1887

Chapter 18 : Secretes Proteins via the Flagellar Type III Secretion System That Contribute to Host Cell Invasion and Gastroenteritis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Secretes Proteins via the Flagellar Type III Secretion System That Contribute to Host Cell Invasion and Gastroenteritis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap18-2.gif

Abstract:

This chapter is divided into three major sections. In the first section, a model of -mediated enteritis is presented. The second section presents a general overview of the organism's pathogenic mechanisms and virulence determinants. Finally, in the third section, various aspects of -host cell invasion and protein secretion are discussed. Specifically, in the third section protein export via the flagellar type III secretion system (T3SS), the development of an assay to identify secreted proteins, the evolutionary relatedness of the flagellum and virulence T3SS, and the putative roles of secreted proteins in disease, are discussed. Although much remains unknown regarding the identity and functional characteristics of the proteins exported via the flagellar apparatus, the chapter highlights evidence supporting the proposal that these proteins contribute to -mediated enteritis. Motility, adherence, invasion, protein secretion, intracellular survival, and toxin production may contribute to the pathogenicity of a given strain. nonmotile strain can be either secretion positive (i.e., the mutant) or secretion negative (i.e., the mutant), and the ability of the bacterium to secrete proteins can result in an increase in its invasive potential. Although these data helped clarify the relationship between motility, secretion, and host cell invasion, the significance of protein secretion and host cell invasion in -mediated gastroenteritis was not known.

Citation: Larson C, Christensen J, Pacheco S, Minnich S, Konkel M. 2008. Secretes Proteins via the Flagellar Type III Secretion System That Contribute to Host Cell Invasion and Gastroenteritis, p 315-332. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch18

Key Concept Ranking

Type III Secretion System
0.41941586
Type IV Secretion Systems
0.40476102
0.41941586
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Model of pathogenesis. The clinical manifestation of infection is a result of bacterial activities (white box) and the host immune response (gray box). Dotted lines indicate processes that can potentiate infection.

Citation: Larson C, Christensen J, Pacheco S, Minnich S, Konkel M. 2008. Secretes Proteins via the Flagellar Type III Secretion System That Contribute to Host Cell Invasion and Gastroenteritis, p 315-332. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Adherence, protein secretion, and invasion are a few of the virulence attributes that contribute to acute infection. As depicted, bacterial colonization of the intestinal tract can occur by different routes. Several virulence attributes may stimulate the host inflammatory response and in turn promote additional bacteria–host cell interactions. Other factors (not listed) are also capable of triggering the host inflammatory response. The dotted line represents the possibility that secreted proteins may enhance the cytokine response.

Citation: Larson C, Christensen J, Pacheco S, Minnich S, Konkel M. 2008. Secretes Proteins via the Flagellar Type III Secretion System That Contribute to Host Cell Invasion and Gastroenteritis, p 315-332. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Secretion of the Cia proteins is dependent on an intact flagellar T3SS. Culture medium supplemented with fetal bovine serum (FBS) triggers secretion of the Cia proteins. were suspended in minimal essential medium, either with or without FBS, and radiolabeled with [S]-methionine for 3 h. Supernatant fluids were harvested, concentrated fourfold, and solubilized in double-strength sample buffer. Equal volumes of samples were separated in a sodium dodecyl sulfate 12.5% polyacrylamide gel. The gel was dried and analyzed by phosphorimaging (Molecular Dynamics, Inc., ImageQuant, Sunnyvale, CA). Lanes: 1, 81-176 (+) FBS; 2, 81-176 (−) FBS.

Citation: Larson C, Christensen J, Pacheco S, Minnich S, Konkel M. 2008. Secretes Proteins via the Flagellar Type III Secretion System That Contribute to Host Cell Invasion and Gastroenteritis, p 315-332. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

type III secretion system (T3SS) is the flagellum that secretes the secreted proteins (Csp). A subset of the Csps, termed the invasion antigens (Cia), are required for maximal invasion. Both the Csp and Cia proteins harbor nonconsensus secretion signals, which are required for export.

Citation: Larson C, Christensen J, Pacheco S, Minnich S, Konkel M. 2008. Secretes Proteins via the Flagellar Type III Secretion System That Contribute to Host Cell Invasion and Gastroenteritis, p 315-332. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Depiction of the pCSP50 shuttle vector and phospholipase indicator plate results for controls. The pCSP50 vector includes a cassette, a constitutive promoter , a 5′ truncated (lacking 150 nt encoding the native T3SS signal), and the gene (cognate chaperone). The NdeI and BglII sites facilitate directional cloning of sequences as fusions with the truncated . (A to E) Scans of phospholipase indicator plates under flagellar T3SS induction. (A) JB580v (wild type); (B) mutant; (C) mutant with pCSP50; (D) mutant with pCSP50: (E) mutant with pCSP50: . All strains show strong growth; (A) and (D) show strong secretion of YplA and CiaB:YplA fusion protein, respectively, resulting in a zone of precipitate due to hydrolysis of fatty acids by the phospholipase.

Citation: Larson C, Christensen J, Pacheco S, Minnich S, Konkel M. 2008. Secretes Proteins via the Flagellar Type III Secretion System That Contribute to Host Cell Invasion and Gastroenteritis, p 315-332. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Functional categories of secreted proteins. Shown are the numbers of proteins, categorized according to function, encoding signal sequences that elicited strong secretion from both the flagellar and Ysa T3SS.

Citation: Larson C, Christensen J, Pacheco S, Minnich S, Konkel M. 2008. Secretes Proteins via the Flagellar Type III Secretion System That Contribute to Host Cell Invasion and Gastroenteritis, p 315-332. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815554.ch18
1. Andersen, M. T.,, L. Brondsted,, B. M. Pearson,, F. Mulholland,, M. Parker,, C. Pin,, J. M. Wells, and, H. Ingmer. 2005. Diverse roles for HspR in Campylobacter jejuni revealed by the proteome, transcriptome and phenotypic characterization of an hspR mutant. Microbiology 151:905915.
2. Ashgar, S. S.,, N. J. Oldfield,, K. G. Wooldridge,, M. A. Jones,, G. J. Irving,, D. P. Turner, and, D. A. Ala’Aldeen. 2007. CapA, an autotransporter protein of Campylobacter jejuni, mediates association with human epithelial cells and colonization of the chicken gut. J. Bacteriol. 189:18561865.
3. Biswas, D.,, K. Itoh, and, C. Sasakawa. 2003. Role of microfilaments and microtubules in the invasion of INT-407 cells by Campylobacter jejuni. Microbiol. Immunol. 47:469473.
4. Black, R. E.,, M. M. Levine,, M. L. Clements,, T. P. Hughes, and, M. J. Blaser. 1988. Experimental Campylobacter jejuni infection in humans. J. Infect. Dis. 157:472479.
5. Blaser, M. J.,, P. F. Smith, and, P. F. Kohler. 1985. Susceptibility of Campylobacter isolates to the bactericidal activity of human serum. J. Infect. Dis. 151:227235.
6. Blaser, M. J.,, J. G. Wells,, R. A. Feldman,, R. A. Pollard, and, J. R. Allen. 1983. Campylobacter enteritis in the United States. A multicenter study. Ann. Intern. Med. 98:360365.
7. Blikslager, A. T.,, A. J. Moeser,, J. L. Gookin,, S. L. Jones, and, J. Odle. 2007. Restoration of barrier function in injured intestinal mucosa. Physiol. Rev. 87:545564.
8. Bolla, J. M.,, E. Loret,, M. Zalewski, and, J. M. Pages. 1995. Conformational analysis of the Campylobacter jejuni porin. J. Bacteriol. 177:42664271.
9. Bruce-Staskal, P. J.,, C. L. Weidow,, J. J. Gibson, and, A. H. Bouton. 2002. Cas, Fak and Pyk2 function in diverse signaling cascades to promote Yersinia uptake. J. Cell Sci. 115:26892700.
10. Carrillo, C. D.,, E. Taboada,, J. H. Nash,, P. Lanthier,, J. Kelly,, P. C. Lau,, R. Verhulp,, O. Mykytczuk,, J. Sy,, W. A. Findlay,, K. Amoako,, S. Gomis,, P. Willson,, J. W. Austin,, A. Potter,, L. Babiuk,, B. Allan, and, C. M. Szymanski. 2004. Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J. Biol. Chem. 279:2032720338.
11. Chen, M. L.,, Z. Ge,, J. G. Fox, and, D. B. Schauer. 2006. Disruption of tight junctions and induction of proinflammatory cytokine responses in colonic epithelial cells by Campylobacter jejuni. Infect. Immun. 74:65816589.
12. Cornelis, G. R. 2006. The type III secretion injectisome. Nat. Rev. Microbiol. 4:811825.
13. De, E.,, M. Jullien,, G. Labesse,, J. M. Pages,, G. Molle, and, J. M. Bolla. 2000. MOMP (major outer membrane protein) of Campylobacter jejuni; a versatile pore-forming protein. FEBS Lett. 469:9397.
14. De Melo, M. A.,, G. Gabbiani, and, J. C. Pechere. 1989. Cellular events and intracellular survival of Campylobacter jejuni during infection of HEp-2 cells. Infect. Immun. 57:22142222.
15. Dorrell, N.,, J. A. Mangan,, K. G. Laing,, J. Hinds,, D. Linton,, H. Al-Ghusein,, B. G. Barrell,, J. Parkhill,, N. G. Stoker,, A. V. Karlyshev,, P. D. Butcher, and, B. W. Wren. 2001. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res. 11:17061715.
16. Eto, D. S.,, T. A. Jones,, J. L. Sundsbak, and, M. A. Mulvey. 2007. Integrin-mediated host cell invasion by type 1–piliated uropathogenic Escherichia coli. PLoS Pathog. 3:e100.
17. Everest, P. H.,, A. T. Cole,, C. J. Hawkey,, S. Knutton,, H. Goossens,, J. P. Butzler,, J. M. Ketley, and, P. H. Williams. 1993a. Roles of leukotriene B4, prostaglandin E2, and cyclic AMP in Campylobacter jejuni–induced intestinal fluid secretion. Infect. Immun. 61:48854887.
18. Everest, P. H.,, H. Goossens,, P. Sibbons,, D. R. Lloyd,, S. Knutton,, R. Leece,, J. M. Ketley, and, P. H. Williams. 1993b. Pathological changes in the rabbit ileal loop model caused by Campylobacter jejuni from human colitis. J. Med. Microbiol. 38:316321.
19. Finlay, B. B.,, F. Heffron, and, S. Falkow. 1989. Epithelial cell surfaces induce Salmonella proteins required for bacterial adherence and invasion. Science 243:940943.
20. Friedman, C. R.,, R. M. Hoekstra,, M. Samuel,, R. Marcus,, J. Bender,, B. Shiferaw,, S. Reddy,, S. D. Ahuja,, D. L. Helfrick,, F. Hardnett,, M. Carter,, B. Anderson, and, R. V. Tauxe. 2004. Risk factors for sporadic Campylobacter infection in the United States: a case-control study in FoodNet sites. Clin. Infect. Dis. 38(Suppl. 3):S285S296.
21. Galan, J. E., and, H. Wolf-Watz. 2006. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567573.
22. Gilcrease, M. Z. 2007. Integrin signaling in epithelial cells. Cancer Lett. 247:125.
23. Gillespie, I. A.,, J. O’Brien S,, J. A. Frost,, C. Tam,, D. Tompkins,, K. R. Neal,, Q. Syed, and, M. J. Farthing. 2006. Investigating vomiting and/or bloody diarrhoea in Campylobacter jejuni infection. J. Med. Microbiol. 55:741746.
24. Gophna, U.,, E. Z. Ron, and, D. Graur. 2003. Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312:151163.
25. Grant, C. C.,, M. E. Konkel,, W. Cieplak, Jr., and, L. S. Tompkins. 1993. Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. Infect. Immun. 61:17641771.
26. Guerry, P.,, C. P. Ewing,, M. Schirm,, M. Lorenzo,, J. Kelly,, D. Pattarini,, G. Majam,, P. Thibault, and, S. Logan. 2006. Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol. Microbiol. 60:299311.
27. Gundogdu, O.,, S. D. Bentley,, M. T. Holden,, J. Parkhill,, N. Dorrell, and, B. W. Wren. 2007. Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics 8:162.
28. Hale, T. L., and, P. F. Bonventre. 1979. Shigella infection of Henle intestinal epithelial cells: role of the bacterium. Infect. Immun. 24:879886.
29. Harshey, R. M., and, A. Toguchi. 1996. Spinning tails: homologies among bacterial flagellar systems. Trends Microbiol. 4:226231.
30. Headley, V. L., and, S. M. Payne. 1990. Differential protein expression by Shigella flexneri in intracellular and extracellular environments. Proc. Natl. Acad. Sci. USA. 87:41794183.
31. Hendrixson, D. R. 2006. A phase-variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalism. Mol. Microbiol. 61:16461659.
32. Hepworth, P. J.,, H. Leatherbarrow,, C. A. Hart, and, C. Winstanley. 2007. Use of suppression subtractive hybridisation to extend our knowledge of genome diversity in Campylobacter jejuni. BMC Genomics 8:110.
33. Hu, L.,, J. P. McDaniel, and, D. J. Kopecko. 2006. Signal transduction events involved in human epithelial cell invasion by Campylobacter jejuni 81-176. Microb. Pathog. 40:91100.
34. Jeon, B.,, K. Itoh,, N. Misawa, and, S. Ryu. 2003. Effects of quorum sensing on flaA transcription and autoagglutination in Campylobacter jejuni. Microbiol. Immunol. 47:833839.
35. Jin, S.,, A. Joe,, J. Lynett,, E. K. Hani,, P. Sherman, and, V. L. Chan. 2001. JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol. Microbiol. 39:12251236.
36. Journet, L.,, K. T. Hughes, and, G. R. Cornelis. 2005. Type III secretion: a secretory pathway serving both motility and virulence. Mol. Membr. Biol. 22:4150. (Review.)
37. Kiehlbauch, J. A.,, R. A. Albach,, L. L. Baum, and, K. P. Chang. 1985. Phagocytosis of Campylobacter jejuni and its intracellular survival in mononuclear phagocytes. Infect. Immun. 48:446451.
38. Kierbel, A.,, A. Gassama-Diagne,, C. Rocha,, L. Radoshevich,, J. Olson,, K. Mostov, and, J. Engel. 2007. Pseudomonas aeruginosa exploits a PIP3-dependent pathway to transform apical into basolateral membrane. J. Cell Biol. 177:2127.
39. Konkel, M. E.,, J. E. Christensen,, A. M. Keech,, M. R. Monteville,, J. D. Klena, and, S. G. Garvis. 2005. Identification of a fibronectin-binding domain within the Campylobacter jejuni CadF protein. Mol. Microbiol. 57:10221035.
40. Konkel, M. E., and, W. Cieplak, Jr. 1992. Altered synthetic response of Campylobacter jejuni to cocultivation with human epithelial cells is associated with enhanced internalization. Infect. Immun. 60:49454949.
41. Konkel, M. E.,, S. G. Garvis,, S. L. Tipton,, D. E. Anderson, Jr., and, W. Cieplak, Jr. 1997. Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni. Mol. Microbiol. 24:953963.
42. Konkel, M. E.,, S. F. Hayes,, L. A. Joens, and, W. Cieplak, Jr. 1992. Characteristics of the internalization and intracellular survival of Campylobacter jejuni in human epithelial cell cultures. Microb. Pathog. 13:357370.
43. Konkel, M. E., and, L. A. Joens. 1989. Adhesion to and invasion of HEp-2 cells by Campylobacter spp. Infect. Immun. 57:29842990.
44. Konkel, M. E.,, B. J. Kim,, J. D. Klena,, C. R. Young, and, R. Ziprin. 1998. Characterization of the thermal stress response of Campylobacter jejuni. Infect. Immun. 66:36663672.
45. Konkel, M. E.,, B. J. Kim,, V. Rivera-Amill, and, S. G. Garvis. 1999. Bacterial secreted proteins are required for the internaliztion of Campylobacter jejuni into cultured mammalian cells. Mol. Microbiol. 32:691701.
46. Konkel, M. E.,, J. D. Klena,, V. Rivera-Amill,, M. R. Monteville,, D. Biswas,, B. Raphael, and, J. Mickelson. 2004. Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J. Bacteriol. 186:32963303.
47. Konkel, M. E.,, D. J. Mead, and, W. Cieplak, Jr. 1993. Kinetic and antigenic characterization of altered protein synthesis by Campylobacter jejuni during cultivation with human epithelial cells. J. Infect. Dis. 168:948954.
48. Konkel, M. E.,, M. R. Monteville,, V. Rivera-Amill, and, L. A. Joens. 2001. The pathogenesis of Campylobacter jejuni–mediated enteritis. Curr. Issues Intest. Microbiol. 2:5571.
49. Kopecko, D. J.,, L. Hu, and, K. J. Zaal. 2001. Campylobacter jejuni–microtubule-dependent invasion. Trends Microbiol. 9:389396.
50. Kostakioti, M.,, C. L. Newman,, D. G. Thanassi, and, C. Stathopoulos. 2005. Mechanisms of protein export across the bacterial outer membrane. J. Bacteriol. 187:43064314.
51. Krause-Gruszczynska, M.,, M. Rohde,, R. Hartig,, H. Genth,, G. Schmidt,, T. Keo,, W. Konig,, W. G. Miller,, M. E. Konkel, and, S. Backert. 2007. Role of the small Rho GTPases Rac1 and Cdc42 in host cell invasion of Campylobacter jejuni. Cell. Microbiol. 9:24312444.
52. Lee, C. A., and, S. Falkow. 1990. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc. Natl. Acad. Sci. USA. 87:43044308.
53. Lee, S. H., and, J. E. Galan. 2004. Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol. Microbiol. 51:483495.
54. Lin, J.,, C. Cagliero,, B. Guo,, Y. W. Barton,, M. C. Maurel,, S. Payot, and, Q. Zhang. 2005. Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni. J. Bacteriol. 187:74177424.
55. Lin, J.,, L. O. Michel, and, Q. Zhang. 2002. CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob. Agents Chemother. 46:21242131.
56. Lloyd, S. A.,, M. Sjostrom,, S. Andersson, and, H. Wolf-Watz. 2002. Molecular characterization of type III secretion signals via analysis of synthetic N-terminal amino acid sequences. Mol. Microbiol. 43:5159.
57. MacCallum, A.,, S. P. Hardy, and, P. H. Everest. 2005. Campylobacter jejuni inhibits the absorptive transport functions of Caco-2 cells and disrupts cellular tight junctions. Microbiology 151:24512458.
58. Macnab, R. M. 2004. Type III flagellar protein export and flagellar assembly. Biochim. Biophys. Acta 1694:207217.
59. Magalhaes, J. G.,, I. Tattoli, and, S. E. Girardin. 2007. The intestinal epithelial barrier: how to distinguish between the microbial flora and pathogens. Semin. Immunol. 19:106115.
60. Malik-Kale, P.,, B. H. Raphael,, C. T. Parker,, L. A. Joens,, J. D. Klena,, B. Quinones,, A. M. Keech, and, M. E. Konkel. 2007. Characterization of genetically matched isolates of Campylobacter jejuni reveals that mutations in genes involved in flagellar biosynthesis alter the organism’s virulence potential. Appl. Environ. Microbiol. 73:31233136.
61. Manning, G.,, C. G. Dowson,, M. C. Bagnall,, I. H. Ahmed,, M. West, and, D. G. Newell. 2003. Multilocus sequence typing for comparison of veterinary and human isolates of Campylobacter jejuni. Appl. Environ. Microbiol. 69:63706379.
62. Matsumoto, H., and, G. M. Young. 2006. Proteomic and functional analysis of the suite of Ysp proteins exported by the Ysa type III secretion system of Yersinia enterocolitica biovar 1B. Mol. Microbiol. 59:689706.
63. McCarthy, N. D.,, F. M. Colles,, K. E. Dingle,, M. C. Bagnall,, G. Manning,, M. C. Maiden, and, D. Falush. 2007. Host-associated genetic import in Campylobacter jejuni. Emerg. Infect. Dis. 13:267272.
64. McCormick, B. A.,, A. Nusrat,, C. A. Parkos,, L. D’Andrea,, P. M. Hofman,, D. Carnes,, T. W. Liang, and, J. L. Madara. 1997. Unmasking of intestinal epithelial lateral membrane beta1 integrin consequent to transepithelial neutrophil migration in vitro facilitates inv-mediated invasion by Yersinia pseudotuberculosis. Infect. Immun. 65:14141421.
65. Minnich, S. A., and, H. N. Rohde. 2007. A rationale for repression and/or loss of motility by pathogenic Yersinia in the mammalian host. Adv. Exp. Med. Biol. 603:298310.
66. Monteville, M. R., and, M. E. Konkel. 2002. Fibronectin-facilitated invasion of T84 eukaryotic cells by Campylobacter jejuni occurs preferentially at the basolateral cell surface. Infect. Immun. 70:66656671.
67. Monteville, M. R.,, J. E. Yoon, and, M. E. Konkel. 2003. Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology 149:153165.
68. Moser, I.,, W. Schroeder, and, J. Salnikow. 1997. Campylobacter jejuni major outer membrane protein and a 59-kDa protein are involved in binding to fibronectin and INT 407 cell membranes. FEMS Microbiol. Lett. 157:233238.
69. Myszewski, M. A., and, N. J. Stern. 1991. Phagocytosis and intra-cellular killing of Campylobacter jejuni by elicited chicken peritoneal macrophages. Avian Dis. 35:750755.
70. Nachamkin, I.,, X. H. Yang, and, N. J. Stern. 1993. Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. Appl. Environ. Microbiol. 59:12691273.
71. Naikare, H.,, K. Palyada,, R. Panciera,, D. Marlow, and, A. Stintzi. 2006. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infect. Immun. 74:54335444.
72. Newell, D. G.,, H. McBride, and, J. M. Dolby. 1985a. Investigations on the role of flagella in the colonization of infant mice with Campylobacter jejuni and attachment of Campylobacter jejuni to human epithelial cell lines. J. Hyg. (Lond.) 95:217227.
73. Newell, D. G.,, H. McBride,, F. Saunders,, Y. Dehele, and, A. D. Pearson. 1985b. The virulence of clinical and environmental isolates of Campylobacter jejuni. J. Hyg. (Lond.) 94:4554.
74. Oelschlaeger, T. A.,, P. Guerry, and, D. J. Kopecko. 1993. Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. Proc. Natl. Acad. Sci. USA. 90:68846888.
75. O’Hara, A. M., and, F. Shanahan. 2006. The gut flora as a forgotten organ. EMBO Rep. 7:688693.
76. Pallen, M. J., and, N. J. Matzke. 2006. From The Origin of Species to the origin of bacterial flagella. Nat. Rev. Microbiol. 4:784790.
77. Panigrahi, P.,, G. Losonsky,, L. J. DeTolla, and, J. G. Morris, Jr. 1992. Human immune response to Campylobacter jejuni proteins expressed in vivo. Infect. Immun. 60:49384944.
78. Parkhill, J.,, B. W. Wren,, K. Mungall,, J. M. Ketley,, C. Churcher,, D. Basham,, T. Chillingworth,, R. M. Davies,, T. Feltwell,, S. Holroyd,, K. Jagels,, A. V. Karlyshev,, S. Moule,, M. J. Pallen,, C. W. Penn,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, A. H. van Vliet,, S. Whitehead, and, B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665668.
79. Pavlovskis, O. R.,, D. M. Rollins,, R. L. Haberberger, Jr.,, A. E. Green,, L. Habash,, S. Strocko, and, R. I. Walker. 1991. Significance of flagella in colonization resistance of rabbits immunized with Campylobacter spp. Infect. Immun. 59:22592264.
80. Pei, Z., and, M. J. Blaser. 1993. PEB1, the major cell-binding factor of Campylobacter jejuni, is a homolog of the binding component in gram-negative nutrient transport systems. J. Biol. Chem. 268:1871718725.
81. Pei, Z.,, C. Burucoa,, B. Grignon,, S. Baqar,, X. Z. Huang,, D. J. Kopecko,, A. L. Bourgeois,, J. L. Fauchere, and, M. J. Blaser. 1998. Mutation in the peb1A locus of Campylobacter jejuni reduces interactions with epithelial cells and intestinal colonization of mice. Infect. Immun. 66:938943.
82. Perdomo, J. J.,, P. Gounon, and, P. J. Sansonetti. 1994a. Polymorphonuclear leukocyte transmigration promotes invasion of colonic epithelial monolayer by Shigella flexneri. J. Clin. Invest. 93:633643.
83. Perdomo, O. J.,, J. M. Cavaillon,, M. Huerre,, H. Ohayon,, P. Gounon, and, P. J. Sansonetti. 1994b. Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis. J. Exp. Med. 180:13071319.
84. Perez-Perez, G. I.,, D. L. Cohn,, R. L. Guerrant,, C. M. Patton,, L. B. Reller, and, M. J. Blaser. 1989. Clinical and immunologic significance of cholera-like toxin and cytotoxin production by Campylobacter species in patients with acute inflammatory diarrhea in the USA. J. Infect. Dis. 160:460468.
85. Poly, F.,, C. Ewing,, S. Goon,, T. E. Hickey,, D. Rockabrand,, G. Majam,, L. Lee,, J. Phan,, N. J. Savarino, and, P. Guerry. 2007. Heterogeneity of a Campylobacter jejuni protein that is secreted through the flagellar filament. Infect. Immun. 75:38593867.
86. Ramakrishnan, G.,, J. L. Zhao, and, A. Newton. 1991. The cell cycle-regulated flagellar gene flbF of Caulobacter crescentus is homologous to a virulence locus (lcrD) of Yersinia pestis. J. Bacteriol. 173:72837292.
87. Ramos, H. C.,, M. Rumbo, and, J. C. Sirard. 2004. Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol. 12:509517.
88. Raphael, B. H.,, S. Pereira,, G. A. Flom,, Q. Zhang,, J. M. Ketley, and, M. E. Konkel. 2005. The Campylobacter jejuni response regulator, CbrR, modulates sodium deoxycholate resistance and chicken colonization. J. Bacteriol. 187:36623670.
89. Richardson, W. P., and, J. C. Sadoff. 1988. Induced engulfment of Neisseria gonorrhoeae by tissue culture cells. Infect. Immun. 56:25122514.
90. Rivera-Amill, V., and, M. E. Konkel. 1999. Secretion of Campylobacter jejuni Cia proteins is contact dependent. Adv. Exp. Med. Biol. 473:225229.
91. Saier, M. H., Jr. 2004. Evolution of bacterial type III protein secretion systems. Trends Microbiol. 12:113115.
92. Sanders, L. A.,, S. Van Way, and, D. A. Mullin. 1992. Characterization of the Caulobacter crescentus flbF promoter and identification of the inferred FlbF product as a homolog of the LcrD protein from a Yersinia enterocolitica virulence plasmid. J. Bacteriol. 174:857866.
93. Sansonetti, P. J.,, J. Arondel,, M. Huerre,, A. Harada, and, K. Matsushima. 1999. Interleukin-8 controls bacterial transepithelial translocation at the cost of epithelial destruction in experimental shigellosis. Infect. Immun. 67:14711480.
94. Schlumberger, M. C., and, W. D. Hardt. 2006. Salmonella type III secretion effectors: pulling the host cell’s strings. Curr. Opin. Microbiol. 9:4654.
95. Schroder, W., and, I. Moser. 1997. Primary structure analysis and adhesion studies on the major outer membrane protein of Campylobacter jejuni. FEMS Microbiol. Lett. 150:141147.
96. Schwerer, B. 2002. Antibodies against gangliosides: a link between preceding infection and immunopathogenesis of Guillain-Barré syndrome. Microbes Infect. 4:373384.
97. Shi, J., and, J. E. Casanova. 2006. Invasion of host cells by Salmonella typhimurium requires focal adhesion kinase and p130Cas. Mol. Biol. Cell. 17:46984708.
98. Siegesmund, A. M.,, M. E. Konkel,, J. D. Klena, and, P. F. Mixter. 2004. Campylobacter jejuni infection of differentiated THP-1 macrophages results in interleukin 1 beta release and caspase-1-independent apoptosis. Microbiology 150:561569.
99. Song, Y. C.,, S. Jin,, H. Louie,, D. Ng,, R. Lau,, Y. Zhang,, R. Weerasekera,, S. Al Rashid,, L. A. Ward,, S. D. Der, and, V. L. Chan. 2004. FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol. Microbiol. 53:541553.
100. Sorg, J. A.,, N. C. Miller, and, O. Schneewind. 2005. Substrate recognition of type III secretion machines—testing the RNA signal hypothesis. Cell. Microbiol. 7:12171225.
101. St Geme, J. W., III, and, S. Falkow. 1990. Haemophilus influenzae adheres to and enters cultured human epithelial cells. Infect. Immun. 58:40364044.
102. Szymanski, C. M.,, S. M. Logan,, D. Linton, and, B. W. Wren. 2003. Campylobacter—a tale of two protein glycosylation systems. Trends Microbiol. 11:233238.
103. Szymanski, C. M., and, B. W. Wren. 2005. Protein glycosylation in bacterial mucosal pathogens. Nat. Rev. Microbiol. 3:225237.
104. Thornley, J. P.,, D. Jenkins,, K. Neal,, T. Wright,, J. Brough, and, R. C. Spiller. 2001. Relationship of Campylobacter toxigenicity in vitro to the development of postinfectious irritable bowel syndrome. J. Infect. Dis. 184:606609.
105. Walker, R. I.,, E. A. Schmauder-Chock,, J. L. Parker, and, D. Burr. 1988. Selective association and transport of Campylobacter jejuni through M cells of rabbit Peyer’s patches. Can. J. Microbiol. 34:11421147.
106. Walker, T. S., and, H. H. Winkler. 1978. Penetration of cultured mouse fibroblasts (L cells) by Rickettsia prowazeki. Infect. Immun. 22:200208.
107. Wassenaar, T. M.,, N. M. Bleumink-Pluym,, D. G. Newell,, P. J. Nuijten, and, B. A. van der Zeijst. 1994. Differential flagellin expression in a flaA flaB+ mutant of Campylobacter jejuni. Infect. Immun. 62:39013906.
108. Wassenaar, T. M.,, N. M. Bleumink-Pluym, and, B. A. van der Zeijst. 1991. Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO J. 10:20552061.
109. Wassenaar, T. M.,, M. Engelskirchen,, S. Park, and, A. Lastovica. 1997. Differential uptake and killing potential of Campylobacter jejuni by human peripheral monocytes/macrophages. Med. Microbiol. Immunol. 186:139144.
110. Yao, R.,, D. H. Burr, and, P. Guerry. 1997. CheY-mediated modulation of Campylobacter jejuni virulence. Mol. Microbiol. 23:10211031.
111. Young, B. M., and, G. M. Young. 2002. YplA is exported by the Ysc, Ysa, and flagellar type III secretion systems of Yersinia enterocolitica. J. Bacteriol. 184:13241334.
112. Ziprin, R. L.,, C. R. Young,, L. H. Stanker,, M. E. Hume, and, M. E. Konkel. 1999. The absence of cecal colonization of chicks by a mutant of Campylobacter jejuni not expressing bacterial fibronectin-binding protein. Avian Dis. 43:586589.

Tables

Generic image for table
Table 1.

Relative molecular mass of secreted proteins

Citation: Larson C, Christensen J, Pacheco S, Minnich S, Konkel M. 2008. Secretes Proteins via the Flagellar Type III Secretion System That Contribute to Host Cell Invasion and Gastroenteritis, p 315-332. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error