1887

Chapter 10 : Molecular Epidemiology of Species

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Molecular Epidemiology of Species, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap10-2.gif

Abstract:

This chapter summarizes the various modern genotypic methods available for subtyping the various species, the use of genetic methods for investigating outbreaks of disease, the application and interpretation of large-scale techniques in broader epidemiological studies, and a perspective of future developments in the field. Discussions of three methods (pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and amplified fragment length polymorphism (AFLP)) used to compare relatively large numbers of strains follow in a section aimed at summarizing our knowledge of molecular epidemiology in a broader perspective. Limitations of MLST include cost and the degree of resolution that is possible with the quantity of data provided by seven highly conserved gene fragments. The molecular epidemiology of is less well studied, but more recent work offers some insights into host association. Current results suggest that the attribution of and isolates from human cases to their source will be best undertaken by means of a phylogenetic approach that uses analysis based on allele frequencies, or that follows robust definition of host associated sublineages within the main clonal groups. Molecular epidemiological studies of species have matured considerably since the early applications of plasmid profiling and restriction enzyme analysis in homogeneous electric fields.

Citation: On S, McCarthy N, Miller W, Gilpin B. 2008. Molecular Epidemiology of Species, p 191-211. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch10

Key Concept Ranking

Denaturing Gradient Gel Electrophoresis
0.48551863
Restriction Fragment Length Polymorphism
0.46972942
0.48551863
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

PFGE patterns of selected New Zealand isolates when digested with I and I. UPGMA (unweighted pair group with mathematical average) dendrograms generated by BioNumerics v4.5, with DICE coefficient, optimization of 1.0%, and tolerance of 1.5%.

Citation: On S, McCarthy N, Miller W, Gilpin B. 2008. Molecular Epidemiology of Species, p 191-211. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Novel AFLP method for use in conventional electrophoresis and detection systems aimed at identification and typing and species. Lanes 1 and 27 are 100-bp markers; lanes 2 to 7, strains; lanes 8 to 15, lanes 16 to 19, subsp. ; lanes 20 to 25, subsp. Lanes 9 to 11 and 21 to 22 represent well-characterized outbreak strains and are indistinguishable (E. Podivinsky, K. Thom, and S. L. W. On, unpublished data).

Citation: On S, McCarthy N, Miller W, Gilpin B. 2008. Molecular Epidemiology of Species, p 191-211. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Prediction of origin by using only alleles for which substantial reference information is available. Light lines indicate alleles different from ST-21 present mainly in chickens in the reference population (i.e., an allele that would predict chicken origin); dark lines indicate alleles present mainly in bovids (i.e., predicts bovid origin). Light boxes indicate STs found only in chickens, dark boxes indicate STs found only in bovids, and boxes with light and dark shading indicate STs found in bovids and chickens. Figure from .

Citation: On S, McCarthy N, Miller W, Gilpin B. 2008. Molecular Epidemiology of Species, p 191-211. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Dendrogram of STs. Allele sequences from each of the 66 STs were concatenated in the order ------ and aligned by ClustalX. The dendrogram was constructed by the neighbor-joining algorithm and the Kimura two-parameter distance estimation method. Bootstrap values of >75%, generated from 500 replicates, are shown at the nodes. The scale bar represents substitutions per site. Numeric labels represent STs. Geographic source of the strains was, where indicated: South Africa (solid circles), Belgium (open triangles), United States (crosses), or United Kingdom, France, and Sweden (solid triangles). STs representing strains are boxed in gray.

Citation: On S, McCarthy N, Miller W, Gilpin B. 2008. Molecular Epidemiology of Species, p 191-211. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815554.ch10
1. Aabenhus, R.,, S. L. W. On,, B. L. Siemer,, H. Permin, and, L. P. Andersen. 2005. Delineation of Campylobacter concisus genomospecies by amplified fragment length polymorphism analysis and correlation of results with clinical data. J. Clin. Microbiol. 43:50915096.
2. Acik, M. N., and, B. Cetinkaya. 2005. The heterogeneity of Campylobacter jejuni and Campylobacter coli strains isolated from healthy cattle. Lett. Appl. Microbiol. 41:397403.
3. Acik, M. N., and, B. Cetinkaya. 2006. Random amplified polymorphic DNA analysis of Campylobacter jejuni and Campylobacter coli isolated from healthy cattle and sheep. J. Med. Microbiol. 55:331334.
4. Adhikari, B.,, J. H. Connolly,, P. Madie, and, P. R. Davies. 2004. Prevalence and clonal diversity of Campylobacter jejuni from dairy farms and urban sources. N. Z. Vet. J. 52:378383.
5. Allen, V. M.,, S. A. Bull,, J. E. Corry,, G. Domingue,, F. Jorgensen,, J. A. Frost,, R. Whyte,, A. Gonzalez,, N. Elviss, and, T. J. Humphrey. 2007. Campylobacter spp. contamination of chicken carcasses during processing in relation to flock colonisation. Int. J. Food Microbiol. 113:5461.
6. Bates, C.,, K. L. Hiett, and, N. J. Stern. 2004. Relationship of Campylobacter isolated from poultry and from darkling beetles in New Zealand. Avian Dis. 48:138147.
7. Bourke, B.,, P. M. Sherman,, D. Woodward,, H. Lior, and, V. L. Chan. 1996. Pulsed-field gel electrophoresis indicates genotypic heterogeneity among Campylobacter upsaliensis strains. FEMS Microbiol. Lett. 143:5761.
8. Butzler, J. P.,, P. Dekeyser,, M. Detrain, and, F. Dehaen. 1973. Related Vibrio in stools. J. Pediatr. 82:493495.
9. Champion, O. L.,, E. L. Best, and, J. A. Frost. 2002. Comparison of pulsed-field gel electrophoresis and amplified fragment length polymorphism techniques for investigating outbreaks of enteritis due to campylobacters. J. Clin. Microbiol. 40:22632265.
10. Clark, C.,, L. Bryden,, W. Cuff,, P. Johnson,, F. Jamieson,, B. Ciebin, and, G. Wang. 2005. Use of the Oxford multilocus sequence typing protocol and sequencing of the flagellin short variable region to characterize isolates from a large outbreak of water-borne Campylobacter sp. strains in Walkerton, Ontario, Canada. J. Clin. Microbiol. 43:20802091.
11. Colles, F. M.,, K. Jones,, R. M. Harding, and, M. C. Maiden. 2003. Genetic diversity of Campylobacter jejuni isolates from farm animals and the farm environment. Appl. Environ. Microbiol. 69:74097413.
12. Corcoran, D.,, T. Quinn,, L. Cotter,, P. Whyte, and, S. Fanning. 2006. Antimicrobial resistance profiling and fla-typing of Irish thermophillic Campylobacter spp. of human and poultry origin. Lett. Appl. Microbiol. 43:560565.
13. Cornelius, A.,, C. Nicol, and, J. Hudson. 2005. Campylobacter spp. in New Zealand raw sheep liver and human campylobacteriosis cases. Int. J. Food Microbiol. 99:99105.
14. de Boer, P.,, B. Duim,, A. Rigter,, J. van Der Plas,, W. F. Jacobs-Reitsma, and, J. A. Wagenaar. 2000. Computer-assisted analysis and epidemiological value of genotyping methods for Campylobacter jejuni and Campylobacter coli. J. Clin. Microbiol. 38:19401946.
15. Devane, M. L.,, C. Nicol,, A. Ball,, J. D. Klena,, P. Scholes,, J. A. Hudson,, M. G. Baker,, B. J. Gilpin,, N. Garrett, and, M. G. Savill. 2005. The occurrence of Campylobacter subtypes in environmental reservoirs and potential transmission routes. J. Appl. Microbiol. 98:980990.
16. Dingle, K. E.,, F. M. Colles,, D. Falush, and, M. C. Maiden. 2005. Sequence typing and comparison of population biology of Campylobacter coli and Campylobacter jejuni. J. Clin. Microbiol. 43:340347.
17. Dingle, K. E.,, F. M. Colles,, R. Ure,, J. A. Wagenaar,, B. Duim,, F. J. Bolton,, A. J. Fox,, D. R. Wareing, and, M. C. Maiden. 2002. Molecular characterization of Campylobacter jejuni clones: a basis for epidemiologic investigation. Emerg. Infect. Dis. 8:949955.
18. Dingle, K. E.,, F. M. Colles,, D. R. Wareing,, R. Ure,, A. J. Fox,, F. E. Bolton,, H. J. Bootsma,, R. J. Willems,, R. Urwin, and, M. C. Maiden. 2001a. Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol. 39:1423.
19. Dingle, K. E.,, N. Van Den Braak,, F. M. Colles,, L. J. Price,, D. L. Woodward,, F. G. Rodgers,, H. P. Endtz,, A. Van Belkum, and, M. C. Maiden. 2001b. Sequence typing confirms that Campylobacter jejuni strains associated with Guillain-Barre and Miller-Fisher syndromes are of diverse genetic lineage, serotype, and flagella type. J. Clin. Microbiol. 39:33463349.
20. Djordjevic, S. P.,, L. E. Unicomb,, P. J. Adamson,, L. Mickan, and, R. Rios. 2007. Clonal complexes of Campylobacter jejuni identified by multilocus sequence typing are reliably predicted by restriction fragment length polymorphism analyses of the flaA gene. J. Clin. Microbiol. 45:102108.
21. Duim, B.,, P. A. Vandamme,, A. Rigter,, S. Laevens,, J. R. Dijkstra, and, J. A. Wagenaar. 2001. Differentiation of Campylobacter species by AFLP fingerprinting. Microbiology 147:27292737.
22. Duim, B.,, J. A. Wagenaar,, J. R. Dijkstra,, J. Goris,, H. P. Endtz, and, P. A. Vandamme. 2004. Identification of distinct Campylobacter lari genogroups by amplified fragment length polymorphism and protein electrophoretic profiles. Appl. Environ. Microbiol. 70:1824.
23. Duim, B.,, T. M. Wassenaar,, A. Rigter, and, J. Wagenaar. 1999. High-resolution genotyping of Campylobacter strains isolated from poultry and humans with amplified fragment length polymorphism fingerprinting. Appl. Environ. Microbiol. 65:23692375.
24. Ekdahl, K.,, B. Normann, and, Y. Andersson. 2005. Could flies explain the elusive epidemiology of campylobacteriosis? BMC Infect. Dis. 5:11.
25. Engberg, J.,, D. D. Bang,, R. Aabenhus,, F. M. Aarestrup,, V. Fussing, and, P. Gerner-Smidt. 2005. Campylobacter concisus: an evaluation of certain phenotypic and genotypic characteristics. Clin. Microbiol. Infect. 11:288295.
26. Engberg, J.,, P. Gerner-Smidt,, F. Scheutz,, E. Møller Nielsen,, S. L. W. On, and, K. Mølbak. 1998. Water-borne Campylobacter jejuni infection in a Danish town—a 6-week continuous source outbreak. Clin. Microbiol. Infect. 4:648656.
27. Eyles, R. F.,, H. J. Brooks,, C. R. Townsend,, G. A. Burtenshaw,, N. C. Heng,, R. W. Jack, and, P. Weinstein. 2006. Comparison of Campylobacter jejuni PFGE and Penner subtypes in human infections and in water samples from the Taieri River catchment of New Zealand. J. Appl. Microbiol. 101:1825.
28. Fayos, A.,, R. J. Owen,, J. Hernandez,, C. Jones, and, A. Lastovica. 1993. Molecular subtyping by genome and plasmid analysis of Campylobacter jejuni serogroups O1 and O2 (Penner) from sporadic and outbreak cases of human diarrhoea. Epidemiol. Infect. 111:415427.
29. Fischer, W. 2000. Phosphocholine of pneumococcal teichoic acids: role in bacterial physiology and pneumococcal infection. Res. Microbiol. 151:421427.
30. Fitzgerald, C., L. O. Helsel,, M. A. Nicholson,, S. J. Olsen,, D. L. Swerdlow,, R. Flahart,, J. Sexton, and, P. I. Fields. 2001. Evaluation of methods for subtyping Campylobacter jejuni during an outbreak involving a food handler. J. Clin. Microbiol. 39:23862390.
31. Foster, G.,, B. Holmes,, A. G. Steigerwalt,, P. A. Lawson,, P. Thorne,, D. E. Byrer,, H. M. Ross,, J. Xerry,, P. M. Thompson, and, M. D. Collins. 2004. Campylobacter insulaenigrae sp. nov., isolated from marine mammals. Int J Syst Evol Microbiol 54:23692373.
32. Fouts, D. E.,, E. F. Mongodin,, R. E. Mandrell,, W. G. Miller,, D. A. Rasko,, J. Ravel,, L. M. Brinkac,, R. T. Deboy,, C. T. Parker,, S. C. Daugherty,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, S. A. Sullivan,, J. U. Shetty,, M. A. Ayodeji,, A. Shvartsbeyn,, M. C. Schatz,, J. H. Badger,, C. M. Fraser, and, K. E. Nelson. 2005. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol 3:e15.
33. French, N.,, M. Barrigas,, P. Brown,, P. Ribiero,, N. Williams,, H. Leatherbarrow,, R. Birtles,, E. Bolton,, P. Fearnhead, and, A. Fox. 2005. Spatial epidemiology and natural population structure of Campylobacter jejuni colonizing a farmland ecosystem. Environ. Microbiol 7:11161126.
34. Ge, B.,, W. Girard,, S. Zhao,, S. Friedman,, S. A. Gaines, and, J. Meng. 2006. Genotyping of Campylobacter spp. from retail meats by pulsed-field gel electrophoresis and ribotyping. J. Appl. Microbiol. 100:175184.
35. Gibson, J.,, K. Sutherland, and, R. Owen. 1994. Inhibition of DNAse activity in PFGE analysis of DNA from Campylobacter jejuni. Lett. Appl. Microbiol. 19:357358.
36. Gilpin, B.,, A. Cornelius,, B. Robson,, N. Boxall,, A. Ferguson,, C. Nicol, and, T. Henderson. 2006. Application of pulsed-field gel electrophoresis to identify potential outbreaks of campylobacteriosis in New Zealand. J. Clin. Microbiol. 44:406412.
37. Hald, B.,, K. Pedersen,, M. Waino,, J. C. Jorgensen, and, M. Madsen. 2004a. Longitudinal study of the excretion patterns of thermophilic Campylobacter spp. in young pet dogs in Denmark. J. Clin. Microbiol. 42:20032012.
38. Hald, B.,, H. Skovgard,, D. D. Bang,, K. Pedersen,, J. Dybdahl,, J. B. Jespersen, and, M. Madsen. 2004b. Flies and Campylobacter infection of broiler flocks. Emerg. Infect. Dis. 10:14901492.
39. Han, K.,, S. S. Jang,, E. Choo,, S. Heu, and, S. Ryu. 2007. Prevalence, genetic diversity, and antibiotic resistance patterns of Campylobacter jejuni from retail raw chickens in Korea. Int. J. Food Microbiol. 114:5059.
40. Hanninen, M. L.,, L. Sarelli,, A. Sukura,, S. L. On,, C. S. Harrington,, P. Matero, and, V. Hirvela-Koski. 2002. Campylobacter hyointestinalis subsp. hyointestinalis, a common Campylobacter species in reindeer. J. Appl. Microbiol. 92:717723.
41. Harrington, C. S.,, F. M. Thomson-Carter, and, P. E. Carter. 1997. Evidence for recombination in the flagellin locus of Campylobacter jejuni: implications for the flagellin gene typing scheme. J. Clin. Microbiol. 35:23862392.
42. Harrington, C. S.,, F. M. Thomson-Carter, and, P. E. Carter. 1999. Molecular epidemiological investigation of an outbreak of Campylobacter jejuni identifies a dominant clonal line within Scottish serotype HS55 populations. Epidemiol. Infect. 122:367375.
43. Hearnden, M.,, C. Skelly,, R. Eyles, and, P. Weinstein. 2003. The regionality of campylobacteriosis seasonality in New Zealand. Int. J. Environ. Health Res. 13:337348.
44. Hernandez, J.,, A. Fayos,, M. A. Ferrus, and, R. J. Owen. 1995. Random amplified polymorphic DNA fingerprinting of Campylobacter jejuni and C. coli isolated from human faeces, seawater and poultry products. Res. Microbiol. 146:685696.
45. Hiett, K. L.,, B. S. Seal, and, G. R. Siragusa. 2006. Campylobacter spp. subtype analysis using gel-based repetitive extragenic palindromic-PCR discriminates in parallel fashion to flaA short variable region DNA sequence analysis. J. Appl. Microbiol. 101:12491258.
46. Hopkins, K. L.,, M. Desai,, J. A. Frost,, J. Stanley, and, J. M. Logan. 2004. Fluorescent amplified fragment length polymorphism genotyping of Campylobacter jejuni and Campylobacter coli strains and its relationship with host specificity, serotyping, and phage typing. J. Clin. Microbiol. 42:229235.
47. Hudson, J. A.,, C. Nicol,, J. Wright,, R. Whyte, and, S. K. Hasell. 1999. Seasonal variation of Campylobacter types from human cases, veterinary cases, raw chicken, milk and water. J. Appl. Microbiol. 87:115124.
48. Hum, S.,, K. Quinn,, J. Brunner, and, S. L. W. On. 1997. Evaluation of a PCR assay for identification and differentiation of Campylobacter fetus subspecies. Aust. Vet. J. 75:827831.
49. Ichiyama, S.,, S. Hirai,, T. Minami,, Y. Nishiyama,, S. Shimizu,, K. Shimokata, and, M. Ohta. 1998. Campylobacter fetus subspecies fetus cellulitis associated with bacteremia in debilitated hosts. Clin. Infect. Dis. 27:252255.
50. Institute of Environmental Science and Research Ltd. 2007. Notifiable and Other Diseases in New Zealand Annual Report 2006. Institute of Environmental Science and Research Limited. Wellington, New Zealand.
51. Iriarte, M. P., and, R. J. Owen. 1996. Repetitive and arbitrary primer DNA sequences in PCR-mediated fingerprinting of outbreak and sporadic isolates of Campylobacter jejuni. FEMS Immunol. Med. Microbiol. 15:1722.
52. Karenlampi, R.,, H. Rautelin, and, M. L. Hanninen. 2007a. Evaluation of genetic markers and molecular typing methods for prediction of sources of Campylobacter jejuni and C. coli infections. Appl. Environ. Microbiol. 73:16831685.
53. Karenlampi, R.,, H. Rautelin,, D. Schonberg-Norio,, L. Paulin, and, M. L. Hanninen. 2007b. Longitudinal study of Finnish Campylobacter jejuni and C. coli isolates from humans, using multilocus sequence typing, including comparison with epidemio-logical data and isolates from poultry and cattle. Appl. Environ. Microbiol. 73:148155.
54. Kokotovic, B., and, S. L. On. 1999. High-resolution genomic fingerprinting of Campylobacter jejuni and Campylobacter coli by analysis of amplified fragment length polymorphisms. FEMS Microbiol. Lett. 173:7784.
55. Kuusi, M.,, P. Klemets,, I. Miettinen,, I. Laaksonen,, H. Sarkkinen,, M.-L. Hänninen,, H. Rautelin,, E. Kela, and, J. P. Nuorti. 2004. An outbreak of gastroenteritis from a non-chlorinated community water supply. J. Epidemiol. Community Health 58:273277.
56. Lastovica, A. J. 2006. Emerging Campylobacter spp., the tip of the iceberg. Clin. Microbiol. News 28:4956.
57. Lehner, A., C. Schneck,, G. Feierl,, P. Pless,, A. Deutz,, E. Brandl, and, M. Wagner. 2000. Epidemiologic application of pulsed-field gel electrophoresis to an outbreak of Campylobacter jejuni in an Austrian youth centre. Epidemiol. Infect. 125:1316.
58. Lind, L.,, E. Sjogren,, K. Melby, and, B. Kaijser. 1996. DNA finger-printing and serotyping of Campylobacter jejuni isolates from epidemic outbreaks. J. Clin. Microbiol. 34:892896.
59. Lindstedt, B. A.,, E. Heir,, T. Vardund,, K. K. Melby, and, G. Kapperud. 2000. Comparative fingerprinting analysis of Campylobacter jejuni subsp. jejuni strains by amplified-fragment length polymorphism genotyping. J. Clin. Microbiol. 38:33793387.
60. Litrup, E.,, M. Torpdahl, and, E. M. Nielsen. 2007. Multilocus sequence typing performed on Campylobacter coli isolates from humans, broilers, pigs and cattle originating in Denmark. J. Appl. Microbiol. 103:210218.
61. Llovo, J.,, E. Mateo,, A. Muñoz,, M. Urquijo,, S. L. W. On, and, A. Fernandez-Astorga. 2003. Molecular typing of Campylobacter jejuni isolates involved in a neonatal outbreak indicates nosocomial transmission. J. Clin. Microbiol. 41:39263928.
62. Luber, P., and, E. Bartelt. 2007. Enumeration of Campylobacter spp. on the surface and within chicken breast fillets. J. Appl. Microbiol. 102:313318.
63. Maiden, M. C. 2006. Multilocus sequence typing of bacteria. Annu. Rev. Microbiol. 60:561588.
64. Maiden, M. C.,, J. A. Bygraves,, E. Feil,, G. Morelli,, J. E. Russell,, R. Urwin,, Q. Zhang,, J. Zhou,, K. Zurth,, D. A. Caugant,, I. M. Feavers,, M. Achtman, and, B. G. Spratt. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. U. S. A. 95:31403145.
65. Malik-Kale, P.,, B. H. Raphael,, C. T. Parker,, L. A. Joens,, J. D. Klena,, B. Quinones,, A. M. Keech, and, M. E. Konkel. 2007. Characterization of genetically matched isolates of Campylobacter jejuni reveals that mutations in genes involved in flagellar biosynthesis alter the organism’s virulence potential. Appl. Environ. Microbiol. 73:31233136.
66. Manning, G.,, C. G. Dowson,, M. C. Bagnall,, I. H. Ahmed,, M. West, and, D. G. Newell. 2003. Multilocus sequence typing for comparison of veterinary and human isolates of Campylobacter jejuni. Appl. Environ. Microbiol. 69:63706379.
67. Matsheka, M. I.,, B. G. Elisha,, A. L. Lastovica, and, S. L. On. 2002. Genetic heterogeneity of Campylobacter concisus determined by pulsed field gel electrophoresis-based macrorestriction profiling. FEMS Microbiol. Lett. 211:1722.
68. Matsheka, M. I.,, A. J. Lastovica,, H. Zappe, and, B. G. Elisha. 2006. The use of (GTG)5 oligonucleotide as an RAPD primer to type Campylobacter concisus. Lett. Appl. Microbiol. 42:600605.
69. McCarthy, N. D.,, F. M. Colles,, K. E. Dingle,, M. C. Bagnall,, G. Manning,, M. C. Maiden, and, D. Falush. 2007. Host-associated genetic import in Campylobacter jejuni. Emerg. Infect. Dis. 13:267272.
70. Meldrum, R. J.,, R. M. Smith, and, I. G. Wilson. 2006. Three-year surveillance program examining the prevalence of Campylobacter and Salmonella in whole retail raw chicken. J. Food Prot. 69:928931.
71. Mellmann, A.,, J. Mosters,, E. Bartelt,, P. Roggentin,, A. Ammon,, A. W. Friedrich,, H. Karch, and, D. Harmsen. 2004. Sequence-based typing of flaB is a more stable screening tool than typing of flaA for monitoring of Campylobacter populations. J. Clin. Microbiol. 42:48404842.
72. Miller, G.,, G. M. Dunn,, A. Smith-Palmer,, I. D. Ogden, and, N. J. Strachan. 2004. Human campylobacteriosis in Scotland: seasonality, regional trends and bursts of infection. Epidemiol. Infect. 132:585593.
73. Miller, W. G.,, M. D. Englen,, S. Kathariou,, I. V. Wesley,, G. Wang,, L. Pittenger-Alley,, R. M. Siletz,, W. Muraoka,, P. J. Fedorka-Cray, and, R. E. Mandrell. 2006. Identification of host-associated alleles by multilocus sequence typing of Campylobacter coli strains from food animals. Microbiology 152:245255.
74. Miller, W. G.,, S. L. On,, G. Wang,, S. Fontanoz,, A. J. Lastovica, and, R. E. Mandrell. 2005. Extended multilocus sequence typing system for Campylobacter coli, C. lari, C. upsaliensis, and C. helveticus. J. Clin. Microbiol. 43:23152329.
75. Morooka, T.,, A. Umeda,, M. Fujita,, H. Matano,, S. Fujimoto,, K. Yukitake,, K. Amako, and, T. Oda. 1996. Epidemiologic application of pulsed-field gel electrophoresis to an outbreak of Campylobacter fetus meningitis in a neonatal intensive care unit. Scandinavian J. Infect. Dis. 28:269270.
76. Moser, I.,, P. Lentzsch,, B. Rieksneuwoehner,, P. Schwerk, and, L. H. Wieler. 2002. High resolution genotyping of Campylobacter jejuni strains by macrorestriction analysis with XhoI and polymerase chain reaction targeting enterobacterial repetitive intergenic consensus sequences: can we predict the zoonotic potential of strains? Epidemiol. Infect. 129:435443.
77. Moser, I.,, B. Rieksneuwohner,, P. Lentzsch,, P. Schwerk, and, L. H. Wieler. 2001. Genomic heterogeneity and O-antigenic diversity of Campylobacter upsaliensis and Campylobacter helveticus strains isolated from dogs and cats in Germany. J. Clin. Microbiol. 39:25482557.
78. Nachamkin, I.,, H. Ung, and, C. M. Patton. 1996. Analysis of HL and O serotypes of Campylobacter strains by the flagellin gene typing system. J. Clin. Microbiol. 34:277281.
79. Nielsen, E. M.,, J. Engberg,, V. Fussing,, L. Petersen,, C. H. Brogren, and, S. L. On. 2000. Evaluation of phenotypic and genotypic methods for subtyping Campylobacter jejuni isolates from humans, poultry, and cattle. J. Clin. Microbiol. 38:38003810.
80. Nylen, G.,, F. Dunstan,, S. R. Palmer,, Y. Andersson,, F. Bager,, J. Cowden,, G. Feierl,, Y. Galloway,, G. Kapperud,, F. Megraud,, K. Molbak,, L. R. Petersen, and, P. Ruutu. 2002. The seasonal distribution of Campylobacter infection in nine European countries and New Zealand. Epidemiol. Infect. 128:383390.
81. Olsen, S. J.,, G. R. Hansen,, L. Bartlett,, C. Fitzgerald,, A. Sonder,, R. Manjrekar,, T. Riggs,, J. Kim,, R. Flahart,, G. Pezzino, and, D. L. Swerdlow. 2001. An outbreak of Campylobacter jejuni infections associated with food handler contamination: the use of pulsed-field gel electrophoresis. J. Infect. Dis. 183:164167.
82. On, S. L. W. 1996. Identification methods for campylobacters, helicobacters, and related organisms. Clin Microbiol. Rev. 9:405422.
83. On, S. L. W. 2005. Taxonomy, phylogeny, and methods for the identification of Campylobacter species, p. 1342. In J. M. Ketley and, M. E. Konkel (ed.), Campylobacter: Molecular and Cellular Biology. Horizon Press, Norfolk, United Kingdom.
84. On, S. L. W. 2001. What have we learned about Campylobacter coli/jejuni from bacteriological typing studies? p. 53–57 In World Health Organization Department of Communicable Disease Surveillance and Response, The Increasing Incidence of Human Campylobacteriosis. Report and Proceedings of a WHO Consultation of Experts, 21 to 25 November 2000, Copenhagen, Denmark. World Health Organization, Geneva.
85. On, S. L. W.,, H. I. Atabay, and, J. E. Corry. 1999. Clonality of Campylobacter sputorum bv. paraureolyticus determined by macrorestriction profiling and biotyping, and evidence for long-term persistent infection in cattle. Epidemiol. Infect. 122:175182.
86. On, S. L. W.,, N. Dorrell,, L. Petersen,, D. D. Bang,, S. Morris,, S. J. Forsythe, and, B. W. Wren. 2006. Numerical analysis of DNA microarray data of Campylobacter jejuni strains correlated with survival, cytolethal distending toxin and haemolysin analyses. Int. J. Med. Microbiol. 296:353363.
87. On, S. L. W., and, C. S. Harrington. 2000. Identification of taxonomic and epidemiological relationships among Campylobacter species by numerical analysis of AFLP profiles. FEMS Microbiol. Lett. 193:161169.
88. On, S. L. W., and, C. S. Harrington. 2001. Evaluation of numerical analysis of PFGE-DNA profiles for differentiating Campylobacter fetus subspecies by comparison with phenotypic, PCR and 16S rDNA sequencing methods. J. Appl. Microbiol. 90:285293.
89. On, S. L. W.,, C. S. Harrington, and, H. I. Atabay. 2003. Differentiation of Arcobacter species by numerical analysis of AFLP profiles and description of a novel Arcobacter from pig abortions and turkey faeces. J. Appl. Microbiol. 95:10961105.
90. On, S. L. W.,, E. M. Nielsen,, J. Engberg, and, M. Madsen. 1998. Validity of Sma-defined genotypes of Campylobacter jejuni examined by Sal1, Kpn1, and BamH1 polymorphisms: evidence of identical clones infecting humans, poultry, and cattle. Epidemiol. Infect. 120:231237.
91. On, S. L. W., and, P. A. Vandamme. 1997. Identification and epidemiological typing of Campylobacter hyointestinalis subspeciies by phenotypic and genotypic methods and description of novel subgroups. Syst. Appl. Microbiol. 20:238247.
92. Ono, K.,, T. Kurazono,, H. Niwa, and, K. Itoh. 2003. Comparison of three methods for epidemiological typing of Campylobacter jejuni and C. coli. Curr. Microbiol 47:364371.
93. O’Reilly, L. C.,, T. J. Inglis, and, L. Unicomb. 2006. Australian multicentre comparison of subtyping methods for the investigation of Campylobacter infection. Epidemiol. Infect. 134:768779.
94. Petersen, L.,, E. M. Nielsen,, J. Engberg,, S. L. On, and, H. H. Dietz. 2001. Comparison of genotypes and serotypes of Campylobacter jejuni isolated from Danish wild mammals and birds and from broiler flocks and humans. Appl. Environ. Microbiol. 67:31153121.
95. Petersen, R. F.,, C. S. Harrington,, H. E. Kortegaard, and, S. L. W. On. 2007. A PCR-DGGE method for detection and identification of Campylobacter, Helicobacter, Arcobacter and related Epsilobacteria and its application to saliva samples from humans and domestic pets. J. Appl. Microbiol. 103:26012615.
96. Price, E. P.,, F. Huygens, and, P. M. Giffard. 2006a. Fingerprinting of Campylobacter jejuni by using resolution-optimized binary gene targets derived from comparative genome hybridization studies. Appl. Environ. Microbiol. 72:77937803.
97. Price, E. P.,, H. Smith,, F. Huygens, and, P. M. Giffard. 2007. High-resolution DNA melt curve analysis of the clustered, regularly interspaced short-palindromic-repeat locus of Campylobacter jejuni. Appl. Environ. Microbiol. 73:34313436.
98. Price, E. P.,, V. Thiruvenkataswamy,, L. Mickan,, L. Unicomb,, R. E. Rios,, F. Huygens, and, P. M. Giffard. 2006b. Genotyping of Campylobacter jejuni using seven single-nucleotide polymorphisms in combination with flaA short variable region sequencing. J. Med. Microbiol. 55:10611070.
99. Quinones, B.,, C. T. Parker,, J. M. Janda, Jr.,, W. G. Miller, and, R. E. Mandrell. 2007. Detection and genotyping of Arcobacter and Campylobacter isolates from retail chicken samples by use of DNA oligonucleotide arrays. Appl. Environ. Microbiol. 73:36453655.
100. Rennie, R. P.,, D. Strong,, D. E. Taylor,, S. M. Salama,, C. Davidson, and, H. Tabor. 1994. Campylobacter fetus diarrhea in a Hutterite colony: epidemiological observations and typing of the causative organism. J. Clin. Microbiol. 32:721724.
101. Ribot, E. M.,, C. Fitzgerald,, K. Kubota,, B. Swaminathan, and, T. J. Barrett. 2001. Rapid pulsed-field gel electrophoresis protocol for subtyping of Campylobacter jejuni. J. Clin. Microbiol. 39:18891894.
102. Sails, A. D.,, B. Swaminathan, and, P. I. Fields. 2003. Utility of multilocus sequence typing as an epidemiological tool for investigation of outbreaks of gastroenteritis caused by Campylobacter jejuni. J. Clin. Microbiol. 41:47334739.
103. Salama, S. M.,, M. M. Garcia, and, D. E. Taylor. 1992. Differentiation of the subspecies of Campylobacter fetus by genomic sizing. Int. J. Syst. Bacteriol. 42:446450.
104. Schouls, L. M.,, S. Reulen,, B. Duim,, J. A. Wagenaar,, R. J. Willems,, K. E. Dingle,, F. M. Colles, and, J. D. Van Embden. 2003. Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination. J. Clin. Microbiol. 41:1526.
105. Shen, Z.,, Y. Feng,, F. E. Dewhirst, and, J. G. Fox. 2001. Coinfection of enteric Helicobacter spp. and Campylobacter spp. in cats. J. Clin. Microbiol 39:21662172.
106. Sheppard, S.,, N. D. McCarthy,, M. C. Maiden,, C. Little,, R. Elson,, R. J. Owen, and, R. J. Meldrum. 2007. Multilocus sequence typing and analysis of Campylobacter isolates from the current retail poultry surveys (Project code B15011). Study report to the Foods Standards Agency
107. Siemer, B. L.,, C. S. Harrington,, E. M. Nielsen,, B. Borck,, N. L. Nielsen,, J. Engberg, and, S. L. On. 2004. Genetic relatedness among Campylobacter jejuni serotyped isolates of diverse origin as determined by numerical analysis of amplified fragment length polymorphism (AFLP) profiles. J. Appl. Microbiol. 96:795802.
108. Siemer, B. L.,, E. M. Nielsen, and, S. L. On. 2005. Identification and molecular epidemiology of Campylobacter coli isolates from human gastroenteritis, food, and animal sources by amplified fragment length polymorphism analysis and Penner serotyping. Appl. Environ. Microbiol. 71:19531958.
109. Skirrow, M. B. 1977. Campylobacter enteritis: a “new” disease. Br. Med. J. 2:911.
110. Sopwith, W.,, A. Birtles,, M. Matthews,, A. Fox,, S. Gee,, M. Painter,, M. Regan,, Q. Syed, and, E. Bolton. 2006. Campylobacter jejuni multilocus sequence types in humans, northwest England, 2003–2004. Emerg. Infect. Dis. 12:15001507.
111. Stanley, J.,, A. P. Burnens,, D. Linton,, S. L. On,, M. Costas, and, R. J. Owen. 1992. Campylobacter helveticus sp. nov., a new thermophilic species from domestic animals: characterization, and cloning of a species-specific DNA probe. J Gen Microbiol 138(Pt. 11):22932303.
112. Stanley, K. N.,, J. S. Wallace,, J. E. Currie,, P. J. Diggle, and, K. Jones. 1998a. The seasonal variation of thermophilic campylobacters in beef cattle, dairy cattle and calves. J. Appl. Microbiol. 85:472480.
113. Stanley, K. N.,, J. S. Wallace,, J. E. Currie,, P. J. Diggle, and, K. Jones. 1998b. Seasonal variation of thermophilic campylobacters in lambs at slaughter. J. Appl. Microbiol. 84:11111116.
114. Stephens, C. P.,, S. L. On, and, J. A. Gibson. 1998. An outbreak of infectious hepatitis in commercially reared ostriches associated with Campylobacter coli and Campylobacter jejuni. Vet. Microbiol. 61:183190.
115. Stoddard, R. A. 2005. Salmonella and Campylobacter spp. in Northern Elephant Seals, California. Emerg. Infect. Dis. 11:19671969.
116. Stoddard, R. A.,, W. G. Miller,, J. E. Foley,, J. Lawrence,, F. M. Gulland,, P. A. Conrad, and, B. A. Byrne. 2007. Campylobacter insulaenigrae Isolates from Northern Elephant Seals (Mirounga angustirostris) in California. Appl Environ Microbiol 73:17291735.
117. Thompson, S. A., and, M. J. Blaser. 2000. Pathogenesis of Campylobacter fetus infections, p. 321347. In I. Nachamkin and, M. J. Blaser (ed.), Campylobacter, 2nd ed. ASM Press, Washington, DC.
118. Tong, H. H.,, L. E. Blue,, M. A. James,, Y. P. Chen, and, T. F. DeMaria. 2000. Evaluation of phase variation of nontypeable Haemophilus influenzae lipooligosaccharide during nasopharyngeal colonization and development of otitis media in the chinchilla model. Infect. Immun. 68:45934597.
119. van Bergen, M. A.,, K. E. Dingle,, M. C. Maiden,, D. G. Newell,, L. van der Graaf-Van Bloois,, J. P. van Putten, and, J. A. Wagenaar. 2005. Clonal nature of Campylobacter fetus as defined by multilocus sequence typing. J. Clin. Microbiol 43:58885898.
120. Wagenaar, J. A.,, M. A. van Bergen,, D. G. Newell,, R. Grogono-Thomas, and, B. Duim. 2001. Comparative study using amplified fragment length polymorphism fingerprinting, PCR genotyping, and phenotyping to differentiate Campylobacter fetus strains isolated from animals. J. Clin. Microbiol. 39:22832286.
121. Wassenaar, T. M.,, S. L. W. On, and, R. Meinersmann. 2000. Genotyping and the consequences of genetic instability, p. 369380 In I. Nachamkin and, M. J. Blaser (ed.), Campylobacter, 2nd ed. ASM Press, Washington, DC.
122. Weijtens, M. J.,, J. van der Plas,, P. G. Bijker,, H. A. Urlings,, D. Koster,, J. G. van Logtestijn, and, J. H. Huis in’t Veld. 1997. The transmission of Campylobacter in piggeries; an epidemiological study. J. Appl. Microbiol. 83:693698.
123. Wingstrand, A.,, J. Neimann,, J. Engberg,, E. M. Nielsen,, P. Gerner-Smidt,, H. C. Wegener, and, K. Molbak. 2006. Fresh chicken as main risk factor for campylobacteriosis, Denmark. Emerg. Infect. Dis. 12:280285.
124. Wolfs, T. F.,, B. Duim,, S. P. Geelen,, A. Rigter,, F. Thomson-Carter,, A. Fleer, and, J. A. Wagenaar. 2001. Neonatal sepsis by Campylobacter jejuni: genetically proven transmission from a household puppy. Clin. Infect. Dis. 32:E97E99.

Tables

Generic image for table
Table 1.

Summary of outbreaks in which the source of infection was definitively identified by use of genotyping

Citation: On S, McCarthy N, Miller W, Gilpin B. 2008. Molecular Epidemiology of Species, p 191-211. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error