Chapter 19 : Innate Immunity in Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Innate Immunity in Infections, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap19-2.gif


This chapter addresses the current knowledge pertaining to innate immunity and , and highlights important areas of future research. With a better understanding of the intricacies of immunity comes the realization that our host defenses cannot be strictly divided into innate and adaptive systems. Host defense mechanisms relevant to protection against a gastrointestinal infection such as include the multiple cellular and soluble factors. Although the interplay between many of these components and are not fully understood, the chapter reviews the current knowledge and outlines areas in need of further study. Innate immune defenses found in the gastrointestinal tract appear extremely effective in limiting to the gut. The direct antimicrobial activities of these phagocytes is attributable to production of antimicrobial peptides/proteins, ROS, and RNS (the latter mainly by mononuclear phagocytes and/or macrophages). The sequencing of several genomes and improved mutagenesis techniques can facilitate molecular studies of particular genes with specific innate immune components. From the point of view of the host, genomewide association studies of genetic polymorphisms associated with alterations in host defense functions may provide insight into those genes that are important for defense against infection.

Citation: Iovine N. 2008. Innate Immunity in Infections, p 333-350. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch19

Key Concept Ranking

Outer Membrane Protein A
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Production of nitric oxide from dietary nitrate. Nitrate in foods such as meat is ingested, is absorbed in the intestine, and enters the systemic circulation. The salivary glands concentrate the nitrate from blood and secrete it into the saliva. On the tongue, particularly in the area of the posterior papillae, facultative microbes that express nitrate reductase convert nitrate to nitrite. This nitrite is swallowed and interacts with hydrogen ions in the stomach to produce nitric oxide. Although dietary nitrate may be directly reduced on the tongue to form nitrite, the high nitrate concentration in saliva is the major source of the nitrite that enters the stomach.

Citation: Iovine N. 2008. Innate Immunity in Infections, p 333-350. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Innate defenses active in the intestinal tract. Defenses present in the small and large intestine are depicted schematically. Particularly in the lumen of the large intestine, the normal biota occupies a niche that otherwise might be available to Mucous layer mucins may exert an antimicrobial effect. Coating of with breast milk fucosylated sugars may impede interaction of with H(O) antigens on intestinal epithelium. Bile acids exert an antimicrobial, detergent-like effect. Dendritic cells (DC) send cellular extensions into the intestinal lumen to sample antigens, leading to DC activation. organisms that evade these mechanisms are challenged by defenses present in the epithelium itself. Toll-like receptor 4 (TLR4) senses LPS and triggers an NF-κB-dependent cascade, resulting in production of proinflammatory molecules such as IL-8. Upon epithelial cell invasion, interaction of peptidoglycan with NOD1 augments induction of β-defensins with known antimicrobial activity against organisms that survive these defenses may enter the submucosa, where phagocytes recruited and activated by IL-8 produce potent molecular defenses: NOS2-derived nitric oxide (NO) and other reactive nitrogen species principally from macrophages (Mθ) and NADPH oxidase (NADPH ox)-derived superoxide (O2-) and other ROS principally from polymorphonuclear neutrophils (PMN). The latter also produce cationic antimicrobial peptides and proteins (CAPPs) including defensins, and may exert killing after phagocytosis or in the extracellular space after degranulation. Similarly, highly diffusible NO may effect killing outside of the Mθ. Finally, organisms that enter the systemic circulation are faced with the potent antimicrobial activity of acute-phase proteins, as well as complement, in addition to circulating PMNs.

Citation: Iovine N. 2008. Innate Immunity in Infections, p 333-350. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Key and proposed elements of innate immune defense against infection. Innate immune components for which good evidence exists of their contribution to defense against infection in humans are shown in bold. Those components that are proposed to play a role in defense against and that warrant further study are shown in italics. CRP, C-reactive protein; Fe, iron; NO/RNS, nitric oxide/reactive nitrogen species.

Citation: Iovine N. 2008. Innate Immunity in Infections, p 333-350. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abram, M.,, D. Vukovic,, B. Wraber, and, M. Doric. 2000. Plasma cytokine response in mice with bacterial infection. Mediators Inflamm. 9:229234.
2. Abrams, G. D., and, J. E. Bishop. 1966. Effect of the normal microbial flora on the resistance of the small intestine to infection. J. Bacteriol. 92:16041608.
3. Akira, S.,, S. Uematsu, and, O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124:783801.
4. Al-Salloom, F. S.,, A. Al Mahmeed,, A. Ismaeel,, G. A. Botta, and, M. Bakhiet. 2003. Campylobacter-stimulated INT407 cells produce dissociated cytokine profiles. J. Infect. 47:217224.
5. Albiger, B.,, S. Dahlberg,, B. Henriques-Normark, and, S. Normark. 2007. Role of the innate immune system in host defence against bacterial infections: focus on the Toll-like receptors. J. Intern. Med. 261:511528.
6. Andersen-Nissen, E.,, K. D. Smith,, K. L. Strobe,, S. L. Barrett,, B. T. Cookson,, S. M. Logan, and, A. Aderem. 2005. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc. Natl. Acad. Sci. USA 102:92479252.
7. Arbour, N. C.,, E. Lorenz,, B. C. Schutte,, J. Zabner,, J. N. Kline,, M. Jones,, K. Frees,, J. L. Watt, and, D. A. Schwartz. 2000. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 25:187191.
8. Aspinall, G. O.,, A. G. McDonald,, H. Pang,, L. A. Kurjanczyk, and, J. L. Penner. 1994. Lipopolysaccharides of Campylobacter jejuni serotype O:19: structures of core oligosaccharide regions from the serostrain and two bacterial isolates from patients with the Guillain-Barré syndrome. Biochemistry 33:241249.
9. Avril, T.,, E. R. Wagner,, H. J. Willison, and, P. R. Crocker. 2006. Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on Campylobacter jejuni lipooligosaccharides. Infect. Immun. 74:41334141.
10. Babior, B. M.,, J. D. Lambeth, and, W. Nauseef. 2002. The neutrophil NADPH oxidase. Arch. Biochem. Biophys. 397:342344.
11. Baggiolini, M.,, B. Dewald, and, B. Moser. 1999. Chemokines, p. 419431. In J. Gallin and, R. Snyderman (ed.), Inflammation: Basic Principles and Clinical Correlates, 3rd ed. Lippincott Williams & Wilkins, Philadelphia.
12. Bakhiet, M.,, F. S. Al-Salloom,, A. Qareiballa,, K. Bindayna,, I. Farid, and, G. A. Botta. 2004. Induction of alpha and beta chemokines by intestinal epithelial cells stimulated with Campylobacter jejuni. J. Infect. 48:236244.
13. Banfi, E.,, M. Cinco, and, G. Zabucchi. 1986. Phagocytosis of Campylobacter jejuni and C. coli by peritoneal macrophages. J. Gen. Microbiol. 132:24092412.
14. Bar, W. 1988. Role of murine macrophages and complement in experimental Campylobacter infection. J. Med. Microbiol. 26:5559.
15. Bar, W.,, E. Glenn-Calvo, and, R. Krausse. 1991. Phagocytosis of enteric Campylobacter by human and murine granulocytes. FEMS Microbiol. Immunol. 3:143149.
16. Barclay, R. 1985. The role of iron in infection. Med. Lab. Sci. 42:166177.
17. Baumann, H.,, V. Onorato,, J. Gauldie, and, G. P. Jahreis. 1987. Distinct sets of acute phase plasma proteins are stimulated by separate human hepatocyte-stimulating factors and monokines in rat hepatoma cells. J. Biol. Chem. 262:97569768.
18. Benjamin, N.,, F. O’Driscoll,, H. Dougall,, C. Duncan,, L. Smith,, M. Golden, and, H. McKenzie. 1994. Stomach NO synthesis. Nature 368:502.
19. Bereswill, S., and, M. Kist. 2003. Recent developments in Campylobacter pathogenesis. Curr. Opin. Infect. Dis. 16:487491.
20. Bernatowska, E.,, P. Jose,, H. Davies,, M. Stephenson, and, D. Webster. 1989. Interaction of Campylobacter species with antibody, complement and phagocytes. Gut 30:906911.
21. Black, R. E.,, M. M. Levine,, M. L. Clements,, T. P. Hughes, and, M. J. Blaser. 1988. Experimental Campylobacter jejuni infection in humans. J. Infect. Dis. 157:472479.
22. Blaser, M., and, B. M. Allos. 2005. Campylobacter and related species, p. 25482556. In G. Mandell,, J. E. Bennett, and, R. Dolin (ed.), Mandell, Douglas and Bennett’s Principles and Practice of Infectious Diseases, 6th ed., vol. 2. Elsevier Churchill Livingstone, Philadelphia.
23. Blaser, M. J.,, G. P. Perez,, P. F. Smith,, C. Patton,, F. C. Tenover,, A. J. Lastovica, and, W. I. Wang. 1986. Extraintestinal Campylobacter jejuni and Campylobacter coli infections: host factors and strain characteristics. J. Infect. Dis. 153:552559.
24. Blaser, M. J.,, P. F. Smith, and, P. F. Kohler. 1985. Susceptibility of Campylobacter isolates to the bactericidal activity of human serum. J. Infect. Dis. 151:227235.
25. Bourhis, L. L., and, C. Werts. 2007. Role of Nods in bacterial infection. Microbes Infect. 9:629636.
26. Bourke, B.,, V. L. Chan, and, P. Sherman. 1998. Campylobacter upsaliensis: waiting in the wings. Clin. Microbiol. Rev. 11:440449.
27. Broxmeyer, H. E.,, S. Cooper,, G. Cacalano,, N. L. Hague,, E. Bailish, and, M. W. Moore. 1996. Involvement of Interleukin (IL) 8 receptor in negative regulation of myeloid progenitor cells in vivo: evidence from mice lacking the murine IL-8 receptor homologue. J. Exp. Med. 184:18251832.
28. Chamaillard, M.,, M. Hashimoto,, Y. Horie,, J. Masumoto,, S. Qiu,, L. Saab,, Y. Ogura,, A. Kawasaki,, K. Fukase,, S. Kusumoto,, M. A. Valvano,, S. J. Foster,, T. W. Mak,, G. Nunez, and, N. Inohara. 2003. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4:702707.
29. Chang, C., and, J. F. Miller. 2006. Campylobacter jejuni colonization of mice with limited enteric flora. Infect. Immun. 74:52615271.
30. Chen, M. L.,, Z. Ge,, J. G. Fox, and, D. B. Schauer. 2006. Disruption of tight junctions and induction of proinflammatory cytokine responses in colonic epithelial cells by Campylobacter jejuni. Infect. Immun. 74:65816589.
31. Crocker, P. R.,, E. A. Clark,, M. Filbin,, S. Gordon,, Y. Jones,, J. H. Kehrl,, S. Kelm,, N. Le Douarin,, L. Powell,, J. Roder,, R. L. Schnaar,, D. C. Sgroi,, K. Stamenkovic,, R. Schauer,, M. Schachner,, T. K. van den Berg,, P. A. van der Merwe,, S. M. Watt, and, A. Varki. 1998. Siglecs: a family of sialic-acid binding lectins. Glycobiology 8:v.
32. Crystal, R. G. 1990. Alpha 1-antitrypsin deficiency, emphysema, and liver disease. Genetic basis and strategies for therapy. J. Clin. Invest. 85:13431352.
33. Dakdouki, G. K.,, G. F. Araj, and, M. Hussein. 2003. Campylobacter jejuni: unusual cause of cholecystitis with lithiasis. Case report and literature review. Clin. Microbiol. Infect. 9:970972.
34. Day, W. A., Jr.,, J. L. Sajecki,, T. M. Pitts, and, L. A. Joens. 2000. Role of catalase in Campylobacter jejuni intracellular survival. Infect. Immun. 68:63376345.
35. de Haas, C. J.,, M. E. van der Tol,, K. P. Van Kessel,, J. Verhoef, and, J. A. Van Strijp. 1998. A synthetic lipopolysaccharide-binding peptide based on amino acids 27–39 of serum amyloid P component inhibits lipopolysaccharide-induced responses in human blood. J. Immunol. 161:36073615.
36. Dekker, J.,, J. W. Rossen,, H. A. Buller, and, A. W. Einerhand. 2002. The MUC family: an obituary. Trends Biochem. Sci. 27:126131.
37. de Melo, M. A., and, J. C. Pechere. 1988. Effect of mucin on Campylobacter jejuni association and invasion on HEp-2 cells. Microb. Pathog. 5:7176.
38. Devyatyarova-Johnson, M.,, I. H. Rees,, B. D. Robertson,, M. W. Turner,, N. J. Klein, and, D. L. Jack. 2000. The lipopolysaccharide structures of Salmonella enterica serovar Typhimurium and Neisseria gonorrhoeae determine the attachment of human mannose-binding lectin to intact organisms. Infect. Immun. 68:38943899.
39. Diffenbach, C., and, E. C. Tramont. 2005. Innate (general or nonspecific) host defense mechanisms, p. 3442. In G. Mandell,, J. E. Bennett, and, R. Dolin (ed.), Mandell, Douglas and Bennett’s Principles and Practice of Infectious Diseases, 6th ed., vol. 1. Elsevier Churchill Livingstone, Philadelphia.
40. Dinarello, C. A. 1984. Interleukin-1 and the pathogenesis of the acute-phase response. N. Engl. J. Med. 311:14131418.
41. Ding, A. H.,, C. F. Nathan, and, D. J. Stuehr. 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. 141:24072412.
42. Drapier, J. C.,, J. Wietzerbin, and, J. B. Hibbs, Jr. 1988. Interferon-gamma and tumor necrosis factor induce the L-arginine-dependent cytotoxic effector mechanism in murine macrophages. Eur. J. Immunol. 18:15871592.
43. Duncan, C.,, H. Dougall,, P. Johnston,, S. Green,, R. Brogan,, C. Leifert,, L. Smith,, M. Golden, and, N. Benjamin. 1995. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat. Med. 1:546551.
44. Dykhuizen, R. S.,, R. Frazer,, C. Duncan,, C. C. Smith,, M. Golden,, N. Benjamin, and, C. Leifert. 1996. Antimicrobial effect of acidified nitrite on gut pathogens: importance of dietary nitrate in host defense. Antimicrob. Agents Chemother. 40:14221425.
45. Dykhuizen, R. S.,, A. Fraser,, H. McKenzie,, M. Golden,, C. Leifert, and, N. Benjamin. 1998. Helicobacter pylori is killed by nitrite under acidic conditions. Gut 42:334337.
46. Elvers, K. T.,, G. Wu,, N. J. Gilberthorpe,, R. K. Poole, and, S. F. Park. 2004. Role of an inducible single-domain hemoglobin in mediating resistance to nitric oxide and nitrosative stress in Campylobacter jejuni and Campylobacter coli. J. Bacteriol. 186:53325341.
47. Evans, E. W.,, F. G. Beach,, K. M. Moore,, M. W. Jackwood,, J. R. Glisson, and, B. G. Harmon. 1995. Antimicrobial activity of chicken and turkey heterophil peptides CHP1, CHP2, THP1, and THP3. Vet. Microbiol. 47:295303.
48. Fang, F. C. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2:820832.
49. Fang, F. C. 1997. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide–related antimicrobial activity. J. Clin. Invest. 99:28182825.
50. Field, L. H.,, J. L. Underwood,, S. M. Payne, and, L. J. Berry. 1991. Virulence of Campylobacter jejuni for chicken embryos is associated with decreased bloodstream clearance and resistance to phagocytosis. Infect. Immun. 59:14481456.
51. Fitzgerald, K. A.,, D. C. Rowe, and, D. T. Golenbock. 2004. Endotoxin recognition and signal transduction by the TLR4/MD2-complex. Microbes Infect. 6:13611367.
52. Fox, E. M.,, M. Raftery,, A. Goodchild, and, G. L. Mendz. 2007. Campylobacter jejuni response to ox-bile stress. FEMS Immunol. Med. Microbiol. 49:165172.
53. Fox, J. G.,, A. B. Rogers,, M. T. Whary,, Z. Ge,, N. S. Taylor,, S. Xu,, B. H. Horwitz, and, S. E. Erdman. 2004. Gastroenteritis in NF-kappaB-deficient mice is produced with wild-type Camplyobacter jejuni but not with C. jejuni lacking cytolethal distending toxin despite persistent colonization with both strains. Infect. Immun. 72:11161125.
54. Franchi, L.,, I. Condo,, B. Tomassini,, C. Nicolo, and, R. Testi. 2003. A caspaselike activity is triggered by LPS and is required for survival of human dendritic cells. Blood 102:29102915.
55. Frey, A. D.,, J. Farres,, C. J. Bollinger, and, P. T. Kallio. 2002. Bacterial hemoglobins and flavohemoglobins for alleviation of nitrosative stress in Escherichia coli. Appl. Environ. Microbiol. 68:48354840.
56. Fritz, J. H.,, R. L. Ferrero,, D. J. Philpott, and, S. E. Girardin. 2006. Nod-like proteins in immunity, inflammation and disease. Nat. Immunol. 7:12501257.
57. Fullerton, K. E.,, L. A. Ingram,, T. F. Jones,, B. J. Anderson,, P. V. McCarthy,, S. Hurd,, B. Shiferaw,, D. Vugia,, N. Haubert,, T. Hayes,, S. Wedel,, E. Scallan,, O. Henao, and, F. J. Angulo. 2007. Sporadic Campylobacter infection in infants: a population-based surveillance case-control study. Pediatr. Infect. Dis. J. 26:1924.
58. Ganz, T. 2003. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3:710720.
59. Ganz, T., and, J. Weiss. 1997. Antimicrobial peptides of phagocytes and epithelia. Semin. Hematol. 34:343354.
60. Garcia Rodriguez, L. A., and, A. Ruigomez. 1997. Gastric acid, acid-suppressing drugs, and bacterial gastroenteritis: how much of a risk? Epidemiology 8:571574.
61. Gardner, P. R.,, A. M. Gardner,, L. A. Martin, and, A. L. Salzman. 1998. Nitric oxide dioxygenase: an enzymic function for flavo-hemoglobin. Proc. Natl. Acad. Sci. USA 95:1037810383.
62. Geleijns, K.,, B. C. Jacobs,, W. Van Rijs,, A. P. Tio-Gillen,, J. D. Laman, and, P. A. van Doorn. 2004. Functional polymorphisms in LPS receptors CD14 and TLR4 are not associated with disease susceptibility or Campylobacter jejuni infection in Guillain-Barré patients. J. Neuroimmunol. 150:132138.
63. Gewirtz, A. T.,, T. A. Navas,, S. Lyons,, P. J. Godowski, and, J. L. Madara. 2001. Cutting edge: bacterial flagellin activates baso-laterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167:18821885.
64. Giannella, R. A.,, S. A. Broitman, and, N. Zamcheck. 1972. Gastric acid barrier to ingested microorganisms in man: studies in vivo and in vitro. Gut 13:251256.
65. Gupta, A.,, J. M. Nelson,, T. J. Barrett,, R. V. Tauxe,, S. P. Rossiter,, C. R. Friedman,, K. W. Joyce,, K. E. Smith,, T. F. Jones,, M. A. Hawkins,, B. Shiferaw,, J. L. Beebe,, D. J. Vugia,, T. Rabatsky-Ehr,, J. A. Benson,, T. P. Root, and, F. J. Angulo. 2004. Antimicrobial resistance among Campylobacter strains, United States, 1997–2001. Emerg. Infect. Dis. 10:11021109.
66. Hancock, R. E., and, G. Diamond. 2000. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8:402410.
67. Hari-Dass, R.,, C. Shah,, D. J. Meyer, and, J. G. Raynes. 2005. Serum amyloid A protein binds to outer membrane protein A of gram-negative bacteria. J. Biol. Chem. 280:1856218567.
68. Harwig, S. S.,, K. M. Swiderek,, V. N. Kokryakov,, L. Tan,, T. D. Lee,, E. A. Panyutich,, G. M. Aleshina,, O. V. Shamova, and, R. I. Lehrer. 1994. Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett. 342:281285.
69. Haslett, C.,, J. S. Savill, and, L. Meagher. 1989. The neutrophil. Curr. Opin. Immunol. 2:1018.
70. Hausladen, A.,, A. J. Gow, and, J. S. Stamler. 1998. Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proc. Natl. Acad. Sci. USA 95:1410014105.
71. Hayashi, F.,, K. D. Smith,, A. Ozinsky,, T. R. Hawn,, E. C. Yi,, D. R. Goodlett,, J. K. Eng,, S. Akira,, D. M. Underhill, and, A. Aderem. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:10991103.
72. Heikema, A. P.,, M. Bergman,, W. Van Rijs,, M. Kuijf,, H. Endtz, and, A. Van Belkum. 2007. Role of siglec/sialic acid interaction in phagocytosis of Campylobacter jejuni in human monocytes, abstr. 0.23, p. 8. 14th Int. Workshop Campylobacter Helicobacter Relat. Organisms. Blackwell Publishing, Rotterdam, The Netherlands.
73. Heusipp, G.,, K. Spekker,, S. Brast,, S. Falker, and, M. A. Schmidt. 2006. YopM of Yersinia enterocolitica specifically interacts with alpha1-antitrypsin without affecting the anti-protease activity. Microbiology 152:13271335.
74. Hickey, T. E.,, S. Baqar,, A. L. Bourgeois,, C. P. Ewing, and, P. Guerry. 1999. Campylobacter jejuni-stimulated secretion of interleukin-8 by INT407 cells. Infect. Immun. 67:8893.
75. Hobbie, S.,, L. M. Chen,, R. J. Davis, and, J. E. Galan. 1997. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J. Immunol. 159:55505559.
76. Hoshino, K.,, O. Takeuchi,, T. Kawai,, H. Sanjo,, T. Ogawa,, Y. Takeda,, K. Takeda, and, S. Akira. 1999. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162:37493752.
77. Hu, L.,, M. D. Bray,, M. Osorio, and, D. J. Kopecko. 2006. Campylobacter jejuni induces maturation and cytokine production in human dendritic cells. Infect. Immun. 74:26972705.
78. Hu, L., and, T. E. Hickey. 2005. Campylobacter jejuni induces secretion of proinflammatory chemokines from human intestinal epithelial cells. Infect. Immun. 73:44374440.
79. Hugdahl, M. B.,, J. T. Beery, and, M. P. Doyle. 1988. Chemotactic behavior of Campylobacter jejuni. Infect. Immun. 56:15601566.
80. Hume, D. A.,, I. L. Ross,, S. R. Himes,, R. T. Sasmono,, C. A. Wells, and, T. Ravasi. 2002. The mononuclear phagocyte system revisited. J. Leukoc. Biol. 72:621627.
81. Inaba, T.,, J. W. Alexander,, J. D. Ogle, and, C. K. Ogle. 1999. Nitric oxide promotes the internalization and passage of viable bacteria through cultured Caco-2 intestinal epithelial cells. Shock 11:276282.
82. Iovine, N.,, S. Pursnani,, A. Voldman,, A. Wasserman,, M. J. Blaser, and, Y. Weinrauch. Reactive nitrogen species contribute to innate host defense against Campylobacter jejuni. Infect. Immun., in press.
83. Iwasaki, A. 2007. Mucosal dendritic cells. Annu. Rev. Immunol. 25:381418.
84. Johanesen, P. A., and, M. B. Dwinell. 2006. Flagellin-independent regulation of chemokine host defense in Campylobacter jejuni-infected intestinal epithelium. Infect. Immun. 74:34373447.
85. Jones, M. A.,, S. Totemeyer,, D. J. Maskell,, C. E. Bryant, and, P. A. Barrow. 2003. Induction of proinflammatory responses in the human monocytic cell line THP-1 by Campylobacter jejuni. Infect. Immun. 71:26262633.
86. Kiehlbauch, J. A.,, R. A. Albach,, L. L. Baum, and, K. P. Chang. 1985. Phagocytosis of Campylobacter jejuni and its intracellular survival in mononuclear phagocytes. Infect. Immun. 48:446451.
87. Kim, J. M.,, J. S. Kim,, H. C. Jung,, I. S. Song, and, C. Y. Kim. 2002. Up-regulation of inducible nitric oxide synthase and nitric oxide in Helicobacter pylori-infected human gastric epithelial cells: possible role of interferon-gamma in polarized nitric oxide secretion. Helicobacter 7:116128.
88. Kitchens, R. L., and, P. A. Thompson. 2005. Modulatory effects of sCD14 and LBP on LPS-host cell interactions. J. Endotoxin. Res. 11:225229.
89. Knappstein, S.,, T. Ide,, M. A. Schmidt, and, G. Heusipp. 2004. Alpha 1-antitrypsin binds to and interferes with functionality of EspB from atypical and typical enteropathogenic Escherichia coli strains. Infect. Immun. 72:43444350.
90. Knowles, R. G., and, S. Moncada. 1994. Nitric oxide synthases in mammals. Biochem. J. 298(Pt. 2):249258.
91. Konkel, M. E.,, S. G. Garvis,, S. L. Tipton,, D. E. Anderson, Jr., and, W. Cieplak, Jr. 1997. Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni. Mol. Microbiol. 24:953963.
92. Konkel, M. E.,, B. J. Kim,, V. Rivera-Amill, and, S. G. Garvis. 1999. Bacterial secreted proteins are required for the internaliztion of Campylobacter jejuni into cultured mammalian cells. Mol. Microbiol. 32:691701.
93. Kopp, E., and, R. Medzhitov. 2003. Recognition of microbial infection by Toll-like receptors. Curr. Opin. Immunol. 15:396401.
94. Kovach, A.,, Q. V. Tu,, G. H. K. Chang,, A. S. Okoli,, W. G. Miller, and, G. L. Mendz. 2007. Changes in the expression of virulence-related genes in response to ox-bile stress of six species of Campylobacterales. 14th Int. Workshop Campylobacter Helicobacter Relat. Organisms. Blackwell Publishing, Rotterdam, The Netherlands.
95. Krieglstein, C. F.,, W. H. Cerwinka,, F. S. Laroux,, J. W. Salter,, J. M. Russell,, G. Schuermann,, M. B. Grisham,, C. R. Ross, and, D. N. Granger. 2001. Regulation of murine intestinal inflammation by reactive metabolites of oxygen and nitrogen: divergent roles of superoxide and nitric oxide. J. Exp. Med. 194:12071218.
96. Kuhlman, M.,, K. Joiner, and, R. A. Ezekowitz. 1989. The human mannose-binding protein functions as an opsonin. J. Exp. Med. 169:17331745.
97. Kuhns, D. B.,, D. A. Long Priel, and, J. I. Gallin. 1997. Endotoxin and IL-1 hyporesponsiveness in a patient with recurrent bacterial infections. J. Immunol. 158:39593964.
98. Kuijf, M. L.,, J. N. Samsom,, W. Van Rijs,, A. P. Heikema,, P. A. Van Doorn,, H. P. Endtz,, E. E. S. Nieuwenhuis, and, B. C. Jacobs. 2007. Maturation of dendritic cells by Guillain-Barré syndrome–associated Campylobacter jejuni is related to expression of sialic acid. 14th Int. Workshop Campylobacter Helicobacter Relat. Organisms. Blackwell Publishing, Rotterdam, The Netherlands.
99. Lambert, M. E.,, P. F. Schofield,, A. G. Ironside, and, B. K. Mandal. 1979. Campylobacter colitis. Br. Med. J. 1:857859.
100. Lastovica, A. J.,, E. Le Roux, and, J. L. Penner. 1989. Campylobacter upsaliensis” isolated from blood cultures of pediatric patients. J. Clin. Microbiol. 27:657659.
101. Leaver, S. K.,, S. J. Finney,, A. Burke-Gaffney, and, T. W. Evans. 2007. Sepsis since the discovery of Toll-like receptors: disease concepts and therapeutic opportunities. Crit. Care Med. 35:14041410.
102. Lehrer, R. I.,, A. K. Lichtenstein, and, T. Ganz. 1993. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11:105128.
103. Lemaitre, B.,, E. Nicolas,, L. Michaut,, J. M. Reichhart, and, J. A. Hoffmann. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973983.
104. Lesuffleur, T.,, N. Porchet,, J. P. Aubert,, D. Swallow,, J. R. Gum,, Y. S. Kim,, F. X. Real, and, A. Zweibaum. 1993. Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations. J. Cell. Sci. 106(Pt. 3):771783.
105. Levy, O.,, G. Canny,, C. N. Serhan, and, S. P. Colgan. 2003. Expression of BPI (bactericidal/permeability-increasing protein) in human mucosal epithelia. Biochem. Soc. Trans. 31:795800.
106. Lin, J.,, C. Cagliero,, B. Guo,, Y. W. Barton,, M. C. Maurel,, S. Payot, and, Q. Zhang. 2005. Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni. J. Bacteriol. 187:74177424.
107. Lin, J.,, L. O. Michel, and, Q. Zhang. 2002. CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob. Agents Chemother. 46:21242131.
108. Lin, J.,, O. Sahin,, L. O. Michel, and, Q. Zhang. 2003. Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect. Immun. 71:42504259.
109. Lyons, C. R.,, G. J. Orloff, and, J. M. Cunningham. 1992. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J. Biol. Chem. 267:63706374.
110. MacCallum, A. J.,, D. Harris,, G. Haddock, and, P. H. Everest. 2006. Campylobacter jejuni-infected human epithelial cell lines vary in their ability to secrete interleukin-8 compared to in vitro–infected primary human intestinal tissue. Microbiology 152:36613665.
111. MacMicking, J.,, Q. W. Xie, and, C. Nathan. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15:323350.
112. MacMicking, J. D.,, C. Nathan,, G. Hom,, N. Chartrain,, D. S. Fletcher,, M. Trumbauer,, K. Stevens,, Q. W. Xie,, K. Sokol,, N. Hutchinson,, H. Chen, and, J. S. Mudget. 1995. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81:641650.
113. Mamelli, L.,, J. M. Pages,, M. E. Konkel, and, J. M. Bolla. 2006. Expression and purification of native and truncated forms of CadF, an outer membrane protein of Campylobacter. Int. J. Biol. Macromol. 39:135140.
114. Martinsen, T. C.,, K. Bergh, and, H. L. Waldum. 2005. Gastric juice: a barrier against infectious diseases. Basic Clin. Pharmacol. Toxicol. 96:94102.
115. Matsushita, M., and, T. Fujita. 1992. Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J. Exp. Med. 176:14971502.
116. McAuley, J. L.,, S. K. Linden,, C. W. Png,, R. M. King,, H. L. Pennington,, S. J. Gendler,, T. H. Florin,, G. R. Hill,, V. Korolik, and, M. A. McGuckin. 2007. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J. Clin. Invest. 117:23132324.
117. McKnight, G. M.,, C. W. Duncan,, C. Leifert, and, M. H. Golden. 1999. Dietary nitrate in man: friend or foe? Br. J. Nutr. 81:349358.
118. Medzhitov, R., and, C. Janeway, Jr. 2000. The Toll receptor family and microbial recognition. Trends Microbiol. 8:452456.
119. Megraud, F.,, G. Boudraa,, K. Bessaoud,, S. Bensid,, F. Dabis,, R. Soltana, and, M. Touhami. 1990. Incidence of Campylobacter infection in infants in western Algeria and the possible protective role of breast feeding. Epidemiol. Infect. 105:7378.
120. Mellits, K. H.,, J. Mullen,, M. Wand,, G. Armbruster,, A. Patel,, P. L. Connerton,, M. Skelly, and, I. F. Connerton. 2002. Activation of the transcription factor NF-kappaB by Campylobacter jejuni. Microbiology 148:27532763.
121. Membrillo-Hernandez, J.,, M. D. Coopamah,, M. F. Anjum,, T. M. Stevanin,, A. Kelly,, M. N. Hughes, and, R. K. Poole. 1999. The flavohemoglobin of Escherichia coli confers resistance to a nitro-sating agent, a “nitric oxide releaser,” and paraquat and is essential for transcriptional responses to oxidative stress. J. Biol. Chem. 274:748754.
122. Mendz, G. L.,, Q. V. Tu, and, M. A. McGuckin. 2007. Effects of human mucin MUC2 on the expression of Campylobacter jejuni virulence factors. 14th Int. Workshop Campylobacter Helicobacter Relat. Organisms. Blackwell Publishing, Rotterdam, The Netherlands.
123. Molmenti, E. P.,, D. H. Perlmutter, and, D. C. Rubin. 1993. Cell-specific expression of alpha 1-antitrypsin in human intestinal epithelium. J. Clin. Invest. 92:20222034.
124. Muller, C. A.,, I. B. Autenrieth, and, A. Peschel. 2005. Innate defenses of the intestinal epithelial barrier. Cell. Mol. Life Sci. 62:12971307.
125. Murray, P. J. 2005. NOD proteins: an intracellular pathogen-recognition system or signal transduction modifiers? Curr. Opin. Immunol. 17:352358.
126. Myszewski, M. A., and, N. J. Stern. 1991. Phagocytosis and intra-cellular killing of Campylobacter jejuni by elicited chicken peritoneal macrophages. Avian Dis. 35:750755.
127. Nathan, C. 1997. Inducible nitric oxide synthase: what difference does it make? J. Clin. Invest. 100:24172423.
128. Nathan, C., and, M. U. Shiloh. 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97:88418848.
129. Neal, K. R.,, H. M. Scott,, R. C. Slack, and, R. F. Logan. 1996. Omeprazole as a risk factor for Campylobacter gastroenteritis: case-control study. BMJ 312:414415.
130. Newburg, D. S. 2005. Innate immunity and human milk. J. Nutr. 135:13081312.
131. Newburg, D. S.,, G. M. Ruiz-Palacios,, M. Altaye,, P. Chaturvedi,, J. Meinzen-Derr,, L. Guerrero Mde, and, A. L. Morrow. 2004. Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants. Glycobiology 14:253263.
132. Newell, D. G. 2001. Animal models of Campylobacter jejuni colonization and disease and the lessons to be learned from similar Helicobacter pylori models. Symp. Ser. Soc. Appl. Microbiol. 2001:57S67S.
133. Nguyen, T. X.,, A. M. Cole, and, R. I. Lehrer. 2003. Evolution of primate theta-defensins: a serpentine path to a sweet tooth. Peptide. 24:16471654.
134. Niess, J. H., and, H. C. Reinecker. 2006. Dendritic cells: the commanders-in-chief of mucosal immune defenses. Curr. Opin. Gastroenterol. 22:354360.
135. Ogushi, K.,, A. Wada,, T. Niidome,, N. Mori,, K. Oishi,, T. Nagatake,, A. Takahashi,, H. Asakura,, S. Makino,, H. Hojo,, Y. Nakahara,, M. Ohsaki,, T. Hatakeyama,, H. Aoyagi,, H. Kurazono,, J. Moss, and, T. Hirayama. 2001. Salmonella enteritidis FliC (flagella filament protein) induces human beta-defensin-2 mRNA production by Caco-2 cells. J. Biol. Chem. 276:3052130526.
136. Okoli, A. S.,, T. Wadstrom, and, G. L. Mendz. 2007. MiniReview: bioinformatic study of bile responses in Campylobacterales. FEMS Immunol. Med. Microbiol. 49:101123.
137. O’Neil, D. A.,, E. M. Porter,, D. Elewaut,, G. M. Anderson,, L. Eckmann,, T. Ganz, and, M. F. Kagnoff. 1999. Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. J. Immunol. 163:67186724.
138. Pancorbo, P. L.,, A. M. Gallego,, M. de Pablo,, C. Alvarez,, E. Ortega, and, G. Alvarez de Cienfuegos. 1994. Inflammatory and phagocytic response to experimental Campylobacter jejuni infection in mice. Microbiol. Immunol. 38:8995.
139. Patton, C. M.,, N. Shaffer,, P. Edmonds,, T. J. Barrett,, M. A. Lambert,, C. Baker,, D. M. Perlman, and, D. J. Brenner. 1989. Human disease associated with “Campylobacter upsaliensis” (catalase-negative or weakly positive Campylobacter species) in the United States. J. Clin. Microbiol. 27:6673.
140. Pauleau, A. L., and, P. J. Murray. 2003. Role of Nod2 in the response of macrophages to toll-like receptor agonists. Mol. Cell. Biol. 23:75317539.
141. Philpott, D. J.,, S. Yamaoka,, A. Israel, and, P. J. Sansonetti. 2000. Invasive Shigella flexneri activates NF-kappa B through a lipopolysaccharide-dependent innate intracellular response and leads to IL-8 expression in epithelial cells. J. Immunol. 165:903914.
142. Pickett, C. L.,, T. Auffenberg,, E. C. Pesci,, V. L. Sheen, and, S. S. Jusuf. 1992. Iron acquisition and hemolysin production by Campylobacter jejuni. Infect. Immun. 60:38723877.
143. Pittman, M. S.,, K. T. Elvers,, L. Lee,, M. A. Jones,, R. K. Poole,, S. F. Park, and, D. J. Kelly. 2007. Growth of Campylobacter jejuni on nitrate and nitrite: electron transport to NapA and NrfA via NrfH and distinct roles for NrfA and the globin Cgb in protection against nitrosative stress. Mol. Microbiol. 63:575590.
144. Poltorak, A.,, X. He,, I. Smirnova,, M. Y. Liu,, C. Van Huffel,, X. Du,, D. Birdwell,, E. Alejos,, M. Silva,, C. Galanos,, M. Freudenberg,, P. Ricciardi-Castagnoli,, B. Layton, and, B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:20852088.
145. Poole, R. K. 2005. Nitric oxide and nitrosative stress tolerance in bacteria. Biochem. Soc. Trans. 33:176180.
146. Poole, R. K.,, M. F. Anjum,, J. Membrillo-Hernandez,, S. O. Kim,, M. N. Hughes, and, V. Stewart. 1996. Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. J. Bacteriol. 178:54875492.
147. Purdy, D.,, S. Cawthraw,, J. H. Dickinson,, D. G. Newell, and, S. F. Park. 1999. Generation of a superoxide dismutase (SOD)-deficient mutant of Campylobacter coli: evidence for the significance of SOD in Campylobacter survival and colonization. Appl. Environ. Microbiol. 65:25402546.
148. Purdy, D., and, S. F. Park. 1994. Cloning, nucleotide sequence and characterization of a gene encoding superoxide dismutase from Campylobacter jejuni and Campylobacter coli. Microbiology 140:12031208.
149. Raphael, B. H.,, S. Pereira,, G. A. Flom,, Q. Zhang,, J. M. Ketley, and, M. E. Konkel. 2005. The Campylobacter jejuni response regulator, CbrR, modulates sodium deoxycholate resistance and chicken colonization. J. Bacteriol. 187:36623670.
150. Ravetch, J. V., and, L. L. Lanier. 2000. Immune inhibitory receptors. Science 290:8489.
151. Rescigno, M.,, M. Urbano,, B. Valzasina,, M. Francolini,, G. Rotta,, R. Bonasio,, F. Granucci,, J. P. Kraehenbuhl, and, P. Ricciardi-Castagnoli. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2:361367.
152. Resta-Lenert, S., and, K. E. Barrett. 2002. Enteroinvasive bacteria alter barrier and transport properties of human intestinal epithelium: role of iNOS and COX-2. Gastroenterology 122:10701087.
153. Reynoso-Paz, S.,, R. L. Coppel,, I. R. Mackay,, N. M. Bass,, A. A. Ansari, and, M. E. Gershwin. 1999. The immunobiology of bile and biliary epithelium. Hepatology 30:351357.
154. Rivera-Amill, V.,, B. J. Kim,, J. Seshu, and, M. E. Konkel. 2001. Secretion of the virulence-associated Campylobacter invasion antigens from Campylobacter jejuni requires a stimulatory signal. J. Infect. Dis. 183:16071616.
155. Roantree, R. J., and, L. A. Rantz. 1960. A study of the relationship of the normal bactericidal activity of human serum to bacterial infection. J. Clin. Invest. 39:7281.
156. Roberts, P. J.,, G. P. Riley,, K. Morgan,, R. Miller,, J. O. Hunter, and, S. J. Middleton. 2001. The physiological expression of inducible nitric oxide synthase (iNOS) in the human colon. J. Clin. Pathol. 54:293297.
157. Rock, F. L.,, G. Hardiman,, J. C. Timans,, R. A. Kastelein, and, J. F. Bazan. 1998. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 95:588593.
158. Rotimi, V. O.,, L. Egwari, and, B. Akande. 1990. Acidity and intestinal bacteria: an in-vitro assessment of the bactericidal activity of hydrochloric acid on intestinal pathogens. Afr. J. Med. Med. Sci. 19:275280.
159. Ruiz-Palacios, G. M.,, L. E. Cervantes,, P. Ramos,, B. Chavez-Munguia, and, D. S. Newburg. 2003. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278:1411214120.
160. Salzman, A.,, A. G. Denenberg,, I. Ueta,, M. O’Connor,, S. C. Linn, and, C. Szabo. 1996. Induction and activity of nitric oxide synthase in cultured human intestinal epithelial monolayers. Am. J. Physiol. 270:G565573.
161. Salzman, A. L.,, T. Eaves-Pyles,, S. C. Linn,, A. G. Denenberg, and, C. Szabo. 1998. Bacterial induction of inducible nitric oxide synthase in cultured human intestinal epithelial cells. Gastroenterology 114:93102.
162. Schlee, M.,, J. Wehkamp,, A. Altenhoefer,, T. A. Oelschlaeger,, E. F. Stange, and, K. Fellermann. 2007. Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect. Immun. 75:23992407.
163. Selander, B.,, U. Martensson,, A. Weintraub,, E. Holmstrom,, M. Matsushita,, S. Thiel,, J. C. Jensenius,, L. Truedsson, and, A. G. Sjoholm. 2006. Mannan-binding lectin activates C3 and the alternative complement pathway without involvement of C2. J. Clin. Invest. 116:14251434.
164. Shah, C.,, R. Hari-Dass, and, J. G. Raynes. 2006. Serum amyloid A is an innate immune opsonin for gram-negative bacteria. Blood 108:17511757.
165. Shandera, W. X.,, M. P. Tormey, and, M. J. Blaser. 1992. An outbreak of bacteremic Campylobacter jejuni infection. Mt. Sinai J. Med. 59:5356.
166. Shiloh, M. U., and, C. F. Nathan. 2000. Reactive nitrogen intermediates and the pathogenesis of Salmonella and Mycobacteria. Curr. Opin. Microbiol. 3:3542.
167. Smith, C. K.,, P. Kaiser,, L. Rothwell,, T. Humphrey,, P. A. Barrow, and, M. A. Jones. 2005. Campylobacter jejuni-induced cytokine responses in avian cells. Infect. Immun. 73:20942100.
168. Smith, K. E.,, J. M. Besser,, C. W. Hedberg,, F. T. Leano,, J. B. Bender,, J. H. Wicklund,, B. P. Johnson,, K. A. Moore, and, M. T. Osterholm. 1999. Quinolone-resistant Campylobacter jejuni infections in Minnesota, 1992–1998 Investigation Team. N. Engl. J. Med. 340:15251532.
169. Spiegelhalder, B.,, G. Eisenbrand, and, R. Preussmann. 1976. Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet. Toxicol. 14:545548.
170. Stanley, K. N.,, S. H. Cabry,, C. F. Dalton, and, N. Jordan-Mahy. 2007. Use of mucin-overproducing cell line HT29-MTX to study the interaction between Campylobacter jejuni and commensal micro-organisms at the mucin interface of the gastrointestinal tract. 14th Int. Workshop Campylobacter Helicobacter Relat. Organisms. Blackwell Publishing, Rotterdam, The Netherlands.
171. Strober, W.,, P. J. Murray,, A. Kitani, and, T. Watanabe. 2006. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat. Rev. Immunol. 6:920.
172. Summerfield, J. A.,, S. Ryder,, M. Sumiya,, M. Thursz,, A. Gorchein,, M. A. Monteil, and, M. W. Turner. 1995. Mannose binding protein gene mutations associated with unusual and severe infections in adults. Lancet 345:886889.
173. Sylvester, F. A.,, D. Philpott,, B. Gold,, A. Lastovica, and, J. F. Forstner. 1996. Adherence to lipids and intestinal mucin by a recently recognized human pathogen, Campylobacter upsaliensis. Infect. Immun. 64:40604066.
174. Szalai, A. J.,, J. L. VanCott,, J. R. McGhee,, J. E. Volanakis, and, W. H. Benjamin, Jr. 2000. Human C-reactive protein is protective against fatal Salmonella enterica serovar typhimurium infection in transgenic mice. Infect. Immun. 68:56525656.
175. Takahashi, A.,, A. Wada,, K. Ogushi,, K. Maeda,, T. Kawahara,, K. Mawatari,, H. Kurazono,, J. Moss,, T. Hirayama, and, Y. Nakaya. 2001. Production of beta-defensin-2 by human colonic epithelial cells induced by Salmonella enteritidis flagella filament structural protein. FEBS Lett. 508:484488.
176. Takahashi, K., and, R. A. Ezekowitz. 2005. The role of the mannose-binding lectin in innate immunity. Clin. Infect. Dis. 41(Suppl. 7):S440S444.
177. Takahashi, K.,, W. E. Ip,, I. C. Michelow, and, R. A. Ezekowitz. 2006. The mannose-binding lectin: a prototypic pattern recognition molecule. Curr. Opin. Immunol. 18:1623.
178. Taylor, P. R.,, L. Martinez-Pomares,, M. Stacey,, H. H. Lin,, G. D. Brown, and, S. Gordon. 2005. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23:901944.
179. Tenner, A. J.,, S. L. Robinson, and, R. A. Ezekowitz. 1995. Man-nose binding protein (MBP) enhances mononuclear phagocyte function via a receptor that contains the 126,000 M(r) component of the C1q receptor. Immunity 3:485493.
180. Tosi, M. F. 2005. Innate immune responses to infection. J. Allergy Clin. Immunol. 116:241249.
181. Uehara, A.,, Y. Fujimoto,, K. Fukase, and, H. Takada. 2007. Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol. Immunol. 44:31003111.
182. Ullmann, U., and, R. Krausse. 1987. The reaction of Campylobacter species on the chemiluminescence, chemotaxis and hemagglutination. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 266:178190.
183. van Dijk, A.,, E. J. Veldhuizen,, S. I. Kalkhove,, J. L. Tjeerdsma-van Bokhoven,, R. A. Romijn, and, H. P. Haagsman. 2007. The beta-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrob. Agents Chemother. 51:912922.
184. van Spreeuwel, J. P.,, G. C. Duursma,, C. J. Meijer,, R. Bax,, P. C. Rosekrans, and, J. Lindeman. 1985. Campylobacter colitis: histological immunohistochemical and ultrastructural findings. Gut 26:945951.
185. Wakabayashi, S.,, H. Matsubara, and, D. A. Webster. 1986. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322:481483.
186. Walan, A.,, C. Dahlgren,, E. Kihlstrom,, O. Stendahl, and, R. Lock. 1992. Phagocyte killing of Campylobacter jejuni in relation to oxidative activation. APMIS 100:424430.
187. Walport, M. J. 2001a. Complement. First of two parts. N. Engl. J. Med. 344:10581066.
188. Walport, M. J. 2001b. Complement. Second of two parts. N. Engl. J. Med. 344:11401144.
189. Wassenaar, T. M.,, M. Engelskirchen,, S. Park, and, A. Lastovica. 1997. Differential uptake and killing potential of Campylobacter jejuni by human peripheral monocytes/macrophages. Med. Microbiol. Immunol. 186:139144.
190. Waterman, S. R., and, P. L. Small. 1998. Acid-sensitive enteric pathogens are protected from killing under extremely acidic conditions of pH 2.5 when they are inoculated onto certain solid food sources. Appl. Environ. Microbiol. 64:38823886.
191. Watson, R. O., and, J. E. Galan. 2005. Signal transduction in Campylobacter jejuni–induced cytokine production. Cell. Microbiol. 7:655665.
192. Watson, R. O.,, V. Novik,, D. Hofreuter,, M. Lara-Tejero, and, J. E. Galan. 2007. A MyD88-deficient mouse model reveals a role for Nramp1 in Campylobacter jejuni infection. Infect. Immun. 75:19942003.
193. Wehkamp, J.,, J. Harder,, K. Wehkamp,, B. Wehkamp-von Meissner,, M. Schlee,, C. Enders,, U. Sonnenborn,, S. Nuding,, S. Bengmark,, K. Fellermann,, J. M. Schroder, and, E. F. Stange. 2004. NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect. Immun. 72:57505758.
194. Wehkamp, J.,, J. Schauber, and, E. F. Stange. 2007. Defensins and cathelicidins in gastrointestinal infections. Curr. Opin. Gastroenterol. 23:3238.
195. Weiss, J.,, P. Elsbach,, I. Olsson, and, H. Odeberg. 1978. Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. J. Biol. Chem. 253:26642672.
196. Wempe, J. M.,, C. A. Genigeorgis,, T. B. Farver, and, H. I. Yusufu. 1983. Prevalence of Campylobacter jejuni in two California chicken processing plants. Appl. Environ. Microbiol. 45:355359.
197. Witthoft, T.,, L. Eckmann,, J. M. Kim, and, M. F. Kagnoff. 1998. Enteroinvasive bacteria directly activate expression of iNOS and NO production in human colon epithelial cells. Am. J. Physiol. 275:G564571.
198. Wooldridge, K. G., and, J. M. Ketley. 1997. Campylobacter-host cell interactions. Trends Microbiol. 5:96102.
199. Xu, J.,, X. Xu, and, W. Verstraete. 2001. The bactericidal effect and chemical reactions of acidified nitrite under conditions simulating the stomach. J. Appl. Microbiol. 90:523529.
200. Zilbauer, M.,, N. Dorrell,, P. K. Boughan,, A. Harris,, B. W. Wren,, N. J. Klein, and, M. Bajaj-Elliott. 2005. Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect. Immun. 73:72817289.
201. Zilbauer, M.,, N. Dorrell,, A. Elmi,, K. J. Lindley,, S. Schuller,, H. E. Jones,, N. J. Klein,, G. Nunez,, B. W. Wren, and, M. Bajaj-Elliott. 2007. A major role for intestinal epithelial nucleotide oligomerization domain 1 (NOD1) in eliciting host bactericidal immune responses to Campylobacter jejuni. Cell. Microbiol. 9:24042416.
202. Ziprin, R. L.,, C. R. Young,, J. A. Byrd,, L. H. Stanker,, M. E. Hume,, S. A. Gray,, B. J. Kim, and, M. E. Konkel. 2001. Role of Campylobacter jejuni potential virulence genes in cecal colonization. Avian Dis. 45:549557.
203. Zweier, J. L.,, A. Samouilov, and, P. Kuppusamy. 1999. Nonenzymatic nitric oxide synthesis in biological systems. Biochim. Biophys. Acta 1411:250262.


Generic image for table
Table 1.

Immune components relevant to innate defense against gastrointestinal infections

Citation: Iovine N. 2008. Innate Immunity in Infections, p 333-350. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch19
Generic image for table
Table 2.

Acute-phase proteins relevant to gastrointestinal infections

Citation: Iovine N. 2008. Innate Immunity in Infections, p 333-350. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error