiol. Lett. 229:243248.
161. Van Etterijck, R.,, J. Breynaert,, H. Revets,, T. Devreker,, Y. Vandenplas,, P. Vandamme, and, S. Lauwers. 1996. Isolation of Campylobacter concisus from feces of children with and without diarrhea. J. Clin. Microbiol. 34:23042306.
162. Vandenberg, O.,, A. Dediste,, K. Houf,, S. Ibekwem,, H. Souayah,, S. Cadranel,, N. Douat,, G. Zissis,, J. P. Butzler, and, P. Vandamme. 2004. Arcobacter species in humans. Emerg. Infect. Dis. 10:18631867.
163. Véron, M., and, R. Chatelain. 1973. Taxonomic study of the genus Campylobacter Sebald and Véron and designation of the neotype strain for the type species Campylobacter fetus (Smith and Taylor) Sebald and Véron. Int. J. Syst. Bacteriol. 23:122134.
164. Vinzent, R.,, J. Dumas, and, N. Picard. 1947. Septicemie grave eu cours de la grossesse, due à un vibrion. Avortement consecutif. C. R. Acad. Med. 131:90.
165. Voordouw, G.,, S. M. Armstrong,, M. F. Reimer,, B. Fouts,, A. J. Telang,, Y. Shen, and, D. Gevertz. 1996. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 62:16231629.
166. Wesley, I. V.,, L. Schroeder-Tucker,, A. L. Baetz,, F. E. Dewhirst, and, B. J. Paster. 1995. Arcobacter-specific and Arcobacter butzleri–specific 16S rRNA-based DNA probes. J. Clin. Microbiol. 33:16911698.
167. Winkler, M. A.,, J. Uher, and, S. Cepa. 1999. Direct analysis and identification of Helicobacter and Campylobacter species by MALDI-TOF mass spectrometry. Anal. Chem. 71:34163419.
168. Wirsen, C. O.,, S. M. Sievert,, C. M. Cavanaugh,, S. J. Molyneaux,, A. Ahmad,, L. T. Taylor,, E. F. DeLong, and, C. D. Taylor. 2002. Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl. Environ. Microbiol. 68:316325.
169. Wolfe, R. S., and, N. Pfennig. 1977. Reduction of sulfur by Spirillum 5175 and syntrophism with Chlorobium. Appl. Environ. Microbiol. 33:427433.
170. Wolin, M. J.,, E. A. Wolin, and, N. J. Jacobs. 1961. Cytochrome-producing anaerobic vibrio, Vibrio succinogenes, sp. n. J. Bacteriol. 81:911917.
171. Wybo, I.,, J. Breynaert,, S. Lauwers,, F. Lindenburg, and, K. Houf. 2004. Isolation of Arcobacter skirrowii from a patient with chronic diarrhea. J. Clin. Microbiol. 42:18511852.


Generic image for table
Table 1.

Functional classification of 60 selected phylogenetic markers for the

Citation: Debruyne L, Gevers D, Vandamme P. 2008. Taxonomy of the Family , p 3-25. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error